
COHOMOLOGY PRODUCTS

Let A be an associative algebra over the field k. Unless otherwise indicated, all tensor products in

this note are taken over k, i.e., ⊗ = ⊗k. The enveloping algebra Ae of A is defined by Ae := A⊗Aop.

We will frequently make use of the equivalence of categories between the category of A-bimodules

and the category of left Ae-modules. Given an A-bimodule M , the left action of λ⊗ µ ∈ A⊗ Aop

on m ∈M is defined by (λ⊗ µ)m = λmµ.

1. Cohomology Modules

1.1. Definitions. Let β = β(A,A) = A ⊗ A⊗• ⊗ A denote the (un-normalized) bimodule bar

resolution of A. The differential ∂n : βn → βn−1 is defined by

∂n(a⊗ a1 ⊗ · · · ⊗ an ⊗ a′) = aa1 ⊗ a2 ⊗ · · · ⊗ an ⊗ a′

+
n−1∑
i=1

(−1)ia⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an ⊗ a′

+ (−1)na⊗ a1 ⊗ · · · ⊗ an−1 ⊗ ana′.

This makes β(A,A) an Ae-projective resolution of A. The normalized bimodule bar resolution

B(A,A) is defined by Bn(A,A) = A⊗ (A/k)⊗n ⊗A, where A/k := coker(k ↪→ A). The normalized

bimodule bar resolution is also an Ae-projective resolution of A, with differential induced by that

of β(A,A). Given an element a ⊗ a1 ⊗ · · · ⊗ an ⊗ a′ ∈ βn(A,A), it is customary to write the

corresponding element of Bn(A,A) as a[a1| . . . |an]a′. It is clear that the constructions A 7→ β(A,A)

and A 7→ B(A,A) are functorial in A.

The Hochschild cohomology of A with coefficients in the A-bimodule M is defined by

HH•(A,M) := Ext•Ae(A,M).

It may be computed as the homology of the complex HomAe(B(A,A),M). Now assume that A is

an augmented algebra over k with augmentation map ε : A → k. The augmentation map defines

the structure of a left A-module on k, called the trivial module. Then β(A) := β(A,A) ⊗A k
and B(A) := B(A,A) ⊗A k are (left) A-projective resolutions of k. The cohomology of A with

coefficients in the left A-module N is then defined by

H•(A,N) := Ext•A(k,N).

It may be computed as the homology of the complex HomA(B(A), N). (If A is an augmented

algebra, then we can replace A/k in the definition of B(A,A) by A+ := ker ε, the augmentation

ideal of A.)

Any left A-module N may be given the structure of an A-bimodule, denoted Nε, by giving N

the trivial right action, i.e., by having A act on the right via ε : A → k. Then the map N 7→ Nε

yields a full embedding of the category of left A-modules into the category of left Ae-modules.

Also, for any left A-module N and for any left Ae-module B, there exists a natural isomorphism

HomAe(B,Nε) ∼= HomA(B ⊗A k,N). In particular, taking B = B(A,A), we get an isomorphism of

complexes HomAe(B(A,A), Nε) ∼= HomA(B(A), N), and hence an isomorphism of graded spaces

(1) Φ : HH•(A,Nε) = Ext•Ae(A,Nε)
∼→ Ext•A(k,N) = H•(A,N).
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1.2. Extensions. Let V and W be left A-modules. An n-fold extension S of W by V is an exact

sequence of A-modules

S : 0→W → Cn−1 → Cn−2 → · · · → C0 → V → 0.

There exists a congruence relation on the set of all n-extensions of W by V such that the set of

all congruence classes Ext
n
A(V,W ) forms an abelian group (in fact, a k-vector space) under the

operation of the Baer sum [7, III.5, VII.3]. In this note we follow the notation of [7] and write [S]

to denote the congruence class of S in Ext
n
A(V,W ). We also write S ∈∈ Ext

n
A(V,W ) to denote that

S is a particular n-extension of W by V , and we write S ∈ σ if σ ∈ Ext
n
A(V,W ) and σ = [S].

Theorem 1. [7, Theorem III.6.4] There exists a natural vector space isomorphism

(2) ζ : Ext
n
A(V,W )→ ExtnA(V,W ).

Let X → V be an A-projective resolution of V , and let S ∈ σ ∈ Ext
n
A(V,W ). Lift the identity

1V : V → V to a chain map f : X → S. Then ζ(σ) ∈ ExtnA(V,W ) is the cohomology class

represented by the cocycle fn : Xn →W .

From now on we will not distinguish between the spaces Ext
n
A(V,W ) and ExtnA(V,W ), but will

just identify them via the isomorphism 2.

2. Cohomology Products

Let B,C be left A-modules. Depending on the structure on A, a number of different cohomology

products can be defined on the spaces Ext•A(B,C). We describe a few below, starting with those

that require the least additional structure on A.

2.1. The Yoneda product. Let A be an arbitrary associative ring, and let B,C,D be left A-

modules. The Yoneda product is a family of k-bilinear maps

◦ : ExtnA(C,D)⊗ ExtmA (B,C)→ Extn+m
A (B,D).

If m = n = 0, then ◦ reduces to the composition of A-module homomorphisms f ⊗g 7→ f ◦g. (This

is the reason for using the symbol ◦ to denote the Yoneda product.)

Let

S : 0→ D → Cn−1 → Cn−2 → · · · → C0 → C → 0 and

S′ : 0→ C → C ′m−1 → C ′m−2 → · · · → C ′0 → B → 0

represent elements σ ∈ ExtnA(C,D) and σ′ ∈ ExtmA (B,C). The (n + m)-extension S ◦ S′ of D by

B is defined by splicing S and S′ together along the composite map C0 → C → C ′m−1. Then the

Yoneda product σ ◦ σ′ is defined by σ ◦ σ′ = [S ◦ S′]. (For this reason, the Yoneda product is also

referred to as the Yoneda composition of extensions.)

The Yoneda product can be characterized axiomatically; see [8, §9.5].

Lemma 2. [7, Exercise III.6.2] Let A be an arbitrary associative ring, and let B,C,D be left A-

modules. Let X → B and Y → C be A-projective resolutions of B and C, respectively. Given

α ∈ ExtmA (C,D) and β ∈ ExtnA(B,C), choose cocycle representatives h ∈ HomA(Ym, D) and g ∈
HomA(Xn, C), respectively. Let ∂ : Xn+1 → Xn denote the differential of the resolution X, and
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write g as the composition g = g0 ◦ ∂′, where ∂′ : Xn → coker(∂) = Xn/∂(Xn+1) is the projection

map. Lift g0 to a map f : Xn+m → Ym as in the diagram

Xm+n

f

��

// · · · // Xn

��

// coker(∂) //

g0

��

0

Ym // · · · // Y0
// C // 0.

Then h ◦ f ∈ HomA(Xn+m, D) is a cocycle representative for the Yoneda composition α ◦ β.

2.2. Composition product on Hochschild cohomology. Let A be a (not necessarily aug-

mented) algebra over the field k, and let M and N be A-bimodules. The product we describe in

this section is a family of k-bilinear maps

(3) t : HHn(A,M)⊗HHm(A,N)→ HHn+m(A,M ⊗A N).

This product structure on Hochschild cohomology was first studied by Eilenberg and Mac Lane [5]

in the case A = kG (the group algebra of a group G), and later by Gerstenhaber [6] for arbitrary

associative algebras. We use the symbol t for the composition product in order to distinguish it

from the usual cup product ∪, which we will discuss later.

The product (3) is defined as follows: Given ζ ∈ HHn(A,M) and η ∈ HHm(A,N), choose

representative cocycles f ∈ HomAe(Bn(A,A),M) and g ∈ HomAe(Bm(A,A), N). Define f t g ∈
HomAe(Bn+m(A,A),M ⊗A N) by

(4) (f t g)([a1| · · · |an|b1| · · · |bm]) = f([a1| · · · |an])⊗A g([b1| · · · |bm]).

The function f t g is a cocycle because

(5) δ(f t g) = δ(f) t g + (−1)nf t δ(g).

Now ζ t η is defined to be the class of f t g in HHn+m(A,M ⊗A N). It follows from (5) that

the product ζ t η does not depend on the particular choice of representative cocycles f and g. If

µ : M ⊗A N → P is an Ae-module homomorphism, then we can compose t with the induced map

µ∗ : HH•(A,M ⊗A N)→ HH•(A,P ) in order to obtain

t : HHn(A,M)⊗HHm(A,N)→ HHn+m(A,P ),

the composition product with respect to the pairing µ : M ⊗A N → P .

Gerstenhaber proved the following results for the composition product t:

Theorem 3. [6, Corollary 1] The composition product t : HH•(A,A) ⊗ HH•(A,A) → HH•(A,A)

makes HH•(A,A) a graded-commutative ring, with grading given by dimension.

Theorem 4. [6, Corollary 2] Let P be an A-bimodule. Let ζ ∈ HHn(A,A), and let η ∈ HHm(A,P ).

Then

ζ t η = (−1)nmη t ζ.

The composition product t can be characterized axiomatically; see [10, §1].
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2.3. Wedge product. Let Λ and Λ′ be algebras over k. Let V and W be left Λ-modules, and

let V ′ and W ′ be left Λ′-modules. Set Ω = Λ ⊗ Λ′. The external or wedge product is a family of

k-bilinear maps

(6) ∨ : ExtnΛ(V,W )⊗ ExtmΛ′(V
′,W ′)→ Extn+m

Ω (V ⊗ V ′,W ⊗W ′).

It is defined as follows: Take projective resolutions X → V and X ′ → V ′ by Λ- and Λ′-modules,

respectively. Then, for each n,m ∈ N, Xn⊗X ′m is projective for Ω, and by the Künneth Theorem,

X⊗X ′ is an Ω-projective resolution of V ⊗V ′. Now given f ∈ HomΛ(X,W ) and g ∈ HomΛ′(X
′,W ′),

define f ∨ g ∈ HomΩ(X ⊗X ′,W ⊗W ′) by (f ∨ g)(x⊗ x′) = f(x)⊗ g(x′). Then (6) is the map in

cohomology induced by

∨ : HomΛ(X,W )⊗HomΛ′(X
′,W ′)→ HomΩ(X ⊗X ′,W ⊗W ′),

2.4. Cup product for bialgebras. Assume now that Λ is a bialgebra. Then Λ is equipped with

an algebra homomorphism ∆ : Λ → Λ ⊗ Λ, called comultiplication or the diagonal map, as well

as an augmentation map ε : Λ → k (called the counit). Identifying Λ ⊗ k = Λ = k ⊗ Λ, we have

(idΛ⊗ε) ◦∆ = idΛ = (ε⊗ idΛ) ◦∆.

Take Λ = Λ′ in (6). Then the wedge product becomes a bilinear map

∨ : ExtnΛ(V,W )⊗ ExtmΛ (V ′,W ′)→ Extn+m
Λ⊗Λ (V ⊗ V ′,W ⊗W ′).

Pulling back the Λ⊗Λ-module structures of V ⊗ V ′ and W ⊗W ′ along ∆ : Λ→ Λ⊗Λ, we obtain

Λ-module structures on V ⊗ V ′ and W ⊗W ′. Thus, the change-of-rings map for Ext yields in this

case a map

(7) ∆∗ : Ext•Λ⊗Λ(V ⊗ V ′,W ⊗W ′)→ Ext•Λ(V ⊗ V ′,W ⊗W ′).

The cup product

(8) ∪ : ExtnΛ(V,W )⊗ ExtmΛ (V ′,W ′)→ Extn+m
Λ (V ⊗ V ′,W ⊗W ′)

is then defined as the composition ∆∗ ◦ ∨. (Note that if S is an extension of W ⊗W ′ by V ⊗ V ′
consisting of Λ ⊗ Λ-modules, then ∆∗([S]) = [∆∗(S)], where ∆∗(S) is equal to S as an exact

sequence of vector spaces, but the terms of S are considered instead as Λ-modules via ∆.)

The cup product can be described at the level of cochains as follows. Let X → V and X ′ → V ′,

and Z → V ⊗ V ′ be Λ-projective resolutions of V , V ′, and V ⊗ V ′, respectively. By the Künneth

Formula, X ⊗X ′ is an acyclic chain complex with homology equal to V ⊗ V ′ in degree 0. Choose

a chain map ϕ : Z → X ⊗ X ′ lifting the identity id : V ⊗ V ′ → V ⊗ V ′. Given ζ ∈ ExtnΛ(V,W )

and η ∈ Extmλ (V ′,W ′), choose cocycle representatives f ∈ HomΛ(Xn,W ) and g ∈ HomΛ(X ′m,W
′).

Then ζ ∪ η is the cohomology class of the cocycle (f ∨ g) ◦ ϕ ∈ HomΛ(Zn+m,W ⊗W ′).
The cup product ∪ can be characterized axiomatically; see [2, II.1, II.2]. Below are some impor-

tant special cases of the cup product.

2.4.1. Cup product for algebra cohomology. Let A be a bialgebra. Take Λ = A, and take V = V ′ = k

in (8). Then the cup product is a family of maps

(9) ∪ : Hn(A,W )⊗Hm(A,W ′)→ Hn+m(A,W ⊗W ′).

If m : W ⊗W ′ → V is an A-module homomorphism, then we also have the cup product m∗ ◦ ∪ :

Hn(A,W )⊗Hm(A,W ′)→ Hn+m(A, V ) with respect to the pairing m : W ⊗W ′ → V .
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Working at the level of chain complexes, it is customary to take X = X ′ = Z = B(A), the

normalized bar complex of A. Then an explicit chain map ϕ : Z → X ⊗ X ′ lifting the identity

id : k → k is determined by the formula

(10) ϕ([a1| · · · |ar]) =

r∑
p=0

[a
(1)
1 | · · · |a

(1)
p ]ε(a

(1)
p+1 · · · a

(1)
r )⊗ a(2)

1 · · · a
(2)
p [a

(2)
p+1| · · · |a

(2)
r ],

where we have written ∆(ai) = a
(1)
i ⊗ a

(2)
i (Einstein notation). The chain map ϕ described here

is obtained by composing the chain map ϕ1 : B(A) → B(A ⊗ A) induced by ∆ (which lifts the

identity id : k → k) with the chain map ϕ2 : B(A ⊗ A) → B(A) ⊗ B(A) defined in [4, XI.7(3)]

(which also lifts the identity id : k → k). The map ϕ1 is a homomorphism of A-modules (letting A

act on B(A⊗A) via ∆), and the map ϕ2 is a homomorphism of A⊗A-modules.

2.4.2. Cup product for Hochschild cohomology. Let A be a bialgebra. The comultiplication ∆ :

A → A ⊗ A and counit ε : A → k induce in a natural way a comultiplication ∆e : Ae → Ae ⊗ Ae
and a counit εe = ε⊗ ε : A⊗ Aop → k for Ae. Thus Ae is also a bialgebra. Now take Λ = Ae and

V = V ′ = A. Then (8) is a family of maps

∪′ : ExtnAe(A,W )⊗ ExtmAe(A,W ′)→ Extn+m
Ae (A⊗A,W ⊗W ′).

The diagonal map ∆ : A → A ⊗ A is an algebra homomorphism, hence also an A-bimodule

homomorphism (i.e., a homomorphism of Ae-modules). Thus, we obtain the morphism

∆∗ : Ext•Ae(A⊗A,W ⊗W ′)→ Ext•Ae(A,W ⊗W ′).

Now the cup product for Hochschild cohomology

(11) ∪ : HHn(A,W )⊗HHm(A,W ′)→ HHn+m(A,W ⊗W ′)

is defined as the composite ∆∗ ◦ ∪′.
At the level of chain complexes, the cup product (11) admits the following description. Given

ζ ∈ HHn(A,W ) and η ∈ HHm(A,W ′), choose representative cocycles f ∈ HomAe(Bn(A,A),W )

and g ∈ HomAe(Bm(A,A),W ′). Set Ω = A ⊗ A. (We identify Ωe with Ae ⊗ Ae.) Our first step

is to determine a cocycle representative in HomΩe(Bn+m(Ω,Ω),W ⊗W ′) for ζ ∨ η. To get this,

we precompose f ∨ g with a chain map ϕ : B(Ω,Ω) → B(A,A) ⊗ B(A,A) lifting the identity

A⊗A→ A⊗A. Such a map is given by the formula

ϕ([λ1 ⊗ γ1| · · · |λr ⊗ γr]) =
r∑
p=0

[λ1| · · · |λp]λp+1 · · ·λr ⊗ γ1 · · · γp[γp+1| · · · |γr];

see [4, XI.6(3)]. Next, pulling back the Ωe-module structures of B(Ω,Ω) and W ⊗ W ′ along

∆e : Ae → Ae⊗Ae, we have HomΩe(B(Ω,Ω),W ⊗W ′) ⊆ HomAe(B(Ω,Ω),W ⊗W ′), so we consider

(f ∨g)◦ϕ as an element of HomAe(B(Ω,Ω),W ⊗W ′). Finally, by the functoriality of the bimodule

bar resolution, the homomorphism ∆ : A→ A⊗A induces an Ae-module homomorphism of chain

complexes ψ : B(A,A) → B(Ω,Ω) lifting ∆. Then ζ ∪ η is the cohomology class of the cocycle

(f ∨ g) ◦ ϕ ◦ ψ ∈ HomAe(B(A,A),W ⊗W ′). Explicitly,

(f ∨ g) ◦ ϕ ◦ ψ([a1| · · · |an+m])

=
r∑
p=0

f([a
(1)
1 | · · · |a

(1)
p ])a

(1)
p+1 · · · a

(1)
n+m ⊗ a

(2)
1 · · · a

(2)
p g([a

(2)
p+1| · · · |a

(2)
n+m]).
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3. Comparing Cohomology Products

In this section we investigate certain relations between the cohomology products defined above.

3.1. Comparison with Yoneda composition. The wedge product may be expressed in terms

of the Yoneda composition of extensions.

Theorem 5. [12] Let Λ and Λ′ be algebras over k. Let V and W be left Λ-modules, and let V ′ and

W ′ be left Λ′-modules. Then for ζ ∈ ExtnΛ(V,W ) and η ∈ ExtmΛ′(V
′,W ′), we have

(12) ζ ∨ η = (ζ ⊗W ′) ◦ (V ⊗ η) = (−1)nm(W ⊗ η) ◦ (ζ ⊗ V ′).

The expressions ζ ⊗W ′ and V ⊗ η in (12) have the following meaning: Choose n- and m-fold

extensions S ∈∈ ExtnA(V,W ) and S′ ∈∈ ExtmA′(V
′,W ′) representing ζ and η, respectively. Then

ζ ⊗W ′ = [S ⊗W ′], and V ⊗ η = [V ⊗ S′]. If n = 0, then ζ ∈ Ext0
Λ(V,W ) = HomΛ(V,W ), in which

case ζ ⊗W ′ represents the homomorphism V ⊗W ′ →W ⊗W ′, and a similar interpretation holds

for V ⊗ η if m = 0. If either of n or m is zero, then (ζ ⊗W ′) ◦ (V ⊗ η) is the usual composite of a

homomorphism with an exact sequence, cf. [7, III.1, III.3].

Now let A be a bialgebra, and let W be a left A-module. Let ζ ∈ Hn(A, k) and η ∈ Hm(A,W ).

Recall that ∆∗ : Ext•A⊗A(−,−) → Ext•A(−,−) is the change-of-rings map induced by the comulti-

plication ∆ : A → A ⊗ A. Then, in the notation of Theorem 5, ∆∗(ζ ⊗ k) = ζ = ∆∗(k ⊗ ζ), and

similarly for η. Theorem 5 then implies

ζ ∪ η = ∆∗(ζ ∨ η) = ∆∗((−1)mn(k ⊗ η) ◦ (ζ ⊗ k))

= (−1)mnη ◦ ζ,
= (−1)mn∆∗((η ⊗ k) ◦ (k ⊗ ζ))

= (−1)mn∆∗(η ∨ ζ)

= (−1)mnη ∪ ζ

(13)

In particular,

(14) η ∪ ζ = η ◦ ζ,

so the right cup product action of H•(A, k) on H•(A,W ) coincides with the Yoneda composition

product Ext•A(k,W ) ⊗ Ext•A(k, k) → Ext•A(k,W ). In particular, the cup and Yoneda composition

products on H•(A, k) coincide, and under either operation, H•(A, k) is a graded-commutative ring.

View W as an A-bimodule with trivial right action. Combining the observation of (14) with

Lemma 7, we get ηt ζ = η∪ ζ = η ◦ ζ for all η ∈ Hn(A,Wε) and ζ ∈ Hm(A, k). In fact, the equality

η t ζ = η ◦ ζ holds generally, as we show below.

Lemma 6. Let A be an arbitrary associative ring over the field k. Let W be an A-bimodule.

(a) Let α ∈ HHm(A,W ), and let β ∈ HHn(A,A). Then α t β = α ◦ β.

(b) Assume that A is an augmented algebra over k, and that W has trivial right action. Let

η ∈ Hm(A,W ), and let ζ ∈ Hn(A, k). Then η t ζ = η ◦ ζ.

Proof. We prove part (b) only, the proof of part (a) being similar. Choose cocycle representatives

g ∈ HomA(Bn(A), k) and h ∈ HomA(Bm(A),W ) for ζ and η, respectively. Write ∂ : Bn+1(A) →
Bn(A) for the differential, and write g = g0 ◦ ∂′, where ∂′ : Bn(A) → coker(∂) = Bn(A)/ im(∂) is

the projection map. For i ≥ 0, define fi : Bi+n(A)→ Bi(A) by

fi(a[a1| · · · |ai+n]) = a[a1| · · · |ai] · g([ai+1| · · · |ai+n]).
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Since g is a cocycle, the fi form a chain map B•+n(A) → B•(A) lifting g0, i.e., the fi form a

commutative diagram

Bm+n(A)

fm
��

// · · · // Bn(A)

f0
��

// coker(∂) //

g0

��

0

Bm(A) // · · · // B0(A) // A // 0.

According to Lemma 2, the composite map h ◦ fm : Bn+m(A)→W is a cocycle representative for

η ◦ ζ. But is is plain that h ◦ fm([a1| · · · |an+m]) = (h t g)([a1| · · · |an+m]). Thus η t ζ = η ◦ ζ. �

In Lemma 6 we have implicitly made use of the graded space isomorphism (1). The compatibility

of (1) with the cup products t and ∪ is investigated below in Lemma 7. In general, if W is

an A-bimodule with trivial right action, the right composition product action of HH•(A,A) on

HH•(A,Wε) factors through the right action of HH•(A, k) on HH•(A,Wε). The induced map

HH•(A,A) → HH•(A, k) is simply ε∗ : HH•(A,A) → HH•(A, k), the map induced by the counit

ε : A→ k.

3.2. Products on H•(A, k). Let A be a bialgebra. Taking into account the graded space isomor-

phism HH•(A, k) ∼= H•(A, k), we have three cup products on H•(A, k): the composition product t
defined in §2.2, the cup product ∪ on H•(A, k) defined in §2.4.1, and the Hochschild cup product

∪ defined in §2.4.2.

Lemma 7. Let A be a bialgebra, and let M be a left A-module, viewed also as an A-bimodule with

trivial right action. Then there exists a commutative square

Hn(A,M)⊗Hm(A, k)
∪

//

∼
��

Hn+m(A,M)

∼
��

HHn(A,Mε)⊗HHm(A, k)
t
// HHn+m(A,Mε),

,

where the vertical maps are the graded space isomorphisms of (1).

Proof. Fix elements η ∈ Hn(A,M) and ζ ∈ Hm(A, k), represented by cocycles g ∈ HomA(Bn(A),M)

and f ∈ HomA(Bm(A), k), respectively. Then η ∪ ζ is the cohomology class of the cocycle µ ◦ (g ∨
f)◦ϕ. Here µ : k⊗k → k is the multiplication map, and ϕ : B(A)→ B(A)⊗B(A) is the chain map

(10). Let [a1| · · · |an+m] ∈ Bn+m(A). Given ai ∈ A, write ∆(ai) = a
(1)
i ⊗ a

(2)
i (Einstein notation).

Then

ϕ([a1| · · · |an+m]) =

n+m∑
p=0

[a
(1)
1 | · · · |a

(1)
p ]ε(a

(1)
p+1 · · · a

(1)
n+m)⊗ a(2)

1 · · · a
(2)
p [a

(2)
p+1| · · · |a

(2)
n+m],

and

(g ∨ f) ◦ ϕ([a1| · · · |an+m])

=
n+m∑
p=0

g([a
(1)
1 | · · · |a

(1)
p ])ε(a

(1)
p+1 · · · a

(1)
n+m)⊗ ε(a(2)

1 · · · a
(2)
p )f([a

(2)
p+1| · · · |a

(2)
n+m])

=

n+m∑
p=0

g([a
(1)
1 | · · · |a

(1)
p ])ε(a

(2)
1 · · · a

(2)
p )⊗ ε(a(1)

p+1 · · · a
(1)
n+m)f([a

(2)
p+1| · · · |a

(2)
n+m]).
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Since (idA⊗ε) ◦∆ = idA = (ε⊗ idA) ◦∆, and since ε is an algebra homomorphism, it follows from

the definition of g ∨ f that

n+m∑
p=0

g([a
(1)
1 | · · · |a

(1)
p ])ε(a

(2)
1 · · · a

(2)
p )⊗ ε(a(1)

p+1 · · · a
(1)
n+m)f([a

(2)
p+1| · · · |a

(2)
n+m])

=
n+m∑
p=0

g([a1| · · · |ap])⊗ f([ap+1| · · · |an+m]) = g([a1| · · · |an])⊗ f([an+1| · · · |an+m]).

Composing with µ, and making the identification k ⊗ k = k ⊗A k, the last term is precisely

(g t f)([a1| · · · |an+m]). Thus, ζ ∪ η = ζ t η. �

Next we compare the cup products discussed in §2.4. Note that if W and W ′ are left A-modules,

viewed as A-bimodules with trivial right action, then Wε ⊗W ′ε = (W ⊗W ′)ε as A-bimodules.

Lemma 8. Let A be a bialgebra, and let W,W ′ be left A-modules, viewed also as A-bimodules with

trivial right action. Then there exists a commutative square

Hn(A,W )⊗Hm(A,W ′)
∪

//

∼
��

Hn+m(A,W ⊗W ′)

∼
��

HHn(A,Wε)⊗HHm(A,W ′ε)
∪
// HHn+m(A,Wε ⊗W ′ε),

where the horizontal maps are the cup products defined in §2.4.1 and §2.4.2, and the vertical maps

are the graded space isomorphisms of (1).

Proof. As for Lemma 7, the proof follows from an explicit computation at the level of chain com-

plexes using the explicit descriptions of the cup products provided in §2.4.1 and §2.4.2. �

Corollary 9. Under the graded space isomorphism HH•(A, k) ∼= H•(A, k) of (1), the three cup

products on H•(A, k) defined in §2.2, §2.4.1 and §2.4.2 coincide.

3.3. Further comparison with the composition product. Now assume that A is a Hopf

algebra with bijective antipode S. Then the map δ := (1⊗ S) ◦∆ defines an embedding of A into

Ae = A⊗Aop. Considering Ae as a right A-module via δ, Pevtsova and Witherspoon show that there

exists an Ae-module isomorphism A ∼= k ↑Ae

A = (Ae)⊗A k [9, Lemma 7.1]. (Here we use the notation

W ↑KH to denote the tensor induction functor K ⊗H W .) The space Ae is projective as a right A-

module via δ (see the proof of [9, Lemma 7.2]), hence the Eckmann–Shapiro Lemma [3, Corollary

2.8.4] implies for any Ae-module M the existence of a natural isomorphism

(15) Ψ : HHn(A,M) = ExtnAe(k ↑A
e

A ,M)
∼→ ExtnδA(k,M ↓Ae

δA) = ExtnA(k,Mad).

Here Mad denotes the vector space M considered as a left A-module via the “adjoint” action

a · m =
∑
a(1)mS(a(2)). Note that if M has trivial right A-action, then Mad ∼= M as left A-

modules.

Theorem 10. Let A be a Hopf algebra with bijective antipode, and let M be an A-bimodule. Then

there exists a commutative square

(16) HHn(A,A)⊗HHm(A,M)
t
//

∼
��

HHn+m(A,M)

∼
��

Hn(A,Aad)⊗Hm(A,Mad)
∪
// Hn+m(A,Mad),
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where the vertical maps are the isomorphisms of (15), the top map is the composition product with

respect to the pairing A⊗AM
∼→M , and the bottom map is the (usual) cup product with respect to

the pairing µ : Aad⊗Mad →Mad, a⊗m 7→ am. The theorem also holds if the order of the factors

in the left-hand column is interchanged.

Proof. We prove the commutativity of (16) by the strategy indicated in the proof of [9, Lemma

7.2]; it is a direct generalization of the proof of [11, Proposition 3.1].

Let P → k be an A-projective resolution of k. Since Ae is projective as a right (and left) A-

module via δ, the induction functor (−) ↑Ae

A = Ae⊗A− is exact and takes projectives to projectives,

hence X := Ae ⊗A P is an Ae-projective resolution of A ∼= Ae ⊗A k.

The map ι : P ↪→ X = Ae ⊗A P defined by ι(x) = (1, 1) ⊗A x is an A-module chain map

(where the left action of A on Ae ⊗A P is via δ). If ζ ∈ HHn(A,M) is represented by the cocycle

f : X → M , then the corresponding element of Hn(A,Mad) under the isomorphism (15) is the

cohomology class represented by the cocycle f ◦ ι : P →Mad.

The complex P ⊗ P is an A-projective resolution of k ⊗ k = k (the action of A on P ⊗ P is

the diagonal action via ∆), and, as argued in [11, §2], the complex X ⊗A X is an Ae-projective

resolution of A. Let D : P → P ⊗ P be an A-module chain map lifting the identity id : k → k.

Define θ : Ae ⊗A (P ⊗ P )→ X ⊗A X by

(a, b)⊗A (x⊗ y)
θ7→ ((a, 1)⊗A x)⊗A ((1, b)⊗A y).

Then θ is a (well-defined) Ae-module chain map lifting id : A → A, hence D′ := θ ◦ (D ↑Ae

A ) is an

Ae-module chain map X → X ⊗A X lifting the identity id : A→ A.

Let ζ ∈ HHn(A,A) and η ∈ HHm(A,M) be represented by cocycles f : X → A and f ′ : X →M ,

respectively. Then we have the commutative diagram of maps

(17) X
D′
// X ⊗A X

f⊗f ′
// A⊗AM

∼
// M

P
?�

ι

OO

D
// P ⊗ P

(fι)⊗(f ′ι)
// Aad ⊗Mad µ

// M.

Let Ψ : HH•(A,−) → H•(A,−ad) generically denote the isomorphism of (15). Then composition

along the top row of (17) yields a cocycle representative for ζ t η (cf. [10, §1.2]), while composition

along the bottom row yields a cocycle representative for Ψ(ζ) ∪ Ψ(η). Composing from P to M

along the top row yields a cocycle representative for Ψ(ζ t η), hence Ψ(ζ) ∪ Ψ(η) = Ψ(ζ t η), as

desired. Similarly, Ψ(η t ζ) = Ψ(η) ∪Ψ(ζ). This proves the theorem. �

Corollary 11. [9, Lemma 7.2] Let A be a Hopf algebra with bijective antipode. Then there exists a

ring isomorphism (HH•(A,A),t) ∼= (H•(A,Aad),∪), which induces an embedding of H•(A, k) into

HH•(A,A). In particular, the ring H•(A, k) is graded-commutative.

Proof. The counit ε : A→ k provides an A-module splitting to the embedding k ↪→ Aad, so H•(A, k)

embeds as a subalgebra of H•(A,Aad). Now apply Theorem 10. The last statement follows from

Theorem 3. �

We can use Theorem 10 to give a new proof of the graded-commutativity relation in (13).

Corollary 12. Let A be a Hopf algebra with bijective antipode, and let M be an A-bimodule. Let

ζ ∈ Hn(A, k), and let η ∈ Hm(A,Mad). Then ζ ∪ η = (−1)nmη ∪ ζ.
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Proof. Let Υ : H•(A, k)→ H•(A,Aad) denote the embedding of Corollary 11. Then Υ(ζ)∪η = ζ∪η
and η ∪Υ(ζ) = η ∪ ζ. Now apply Theorems 10 and 4. �

3.4. Adjoint associativity and cup products. Consider the adjoint associativity isomorphism

HomAe(B,Nε)
∼→ HomA(B ⊗A k,N). In §1.1 we obtained the graded space isomorphism (1) by

taking B = B(A,A), but we could just as well have taken B to be any Ae-projective resolution of A.

Indeed, suppose B is an Ae-projective resolution of A, and consider B as a complex of A-bimodules.

Since A⊗A is free as a right A-module, B → A is a resolution of A by projective right A-modules.

Then B splits as a complex of right A-modules. It follows that B⊗A k is exact, hence that B⊗A k
is an A-projective resolution of A⊗A k = k.

Now take B = B(A) ↑Ae

A . The reader can easily check that (B(A) ↑Ae

A )⊗Ak ∼= B(A) as complexes

of left A-modules. With this choice of resolution for B, it is easy to see that the isomorphism

Φ : HH•(A,Nε)
∼→ H•(A,N)

induced by adjoint associativity coincides with the isomorphism

Ψ : HH•(A,Nε)
∼→ H•(A, (Nε)

ad) = H•(A,N)

from the Eckmann–Shapiro Lemma.

We turn our attention to another form of adjoint associativity. Continue to assume that A is a

Hopf algebra with bijective antipode. Assume that A acts on all Hom-spaces by the usual diagonal

action, i.e, given left A-modules M and N , and writing ∆(a) =
∑
a(1)⊗ a(2) for a ∈ A, then a acts

on f ∈ Homk(M,N) by (a.f)(m) =
∑
a(1)f(S(a(2))m). Since the antipode S of A is bijective, we

have Homk(M,N)A = HomA(M,N) by [1, Proposition 2.9].

Let B,M,N be left A-modules. There is a vector space isomorphism

(18) Θ : Homk(B,Homk(M,N)
∼→ Homk(B ⊗M,N),

which takes the linear map ψ : B → Homk(M,N) to the linear map Θ(ψ) : B ⊗M → N with

Θ(ψ)(b ⊗m) = ψ(b)(m). The vector space isomorphism is a homomorphism of A-modules, hence

it induces an isomorphism of the spaces of A-invariants, i.e., an isomorphism

(19) Θ : HomA(B,Homk(M,N))
∼→ HomA(B ⊗M,N).

The isomorphism is natural in B.

Given a left A-module M , let Mtr denote M considered as a trivial A-module. There there is an

isomorphism of left A-modules A⊗Mtr
∼→ A⊗M , defined by a⊗m 7→

∑
a(1)⊗a(2)m, with inverse

map given by a ⊗m 7→
∑
a(1) ⊗ S(a(2))m. In particular, this shows that if X is a projective left

A-module, then X⊗M is also a projective left A-module. Furthermore, if X → k is an A-projective

resolution of k, then the Künneth Theorem implies that X⊗M is an A-projective resolution of M .

Now take B = B(A), the bar resolution of A. The preceding comments imply that (19) induces

an isomorphism of cohomology groups

(20) Θ : H•(A,Homk(M,N)) = Ext•A(k,Homk(M,N))
∼→ Ext•A(M,N).

Lemma 13. Let M be a left A-module, and let ι : k → Homk(M,M) denote the map defined by

1 7→ idM . Then there exists a commutative triangle

H•(A, k)
ι∗
//

ΦM

((

H•(A,Homk(M,M))

Θ
��

Ext•A(M,M),
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where the vertical map is the isomorphism of (20), and the diagonal map ΦM is the algebra homo-

morphism that takes [S] ∈ Hn(A, k) to [S ⊗M ] ∈ ExtnA(M,M).

Proof. Let S ∈∈ Hn(A, k). Lift the identity idk : k → k to a chain map f : B(A) → S. Then

[S] is represented by the cocycle fn : Bn(A)→ k, and ι∗([S]) is represented by the cocycle ι ◦ fn :

Bn(A)→ Homk(M,M). Now Θ◦ι∗([S]) is represented by the function Θ(ι◦fn) : Bn(A)⊗M →M ,

which is just fn ⊗ idM : Bn(A)⊗M → k ⊗M = M .

Conversely, to obtain a cocycle representative for [S⊗M ] ∈ ExtnA(M,M), we follow the procedure

of Theorem 1. Take X = B(A) ⊗ M ; it is an A-projective resolution of M . If ∂ denotes the

differential of B(A), then the differential of X is ∂ ⊗ idM . Now f ⊗ idM : X → S ⊗M is a chain

map lifting the identity idM : M → M . Then (f ⊗ idM )n = fn ⊗ idM is a cocycle representative

for [S ⊗M ] ∈ ExtnA(M,M). This shows that [S ⊗M ] and Θ ◦ ι∗([S]) are represented by the same

cocycle Bn(A)→M , hence that −⊗M = Θ ◦ ι∗. �

The following lemma is an immediate consequence of Theorem 5.

Lemma 14. Let ΦM : H•(A, k) → Ext•A(M,M) be the algebra homomorphism defined in Lemma

13. Fix ζ ∈ Hn(A, k), and η ∈ ExtmA (M,M). Let idM ∈ HomA(M,M) denote the identity map,

considered also as an element of Ext0
A(M,M). Let ◦ denote the Yoneda composition product. Then

η = idM ◦η = η ◦ idM ,

ζ ∪ η = ζ ∪ (idM ◦η) = (ζ ∪ idM ) ◦ η = ΦM (ζ) ◦ η, and

η ∪ ζ = (η ◦ idM ) ∪ ζ = η ◦ (idM ∪ζ) = η ◦ ΦM (ζ).

Theorem 15. Let M,N be left A-modules. Then there exists a commutative square

Hn(A, k)⊗Hm(A,Homk(M,N)) //

∼
��

Hn+m(A,Homk(M,N))

∼
��

Hn(A, k)⊗ ExtmA (M,N) // Extn+m
A (M,N),

where the vertical maps are induced by the isomorphism (20), and horizontal maps are the corre-

sponding cup products

Proof. Let Θ denote the natural isomorphism HomA(− ⊗M,N)
∼→ HomA(−,Homk(M,N)). Fix

ζ ∈ Hn(A, k) and η ∈ ExtmA (M,N), and choose cocycle representatives f ∈ HomA(Bn(A), k) and

g ∈ HomA(Bm(A) ⊗ M,N) for ζ and η, respectively. Then X := B(A) ⊗ (B(A) ⊗ M) is an

A-projective resolution of M , and ζ ∪ η ∈ Extn+m
A (M,N) is represented by the cocycle f ∨ g ∈

HomA(X,N). Conversely, the image Θ(η) of η in Hm(A,Homk(M,N)) is represented by the cocycle

Θ(g) ∈ HomA(Bm(A),Homk(M,N)). The complex Y := B(A)⊗B(A) is an A-projective resolution

of k, and the cup product ζ∪Θ(η) is represented by the cocycle f ∨Θ(g) ∈ HomA(Y,Homk(M,N)).

The theorem now follows, because Θ−1(f ∨Θ(g)) = f ∨ g. �
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