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Fusion systems model the p-local structure of a finite group.

Let G be a finite group with Sylow subgroup S

Definition
The fusion system of G on S is the category F = FS(G) with:
-Objects: Subgroups of S.
-Morphisms: HomF (P,Q) = HomG(P,Q)

Here, HomG(P,Q) is the set of homomorphisms ϕ : P → Q that
are induced by conjugation in G.
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More generally:

Definition
A fusion system on a finite p-group S is a category F with:

Objects are the subgroups of S.
Morphisms satisfy

HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q),

and every morphism can be factored as an isomorphism in
F followed by a group inclusion.
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Definition (Puig)

A fusion system is saturated if it satisfies two additional axioms,
playing the role of Sylow theorems.

I “prime to p axiom”
II “Maximal extension axiom”

Fusion systems of groups are saturated.

Saturated fusion systems also come up in:
Block theory, induced by conjugation among Brauer
subpairs.
Topology, as Chevalley groups of p-compact groups.
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Let F be a fusion system on S.

Definition
P,Q ≤ S are F-conjugate if they are isomorphic in F .
P ≤ S is fully F-centralized if |CS(P)| ≥ |CS(Q)| for every
Q that is F-conjugate to P.
P ≤ S is fully F-normalized if |NS(P)| ≥ |NS(Q)| for every
Q that is F-conjugate to P.

Definition (Saturation Axiom I)
F satisfies Axiom I if the following holds for every P ≤ S:
If P is fully F-normalized, then P is fully F-centralized and
p - [AutF (P) : AutS(P)].

This axiom replaces “p - [G : S]”.
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Axiom II:

Definition
For P ≤ S, and a monomorphism ϕ : P → S, set

Nϕ = {x ∈ NS(P) | ϕ ◦ cx ◦ ϕ−1 ∈ AutS(ϕ(P))}

Nϕ is the largest subgroup of NS(X ) to which we could hope to
extend ϕ. (ϕ ◦ cx ◦ ϕ−1 = cϕ(x))

Definition (Saturation Axiom II)
F satisfies Axiom II if the following holds for every morphism
ϕ : P → S in F :
If ϕ(P) is fully F-centralized, then there exists a morphism
ϕ̄ ∈ HomF (Nϕ,S) such that ϕ̄|P = ϕ.

This axiom replaces “all Sylow subgroups are conjugate”.
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A p-local finite group is a saturated fusion system equipped
with a classifying space.
Motivation: BG∧p is a classifying space for FS(G).
Have classifying space functor B : F → Top.
Need to quotient out action of inner homomorphisms before
taking homotopy colimit.
The orbit category O has same objects as F and morphisms

morO(P,Q) = Q\HomF (P,Q)

F B //
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x

x
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HoTop

Dwyer–Kan obstruction theory to existence and uniqueness of
homotopy lifting B̃.
If B̃ exists, obtain a classifying space Holim-

O(F)

B̃
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Algebraic version:

Definition
A group P ≤ S is F-centric if CS(Q) = Z (Q) for all Q that are
F-conjugate to P.
Let Fc ⊆ F be the full subcategory of F-centric subgroups.

Definition
A centric linking system associated to F is a category L where

Objects are the F-centric subgroups
Z (P) acts freely on morL(P,Q) with quotient HomF (P,Q).
+ technical conditions.

Think of L as a “crossed module extension” of Fc by Z (−).
Corresponding obstruction theory recovers Dwyer–Kan
obstructions.

Classifying space: |L|∧p .
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Definition (BLO)
Let F be a fusion system over the p-group S. A centric linking system associated to F is a category L, whose
objects are the F -centric subgroups of S, together with a functor

π : L → Fc
,

and distinguished monomorphisms P
δP→ Aut PL for each F -centric subgroup P ≤ S, which satisfy the following

conditions.

(A) The functor π is the identity on objects and surjective on morphisms. More precisely, for each pair of objects
P,Q ∈ L, the center Z (P) acts freely on morL(P,Q) by composition (upon identifying Z (P) with
δP (Z (P)) ≤ AutL(P)), and π induces a bijection

morL(P,Q)/Z (P)
∼=−−−−−−→ HomF (P,Q).

(B) For each F -centric subgroup P ≤ S and each g ∈ P, π sends δP (g) ∈ AutL(P) to cg ∈ AutF (P).

(C) For each f ∈ morL(P,Q) and each g ∈ P, the following square commutes in L:

P f−−−−−−→ QyδP (g)

yδQ (π(f )(g))

P f−−−−−−→ Q.
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Goal in theory of p-local finite groups:
Obtain functorial assignment of unique classifying space to
each saturated fusion system.
Results:

Existence for rk(P) < p3

Uniqueness for rk(P) < p2

Existence and uniqueness in group case
Functoriality: ???

Works nicely in stable homotopy:

Theorem (KR)
Have functorial assignment of classifying spectra to saturated
fusion systems.
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The double Burnside ring

Definition
A (G1,G2)-biset is a set with a right G1-action and a
commuting, free left G2-action.

The isomorphism classes of finite (G1,G2)-bisets form a
monoid under disjoint union.

Definition
The Burnside module A(G1,G2) is the group completion of this
monoid.

An element of A(G1,G2) is a formal difference [X ]− [Y ] of
isomorphism classes of finite (G1,G2)-bisets.
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Basis for A(G1,G2):

A (G1,G2)-pair is a pair (H, ϕ), where

H ≤ G1, ϕ : H → G2.

Conjugacy: (H1, ϕ1) ∼ (H2, ϕ2) if ∃g1 ∈ G1, ∃g2 ∈ G2 s.t.

H1
ϕ1−−−−→ ϕ1(H1)

∼=
ycg1 ∼=

ycg2

H2
ϕ2−−−−→ ϕ2(H2).

Write [H, ϕ]G2
G1

(or just [H, ϕ]) for the conjugacy class of (H, ϕ).
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A(G1,G2) is a free Z-module with basis indexed by conjugacy
classes of (G1,G2)-pairs.

The basis element [H, ϕ]G2
G1

corresponds to the biset

(G1 ×G2)/∆ϕ
H ,

where
∆ϕ

H = {(h, ϕ(h) | h ∈ H},

and actions are given by

b(x , y)a = (a−1x ,by),

for a, x ∈ G1 and b, y ∈ G2.
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Definition
The Burnside category A is the category with
-Objects: Finite groups
-Morphisms: morA(G1,G2) := A(G1,G2)
-Composition:

A(G2,G3)× A(G1,G2) −→ A(G1,G3)

(Ω′,Ω) 7→ Ω′ ◦ Ω := Ω′ ×G2 Ω

This can be described on basis elements by the double coset
formula:

[K , ψ]G3
G2
◦[H, ϕ]G2

G1
=

∑
x∈K\G2/ϕ(H)

[
ϕ−1 (ϕ (H) ∩ K x ) , ψ ◦ cx ◦ ϕ

]G3

G1

In particular, A(G,G) is a ring, called the double Burnside ring
of G.
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When S ≤ G is Sylow, the (S,S)-biset [G] plays a special role.
Linckelmann–Webb formalized this for fusion systems.

Definition (Linckelmann–Webb)

A characteristic element for F is an element Ω ∈ A(S,S)(p)

such that
a) |Ω/S| is prime to p
b) For all P ≤ S and ϕ ∈ HomF (P,S),

Ω ◦ [P, ϕ]SP = Ω ◦ [P, incl]SP (right F-stable),
and
[ϕ(P), ϕ−1]PS ◦ Ω = [P, id]PS ◦ Ω (left F-stable).

c) Ω lies in the span of {[P, ϕ] | P ≤ S, ϕ ∈ HomF (P,S).}

Motivation:
b) xG = G = Gx for x ∈ G.

c) [G]SS =
∑

x∈S\G/S

[S ∩ Sx , cx ]SS
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Theorem (Broto–Levi–Oliver)
Every saturated fusion system has a characteristic biset.

In cohomology with Fp-coefficients, Ω induces an idempotent
with image the F-stable elements in H∗(S; Fp).
This generalizes the transfer H∗(S)→ H∗(G).

What about other Mackey functors M?
-M([Ω]) generally not idempotent
-[Ω] is not unique

Theorem (KR)
Every saturated fusion system F has a unique characteristic
idempotent ωF .

Kári Ragnarsson Encoding fusion data in the double Burnside ring



Proof.
If Ω characteristic element, then Ωn is also one.
Some power of Ω is idempotent (mod p) (since
Fp ⊗ A(S,S) is finite).
Take characteristic biset Ω that is idempotent (mod p).
Then Ωpn

is idempotent (mod p).

Conclude that Ω,Ωp,Ωp2
, . . . is a Cauchy sequence

converging to an idempotent ω in A(S,S)∧p .
Hard part: Coefficients in basis decomposition of ω satisfy
fully determined system of equations, giving uniqueness.
Since equations have integer coefficients, ω lies in
A(S,S)(p).
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The “hard part” involves describing ωFA(S,S)∧pωF . Basically,
multiplying by ω “quotients out” F-conjugacy.
This has another important consequence.

Definition
For X ∈ A(S,S), the stabilizer fusion system of X is the fusion
system Stab(X ) on S with morphism sets

{ϕ ∈ Inj(P,Q) | X ◦ [P, ϕ]SP = X ◦ [P, incl]SP}

Corollary (KR)
If Ω is a characteristic biset (or idempotent) for F , then
Stab(Ω) = F .

This has an interesting interpretation in stable homotopy: We
can recover FS(G) from the stable homotopy type of the map
BS → BG∧p , but not from the stable homotopy type of BG∧p
[Martino–Priddy].
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Saturation can also be detected in the Burnside ring.

Theorem (Puig,KR–Stancu)

Let F be a fusion system on S. If F has a characteristic biset
(or idempotent), then F is saturated.

This is a first radically different formulation of saturation.

The proof goes by counting fixed points.
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For each [P, ϕ], we have a fixed-point homomorphism

Φ[P,ϕ] : A(S,S)→ Z, X → |X ∆ϕ
P |.

By Burnside, this gives an injection

Φ: A(S,S)

∏
[P,ϕ] Φ[P,ϕ]
−−−−−−−−→

∏
[P,ϕ]

Z.

Condition c) becomes

Φ[P,ϕ](Ω) = 0

when ϕ /∈ F .
Condition b) becomes

Φ[P,ϕ](Ω) = Φ[ϕ(P),incl](Ω)

Φ[P,ϕ](Ω) = Φ[P,incl](Ω)

when ϕ ∈ F .
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Looking at
|(S\Ω)P | ≡ |S\Ω| 6≡ 0 (mod p),

we get

∑
[ϕ]∈S\HomF (P,S)

Φ[P,ϕ](Ω)

|CS(ϕ(P))|
6≡ 0 (mod p),

where m = Φ[P,ϕ](Ω) is constant. (Condition b))

We deduce that ϕ(P) is fully F-centralized if and only if

m
|CS(ϕ(P))|

6≡ 0 (mod p).
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Similarly we obtain∑
[Q]S∈[P]F

m · |AutF (Q)|
|NS(Q)|

6≡ 0 (mod p),

and deduce that

Q is fully F-normalized
m

m · |AutF (Q)|
|NS(Q)|

6≡ 0 (mod p)

m

m
|CS(Q)|

· |AutF (Q)|
|NS(Q)|

6≡ 0 (mod p)

m
Q is fully centralized and AutS(P) is Sylow in AutF (P).

This proves Axiom I! Axiom II is similar but more complicated.
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Frobenius reciprocity:
Let ∆: S → S × S be the diagonal.

For (S,S)-bisets X and Y , let (X × Y ) ◦∆ be the set (X × Y )
regarded as an (S,S × S)-biset via

(a1,a2)(x , y)b = (a1xb,a2yb)

for (a1,a2) ∈ S × S, (x , y) ∈ X × Y ,b ∈ S.

(∆ is short for [S,∆]S×S
S ∈ A(S,S × S))

Theorem (KR–Stancu)

If Ω ∈ A(S,S)(p) satisfies the Frobenius reciprocity relation

(Ω× Ω) ◦∆ = (Ω× 1) ◦∆ ◦ Ω,

then Stab(Ω) is saturated, and Ω is a characteristic biset for
Stab(Ω).
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Why Frobenius reciprocity? Think of group case.
Under the Segal conjecture, the characteristic idempotent of
F = FS(G) corresponds to the composite

Σ∞+ BS Bι−→ Σ∞+ BG t−→ Σ∞+ BS,

where t is a “normalized transfer” (so Bι ◦ t ' 1).
The Frobenius reciprocity relation

(ω × ω) ◦∆ = (ω × 1) ◦∆ ◦ ω

is equivalent to

(Bι ∧ 1BS) ◦∆BS ◦ t ' (1BG ∧ t) ◦∆BG.

On cohomology this induces

Tr(Res(x)y) = x Tr(y).

Kári Ragnarsson Encoding fusion data in the double Burnside ring



Proof.
Need to show: If [P, ϕ] appears in Ω, then, for all ψ

Φ[P,ψ](Ω) = Φ[ϕ(P),ψ◦ϕ−1](Ω).

Frobenius reciprocity implies that for all ψ and ϕ

Φ[P,ψ](Ω)Φ[P,ϕ](Ω) = Φ[ϕ(P),ψ◦ϕ−1](Ω)Φ[P,ϕ](Ω).

Suffices to show that Φ[P,ϕ](Ω) 6= 0 if [P, ϕ] appears in Ω.
The fusion system generated by ϕ that appear in Ω is
equal to the closure of the “pre-fusion system” Pre-Fix(Ω)
consisting of maps ϕ with Φ[P,ϕ](Ω) 6= 0.
Enough to show that Pre-Fix(Ω) is a fusion system.
Closure under composition of isomorphisms and inverses
easy. Closure under restriction hard.
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Corollary (KR–Stancu)
For a finite group S, there is a bijection

{Saturated fusion systems over S}
OO

��
{Frobenius idempotents in Z(p) ⊗ A(S,S)}

The bijection sends a fusion system to its characteristic
idempotent and a Frobenius idempotent to its stabilizer fusion
system.

This gives us a completely new way to think about saturated
fusion systems!

But wait, there’s more!
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Application to stable splittings

For S ≤ G Sylow, a transfer argument shows that BG is a
stable summand of BS.

By the Segal conjecture, stable summands of BS correspond to
idempotents in A(S,S)∧p .

Martino–Priddy worked out complete stable splitting of BS and
asked.

Question: Which idempotents in A(S,S)∧p correspond to
classifying spaces of groups?

To answer this question we must extend the framework to
saturated fusion systems.

Answer: An idempotent in A(S,S)∧p corresponds to the
classifying spectrum of a saturated fusion system if and only if it
satisfies Frobenius reciprocity.
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Relation to the Adams–Wilkerson theorem

Theorem (Adams–Wilkerson (variant))
Let V be an elementary abelian p-group and let
R∗ ⊆ H∗ = H∗(V ; Fp) be a subring. Then R∗ = (H∗)W for a
subgroup W ≤ Aut(S) of order prime to p if and only if
R∗ ↪→ H∗ is the inclusion of a direct summand of R∗-modules.

Can generalize this to arbitrary p-groups, lifting from
cohomology to stable homotopy. Instead of looking for rings of
invariants, we look for stable elements with respects to a fusion
system.

Theorem (in progress)

For a finite p-group S and R ⊆ A, there is a saturated fusion
system F over S such that R is the ring of F-stable elements in
A if and only R ↪→ A is the inclusion of a direct summand of
R-modules.

Kári Ragnarsson Encoding fusion data in the double Burnside ring



Retractive transfer triples and p-local finite groups
A retractive transfer triple over S is a triple (f , t ,X ) where

X is a p-complete space of finite type.
f : BS → X is a homotopy monomorphism at p.
t : Σ∞+ X → Σ∞+ BS is a stable retract of f such that

(Σ∞+ f ∧ 1Σ∞+ X ) ◦∆X ◦ t ' (1 ∧ t) ◦∆BS

X plays the role of BG∧p or |L|∧p .
f is a natural inclusion.
t is a normalized transfer. (Σ∞+ f ◦ t ' 1Σ∞+ X )
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Haynes Miller asked the following.
Question: Do retractive transfer triples give a theory equivalent
to p-local finite groups?

Partial answer: Every p-lfg gives rise to a RTT.
A RTT over an elementary abelian p-group is a p-lfg.
(This was my thesis)

Theorem (KR)

A RTT (f , t ,X ) over any S gives rise to a saturated fusion over
S.

Proof.
ω = t ◦ Σ∞+ f is a Frobenius idempotent.

Remains: Relate X to classifying space of Stab(ω).
Use Wojtkowiak’s obstruction theory.
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