Encoding fusion data in the double Burnside ring

Kári Ragnarsson

DePaul University

UIC Algebra Seminar joint GT&DS Seminar October 20, 2008

.⊒...>

Fusion systems model the *p*-local structure of a finite group.

Let G be a finite group with Sylow subgroup S

Definition

The fusion system of *G* on *S* is the category $\mathcal{F} = \mathcal{F}_{S}(G)$ with: -Objects: Subgroups of *S*. -Morphisms: Hom_{\mathcal{F}}(*P*, *Q*) = Hom_{*G*}(*P*, *Q*)

Here, $\text{Hom}_G(P, Q)$ is the set of homomorphisms $\varphi \colon P \to Q$ that are induced by conjugation in *G*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

More generally:

Definition

A fusion system on a finite *p*-group *S* is a category \mathcal{F} with:

- Objects are the subgroups of S.
- Morphisms satisfy

 $\operatorname{Hom}_{\mathcal{S}}(P,Q) \subseteq \operatorname{Hom}_{\mathcal{F}}(P,Q) \subseteq \operatorname{Inj}(P,Q),$

and every morphism can be factored as an isomorphism in ${\mathcal F}$ followed by a group inclusion.

ヘロト ヘアト ヘビト ヘビト

Definition (Puig)

A fusion system is saturated if it satisfies two additional axioms, playing the role of Sylow theorems.

- I "prime to p axiom"
- II "Maximal extension axiom"

Fusion systems of groups are saturated.

Saturated fusion systems also come up in:

- Block theory, induced by conjugation among Brauer subpairs.
- Topology, as Chevalley groups of *p*-compact groups.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let \mathcal{F} be a fusion system on S.

Definition

- $P, Q \leq S$ are \mathcal{F} -conjugate if they are isomorphic in \mathcal{F} .
- $P \leq S$ is fully \mathcal{F} -centralized if $|C_S(P)| \geq |C_S(Q)|$ for every Q that is \mathcal{F} -conjugate to P.
- $P \leq S$ is fully \mathcal{F} -normalized if $|N_S(P)| \geq |N_S(Q)|$ for every Q that is \mathcal{F} -conjugate to P.

Definition (Saturation Axiom I)

 \mathcal{F} satisfies Axiom I if the following holds for every $P \leq S$: If P is fully \mathcal{F} -normalized, then P is fully \mathcal{F} -centralized and $p \nmid [\operatorname{Aut}_{\mathcal{F}}(P) : \operatorname{Aut}_{S}(P)]$.

This axiom replaces " $p \nmid [G : S]$ ".

ヘロン 人間 とくほ とくほ とう

Axiom II:

Definition

For $P \leq S$, and a monomorphism $\varphi \colon P \to S$, set

$$N_{\varphi} = \{ x \in N_{\mathcal{S}}(\mathcal{P}) \mid \varphi \circ c_x \circ \varphi^{-1} \in \operatorname{Aut}_{\mathcal{S}}(\varphi(\mathcal{P})) \}$$

 N_{φ} is the largest subgroup of $N_{S}(X)$ to which we could hope to extend φ . ($\varphi \circ c_{x} \circ \varphi^{-1} = c_{\varphi(x)}$)

Definition (Saturation Axiom II)

 \mathcal{F} satisfies Axiom II if the following holds for every morphism $\varphi \colon P \to S$ in \mathcal{F} : If $\varphi(P)$ is fully \mathcal{F} -centralized, then there exists a morphism $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(N_{\varphi}, S)$ such that $\bar{\varphi}|_{P} = \varphi$.

This axiom replaces "all Sylow subgroups are conjugate".

(E) < (E)</p>

A *p*-local finite group is a saturated fusion system equipped with a classifying space.

Motivation: BG_n^{\wedge} is a classifying space for $\mathcal{F}_S(G)$.

Have classifying space functor $B: \mathcal{F} \to \text{Top}$.

Need to guotient out action of inner homomorphisms before taking homotopy colimit.

The orbit category \mathcal{O} has same objects as \mathcal{F} and morphisms

 $\operatorname{mor}_{\mathcal{O}}(P,Q) = Q \setminus \operatorname{Hom}_{\mathcal{F}}(P,Q)$

$$\begin{array}{c} \mathcal{F} \xrightarrow{B} \text{Top} \\ \downarrow \exists \tilde{B}? & \downarrow \\ \downarrow & \downarrow \\ \mathcal{O} \xrightarrow{B} \text{HoTop} \end{array}$$

Dwyer-Kan obstruction theory to existence and uniqueness of homotopy lifting \tilde{B} . If \tilde{B} exists, obtain a classifying space Holim \tilde{B}

-

Algebraic version:

Definition

A group $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for all Q that are \mathcal{F} -conjugate to P. Let $\mathcal{F}^c \subseteq \mathcal{F}$ be the full subcategory of \mathcal{F} -centric subgroups.

Definition

A centric linking system associated to ${\mathcal F}$ is a category ${\mathcal L}$ where

- Objects are the *F*-centric subgroups
- Z(P) acts freely on $mor_{\mathcal{L}}(P, Q)$ with quotient $Hom_{\mathcal{F}}(P, Q)$.
- + technical conditions.

Think of \mathcal{L} as a "crossed module extension" of \mathcal{F}^c by Z(-). Corresponding obstruction theory recovers Dwyer–Kan obstructions.

Classifying space: $|\mathcal{L}|_{p}^{\wedge}$.

イロト 不得 とくほ とくほ とう

ъ

Definition (BLO)

Let \mathcal{F} be a fusion system over the *p*-group *S*. A *centric linking system associated to* \mathcal{F} is a category \mathcal{L} , whose objects are the \mathcal{F} -centric subgroups of *S*, together with a functor

$$\pi : \mathcal{L} \rightarrow \mathcal{F}^{C}$$

and distinguished monomorphisms $P \xrightarrow{\delta_P} Aut P\mathcal{L}$ for each \mathcal{F} -centric subgroup $P \leq S$, which satisfy the following conditions.

(A) The functor π is the identity on objects and surjective on morphisms. More precisely, for each pair of objects $P, Q \in \mathcal{L}$, the center Z(P) acts freely on mor $_{\mathcal{L}}(P, Q)$ by composition (upon identifying Z(P) with $\delta_P(Z(P)) \leq \operatorname{Aut}_{\mathcal{L}}(P)$), and π induces a bijection

$$\operatorname{mor}_{\mathcal{L}}(P, Q)/Z(P) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{F}}(P, Q).$$

- (B) For each \mathcal{F} -centric subgroup $P \leq S$ and each $g \in P$, π sends $\delta_P(g) \in \operatorname{Aut}_{\mathcal{L}}(P)$ to $c_g \in \operatorname{Aut}_{\mathcal{F}}(P)$.
- (C) For each $f \in \operatorname{mor}_{\mathcal{L}}(P, Q)$ and each $g \in P$, the following square commutes in \mathcal{L} :

$$P \xrightarrow{f} Q$$

$$\downarrow \delta_P(g) \qquad \qquad \downarrow \delta_Q(\pi(f)(g))$$

$$P \xrightarrow{f} Q.$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの

Goal in theory of *p*-local finite groups: Obtain functorial assignment of unique classifying space to each saturated fusion system. Results:

- Existence for $rk(P) < p^3$
- Uniqueness for $rk(P) < p^2$
- Existence and uniqueness in group case
- Functoriality: ???

Works nicely in stable homotopy:

Theorem (KR)

Have functorial assignment of classifying spectra to saturated fusion systems.

くロト (過) (目) (日)

The double Burnside ring

Definition

A (G_1, G_2) -biset is a set with a right G_1 -action and a commuting, free left G_2 -action.

The isomorphism classes of finite (G_1, G_2) -bisets form a monoid under disjoint union.

Definition

The Burnside module $A(G_1, G_2)$ is the group completion of this monoid.

An element of $A(G_1, G_2)$ is a formal difference [X] - [Y] of isomorphism classes of finite (G_1, G_2) -bisets.

ヘロト ヘアト ヘビト ヘビト

Basis for
$$A(G_1, G_2)$$
:

A (G_1 , G_2)-pair is a pair (H, φ), where

$$H \leq G_1, \varphi \colon H \to G_2.$$

Conjugacy: $(H_1, \varphi_1) \sim (H_2, \varphi_2)$ if $\exists g_1 \in G_1, \exists g_2 \in G_2$ s.t.

$$\begin{array}{ccc} H_1 & \stackrel{\varphi_1}{\longrightarrow} & \varphi_1(H_1) \\ \cong & \downarrow c_{g_1} & \cong & \downarrow c_{g_2} \\ H_2 & \stackrel{\varphi_2}{\longrightarrow} & \varphi_2(H_2). \end{array}$$

Write $[H, \varphi]_{G_1}^{G_2}$ (or just $[H, \varphi]$) for the conjugacy class of (H, φ) .

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

 $A(G_1, G_2)$ is a free \mathbb{Z} -module with basis indexed by conjugacy classes of (G_1, G_2) -pairs.

The basis element $[H, \varphi]_{G_1}^{G_2}$ corresponds to the biset

 $(G_1 \times G_2)/\Delta_H^{\varphi},$

where

$$\Delta_{H}^{\varphi} = \{(h, \varphi(h) \mid h \in H\},\$$

and actions are given by

$$b(x,y)a=(a^{-1}x,by),$$

for $a, x \in G_1$ and $b, y \in G_2$.

(日本) (日本) (日本)

Definition

The Burnside category A is the category with

-Objects: Finite groups

-Morphisms: $\operatorname{mor}_{\underline{A}}(G_1, G_2) := A(G_1, G_2)$

-Composition:

This can be described on basis elements by the double coset formula:

$$[\mathcal{K},\psi]_{G_{2}}^{G_{3}}\circ[\mathcal{H},\varphi]_{G_{1}}^{G_{2}}=\sum_{x\in\mathcal{K}\setminus G_{2}/\varphi(\mathcal{H})}\left[\varphi^{-1}\left(\varphi\left(\mathcal{H}\right)\cap\mathcal{K}^{x}\right),\psi\circ\mathcal{C}_{x}\circ\varphi\right]_{G_{1}}^{G_{3}}\right]$$

In particular, A(G, G) is a ring, called the double Burnside ring of G.

When $S \leq G$ is Sylow, the (S, S)-biset [G] plays a special role. Linckelmann–Webb formalized this for fusion systems.

Definition (Linckelmann–Webb)

A characteristic element for \mathcal{F} is an element $\Omega \in A(S, S)_{(p)}$ such that

- a) $|\Omega/S|$ is prime to p
- b) For all $P \leq S$ and $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)$, $\Omega \circ [P, \varphi]_{P}^{S} = \Omega \circ [P, \operatorname{incl}]_{P}^{S}$ (right \mathcal{F} -stable), and $[\varphi(P), \varphi^{-1}]_{S}^{P} \circ \Omega = [P, \operatorname{id}]_{S}^{P} \circ \Omega$ (left \mathcal{F} -stable).
- c) Ω lies in the span of $\{[P, \varphi] \mid P \leq S, \varphi \in Hom_{\mathcal{F}}(P, S).\}$

Motivation:

b)
$$xG = G = Gx$$
 for $x \in G$.
c) $[G]_S^S = \sum_{x \in S \setminus G/S} [S \cap S^x, c_x]_S^S$

□ > < ≥ > < ≥ > < = >

Theorem (Broto–Levi–Oliver)

Every saturated fusion system has a characteristic biset.

In cohomology with \mathbb{F}_p -coefficients, Ω induces an idempotent with image the \mathcal{F} -stable elements in $H^*(S; \mathbb{F}_p)$. This generalizes the transfer $H^*(S) \to H^*(G)$.

What about other Mackey functors M? - $M([\Omega])$ generally not idempotent - $[\Omega]$ is not unique

Theorem (KR)

Every saturated fusion system \mathcal{F} has a unique characteristic idempotent $\omega_{\mathcal{F}}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Proof.

- If Ω characteristic element, then Ω^n is also one.
- Some power of Ω is idempotent (mod *p*) (since *F*_{*p*} ⊗ *A*(*S*, *S*) is finite).
- Take characteristic biset Ω that is idempotent (mod *p*).
 Then Ω^{pⁿ} is idempotent (mod *p*).
- Conclude that Ω, Ω^p, Ω^{p²},... is a Cauchy sequence converging to an idempotent ω in A(S, S)[∧]_p.
- Hard part: Coefficients in basis decomposition of ω satisfy fully determined system of equations, giving uniqueness.
- Since equations have integer coefficients, ω lies in A(S, S)_(p).

・ 同 ト ・ ヨ ト ・ ヨ ト …

The "hard part" involves describing $\omega_{\mathcal{F}} A(S, S)^{\wedge}_{p} \omega_{\mathcal{F}}$. Basically, multiplying by ω "quotients out" \mathcal{F} -conjugacy. This has another important consequence.

Definition

For $X \in A(S, S)$, the stabilizer fusion system of X is the fusion system Stab(X) on S with morphism sets

 $\{\varphi \in \mathsf{Inj}(P,Q) \mid X \circ [P,\varphi]_P^S = X \circ [P,\mathsf{incl}]_P^S\}$

Corollary (KR)

If Ω is a characteristic biset (or idempotent) for \mathcal{F} , then $Stab(\Omega) = \mathcal{F}$.

This has an interesting interpretation in stable homotopy: We can recover $\mathcal{F}_S(G)$ from the stable homotopy type of the map $BS \to BG_p^{\wedge}$, but not from the stable homotopy type of BG_p^{\wedge} [Martino–Priddy].

Saturation can also be detected in the Burnside ring.

Theorem (Puig,KR–Stancu)

Let \mathcal{F} be a fusion system on S. If \mathcal{F} has a characteristic biset (or idempotent), then \mathcal{F} is saturated.

This is a first radically different formulation of saturation.

The proof goes by counting fixed points.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For each $[P, \varphi]$, we have a fixed-point homomorphism

$$\Phi_{[P,\varphi]} \colon A(\mathcal{S},\mathcal{S}) \to \mathbb{Z}, \; X \to |X^{\Delta_P^{\varphi}}|.$$

By Burnside, this gives an injection

$$\Phi: \mathcal{A}(\mathcal{S},\mathcal{S}) \xrightarrow{\prod_{[\mathcal{P},\varphi]} \Phi_{[\mathcal{P},\varphi]}} \prod_{[\mathcal{P},\varphi]} \mathbb{Z}.$$

Condition c) becomes

$$\Phi_{[P,arphi]}(\Omega)=0$$

when $\varphi \notin \mathcal{F}$. Condition b) becomes

$$egin{aligned} \Phi_{[\mathcal{P},arphi]}(\Omega) &= \Phi_{[arphi(\mathcal{P}),\mathsf{incl}]}(\Omega) \ & \Phi_{[\mathcal{P},arphi]}(\Omega) &= \Phi_{[\mathcal{P},\mathsf{incl}]}(\Omega) \end{aligned}$$

when $\varphi \in \mathcal{F}$.

(日本) (日本) (日本)

3

Looking at

$$|(S \setminus \Omega)^P| \equiv |S \setminus \Omega| \neq 0 \pmod{p},$$

we get

$$\sum_{[\varphi]\in\mathcal{S}\setminus\operatorname{Hom}_{\mathcal{F}}(\mathcal{P},\mathcal{S})}\frac{\Phi_{[\mathcal{P},\varphi]}(\Omega)}{|\mathcal{C}_{\mathcal{S}}(\varphi(\mathcal{P}))|}\neq 0 \quad (\operatorname{mod} \mathcal{p}),$$

where $m = \Phi_{[P,\varphi]}(\Omega)$ is constant. (Condition b))

We deduce that $\varphi(P)$ is fully \mathcal{F} -centralized if and only if

$$\frac{m}{|\mathcal{C}_{\mathcal{S}}(\varphi(P))|} \not\equiv 0 \pmod{p}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Similarly we obtain

$$\sum_{[Q]_{\mathcal{S}} \in [P]_{\mathcal{F}}} \frac{m \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)|}{|N_{\mathcal{S}}(Q)|} \not\equiv 0 \pmod{p},$$

and deduce that

$$Q \text{ is fully } \mathcal{F}\text{-normalized}$$

$$\frac{m \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)|}{|N_{S}(Q)|} \neq 0 \pmod{p}$$

$$\frac{m}{|C_{S}(Q)|} \cdot \frac{|\operatorname{Aut}_{\mathcal{F}}(Q)|}{|N_{S}(Q)|} \neq 0 \pmod{p}$$

$$\frac{p}{|Q \text{ is fully centralized and } \operatorname{Aut}_{S}(P) \text{ is Sylow in } \operatorname{Aut}_{\mathcal{F}}(P).$$

This proves Axiom I! Axiom II is similar but more complicated.

Frobenius reciprocity: Let $\Delta: S \rightarrow S \times S$ be the diagonal.

For (S, S)-bisets X and Y, let $(X \times Y) \circ \Delta$ be the set $(X \times Y)$ regarded as an $(S, S \times S)$ -biset via

 $(a_1, a_2)(x, y)b = (a_1xb, a_2yb)$

for $(a_1, a_2) \in S \times S, (x, y) \in X \times Y, b \in S.$ (Δ is short for $[S, \Delta]_S^{S \times S} \in A(S, S \times S)$)

Theorem (KR–Stancu)

If $\Omega \in A(S, S)_{(p)}$ satisfies the Frobenius reciprocity relation

$$(\Omega \times \Omega) \circ \Delta = (\Omega \times 1) \circ \Delta \circ \Omega,$$

then $\operatorname{Stab}(\Omega)$ is saturated, and Ω is a characteristic biset for $\operatorname{Stab}(\Omega)$.

イロト 不得 とくほ とくほとう

ъ

Why Frobenius reciprocity? Think of group case.

Under the Segal conjecture, the characteristic idempotent of $\mathcal{F} = \mathcal{F}_{\mathcal{S}}(\mathcal{G})$ corresponds to the composite

$$\Sigma^{\infty}_{+}BS \xrightarrow{B\iota} \Sigma^{\infty}_{+}BG \xrightarrow{t} \Sigma^{\infty}_{+}BS,$$

where *t* is a "normalized transfer" (so $B_{\ell} \circ t \simeq 1$). The Frobenius reciprocity relation

$$(\omega \times \omega) \circ \Delta = (\omega \times 1) \circ \Delta \circ \omega$$

is equivalent to

$$(B\iota \wedge 1_{BS}) \circ \Delta_{BS} \circ t \simeq (1_{BG} \wedge t) \circ \Delta_{BG}.$$

On cohomology this induces

$$\operatorname{Tr}(\operatorname{Res}(x)y) = x\operatorname{Tr}(y).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

• Need to show: If $[P, \varphi]$ appears in Ω , then, for all ψ

$$\Phi_{[P,\psi]}(\Omega) = \Phi_{[\varphi(P),\psi\circ\varphi^{-1}]}(\Omega).$$

• Frobenius reciprocity implies that for all ψ and φ

$$\Phi_{[P,\psi]}(\Omega)\Phi_{[P,\varphi]}(\Omega)=\Phi_{[\varphi(P),\psi\circ\varphi^{-1}]}(\Omega)\Phi_{[P,\varphi]}(\Omega).$$

- Suffices to show that $\Phi_{[P,\varphi]}(\Omega) \neq 0$ if $[P,\varphi]$ appears in Ω .
- The fusion system generated by φ that appear in Ω is equal to the closure of the "pre-fusion system" Pre-Fix(Ω) consisting of maps φ with Φ_[P,φ](Ω) ≠ 0.
- Enough to show that Pre-Fix(Ω) is a fusion system.
- Closure under composition of isomorphisms and inverses easy. Closure under restriction hard.

```
Corollary (KR–Stancu)For a finite group S, there is a bijection\{Saturated fusion systems over S\}\downarrow\{Frobenius idempotents in \mathbb{Z}_{(p)} \otimes A(S,S)\}
```

The bijection sends a fusion system to its characteristic idempotent and a Frobenius idempotent to its stabilizer fusion system.

This gives us a completely new way to think about saturated fusion systems!

But wait, there's more!

Application to stable splittings

For $S \leq G$ Sylow, a transfer argument shows that BG is a stable summand of BS.

By the Segal conjecture, stable summands of *BS* correspond to idempotents in $A(S, S)^{\wedge}_{p}$.

Martino–Priddy worked out complete stable splitting of *BS* and asked.

Question: Which idempotents in $A(S, S)_p^{\wedge}$ correspond to classifying spaces of groups?

To answer this question we must extend the framework to saturated fusion systems.

Answer: An idempotent in $A(S, S)_p^{\wedge}$ corresponds to the classifying spectrum of a saturated fusion system if and only if it satisfies Frobenius reciprocity.

ヘロア 人間 アメヨア 人口 ア

Relation to the Adams–Wilkerson theorem

Theorem (Adams–Wilkerson (variant))

Let V be an elementary abelian p-group and let $R^* \subseteq H^* = H^*(V; \mathbb{F}_p)$ be a subring. Then $R^* = (H^*)^W$ for a subgroup $W \leq \operatorname{Aut}(S)$ of order prime to p if and only if $R^* \hookrightarrow H^*$ is the inclusion of a direct summand of R^* -modules.

Can generalize this to arbitrary *p*-groups, lifting from cohomology to stable homotopy. Instead of looking for rings of invariants, we look for stable elements with respects to a fusion system.

Theorem (in progress)

For a finite p-group S and $R \subseteq A$, there is a saturated fusion system \mathcal{F} over S such that R is the ring of \mathcal{F} -stable elements in A if and only $R \hookrightarrow A$ is the inclusion of a direct summand of R-modules.

ヘロン 人間 とくほ とくほ とう

э

Retractive transfer triples and *p*-local finite groups A retractive transfer triple over *S* is a triple (f, t, X) where

- X is a *p*-complete space of finite type.
- $f: BS \rightarrow X$ is a homotopy monomorphism at p.
- $t: \Sigma^{\infty}_{+}X \to \Sigma^{\infty}_{+}BS$ is a stable retract of *f* such that

$$(\Sigma^{\infty}_{+} f \wedge 1_{\Sigma^{\infty}_{+} X}) \circ \Delta_{X} \circ t \simeq (1 \wedge t) \circ \Delta_{BS}$$

X plays the role of BG_p^{\wedge} or $|\mathcal{L}|_p^{\wedge}$. f is a natural inclusion. t is a normalized transfer. $(\Sigma_+^{\infty} f \circ t \simeq \mathbf{1}_{\Sigma_+^{\infty} X})$

イロト イポト イヨト イヨト 一日

Haynes Miller asked the following.

Question: Do retractive transfer triples give a theory equivalent to *p*-local finite groups?

Partial answer: Every *p*-lfg gives rise to a RTT. A RTT over an elementary abelian *p*-group is a *p*-lfg. (This was my thesis)

Theorem (KR)

A RTT (f, t, X) over any S gives rise to a saturated fusion over S.

Proof.

 $\omega = t \circ \Sigma^{\infty}_{+} f$ is a Frobenius idempotent.

Remains: Relate X to classifying space of $Stab(\omega)$. Use Wojtkowiak's obstruction theory.

ヘロン ヘアン ヘビン ヘビン