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Abstract

In these notes we outline some aspects of the modular representation theories of
finite groups of Lie type in defining and cross-characteristics, with particular interest
paid to how these theories relate to the modular representation theory of algebraic
groups and the (characteristic 0) representation theory of Lie algebras and quantum
groups. We begin by summarizing some classical results on the representation theory
of complex semisimple Lie algebras and Lie groups, and then compare the classical
theory to the representation theory of algebraic groups, discussing some of the issues
encountered in moving to fields of positive characteristic and discussing some of the
progress that has been in resolving these issues. We then discuss how the study of
maximal subgroups leads to the study of linear representations in cross-characteristic,
and conclude with a discussion of how the theory of quantum enveloping algebras
(quantum groups) helps us to understand this situation.

1 Characteristic Zero Lie Theory

In order to establish our notation and to provide a reference to which we will later refer, we
begin by summarizing some well known results on the structure and representation theory
of complex semisimple Lie algebras and Lie groups. Readers who are already familiar with
this material may skip ahead to Section [2] For further reference consult [6], [16].

1.1 Structure of Complex Semisimple Lie Algebras

Let g be a semisimple Lie algebra over C. Fix a Cartan subalgebra h of g. (Readers not
familiar with these notions may want to look ahead to Example [1.1.1}) It is a fact that b
is diagonalizable for any finite-dimensional representation of g. Specializing to the adjoint

*This document is based on two lectures delivered by Leonard Scott on April 25, 2007 and May 2, 2007,
in the University of Virginia Algebra Seminar and in Professor Scott’s course MATH 852 Representation
Theory. Some additional material has been added, especially from [I6] and [37] for the first part of the notes,
and from [§], [20] and other references listed herein for the second part of the notes.



representation, g decomposes as a direct sum of weight spaces for the adjoint action of h on
g
g=ha || g
acd

Here g, denotes the weight space of weight o € h*. (Note that go = h.) We call the nonzero
weights ® C h* the roots of g. The R-span F = R® of the roots in h* is an ¢-dimensional
(¢ = dimc b*) euclidean space, in which ® is a root system and on which we have a non-
degenerate symmetric bilinear form, denoted (-, -), which is invariant under the Weyl group
W of ®.

Fix a base II = {ay, ..., ay} of the root system ®. We refer to the elements of II as the
simple roots. Then every element of ® can be written as an integral linear combination of the
simple roots with all coefficients of like sign, and ® = ®* || ®~, where ®* is the collection of
positive roots (i.e., those roots which can be written as a non-negative integral combination
of the «a;), and where &~ = —®™ is the collection of negative roots.

If o € ® and a = Zle c;ay, define the height of a by hta = Zle c;. We have a
partial order < on A (in fact, on all of h*) defined by p < X if A — p is a non-negative
integral combination of positive roots. So @ ={a € ®:a >0} = {a € ®: hta > 0}, and
P ={aed:a<0}={aec®:hta <0}. (Notethat II|(-II) ={a € ®:hta=1}.)

To each root a € ¢ we have its associated coroot a¥ = 2a//(c, ). The set of all coroots
®Y = {a¥ : a € &} forms aroot system in E, called the dual or coroot system of ®. Evidently

(a,a¥) =2 for all & € ®. The set I1Y = {ay,...,a)} is a base for the coroot system ®V.
Let C' denote the ¢ x ¢ Cartan matrix C' = (¢;;) = ((o/, ;). The matrix C' is sym-
metrizable, that is, there exists an ¢ x ¢ diagonal matrix D = diag(dy,...,ds) with entries

in Z* such that DC' is symmetric.

For a € ®, define the reflection s, € GL(E) by sq(z) = 2 — (z,a")a for all x € E. The
Weyl group W of ® is the finite reflection group generated by the s,. In fact, W is a finite
Coxeter group generated by the simple reflections s; 1= s,, (o € II).

If A € F is a vector such that (A, ") € Z for all « € ®, we call A an integral weight. Let
w; € E denote the unique vector such that (w;, o)) = 6;; (Kronecker delta) for all simple
roots a; € II. We call w; the fundamental dominant (integral) weight corresponding to the
simple root «;. The free abelian group A generated by the fundamental dominant weights
wy,...,w, is called the weight lattice. As a set, A = {A€ E: (\,a") €Z, YV a € ®}, the
set of all integral weights. Note that o € A for all & € &. We call the subgroup A, of A
generated by the roots o € ® the root lattice. It is a subgroup of finite index in A. If u € A
and (u,a¥) > 0 for all @ € @, we call 4 a dominant (integral) weight, and we denote the
collection of all dominant weights by AT. We have pu € A* if and only if p is equal to a
non-negative integral combination of the fundamental dominant weights.

Associated to the choice II of a base for ®, we have the triangular decomposition g =
n~ ®h@n', where b is a Cartan subalgebra of g and n™ (resp. n~) is the subalgebra
generated by all positive (resp. negative) root spaces. We often denote the subalgebra
h@dnt by bT (resp. b~ =n~ @ b). Denote the universal enveloping algebras of g, n*, b, etc.
by U(g), U(nT), U(h), etc. By the PBW Basis Theorem, the natural multiplication maps
define isomorphisms of vector spaces U(g) =Un™) @c U(h) @cU(nT) =Un™) @c U(bT).



Example 1.1.1. Let g = s[,(C). Let h denote the subalgebra of trace zero diagaonal
matrices. Then b is a Cartan subalgebra in g. For 1 < i < n let ¢, € h* be defined
by € (diag(as,...,a,)) = a;. Then ® = {e; —¢;:i#j}. For 1 <i <n—11let o =
€; — €i+1. Then IT = {ay,...,a,_1} is a base for ®, and with respect to this base we have
¢t ={e —¢ 1 <j}. Forl <i<n-—1wehave w; =€ +---+¢. For i # j we have
ge,—e; = CEjj, where Ej; € g denotes the matrix having 1 in the (4, j) position and zeros
elsewhere. Then n' is the subalgebra of strictly upper triangular matrcies, and b is the
subalgebra of trace zero upper triangular matrices.

1.2 Irreducible g-modules

Fix a base IT C ®, and hence a corresponding triangular decomposition g =n~ & b*.

Let V be a g-module, and suppose that there exists a weight vector v+ € V) such that
b*.ot = 0. Then we call v* a maximal vector of weight A in V. Suppose furthermore that
V is generated as a g-module by v*. Then all other weights p of V' satisfy u < A, and we
call A the highest weight of V. Suppose finally that V' is an irreducible g-module. Then
the line Co™ C V is uniquely determined by the fact that v is a maximal vector, and any
other irreducible g-module generated by a maximal vector of highest weight X is necessarily
isomorphic to V.

As a specific example of the above setup, given A € h* define a g-module of highest weight
A as follows. Let C, be the one-dimensional C-vector space with basis element denoted by
A. Define a one-dimensional representation of b+ on C, by bT.A = 0 and h.A = A(h)\ for
all h € . Set V(X)) = U(g) @uy(e+) Ca, the induced module for Cy from b* to g. Then V(\)
is a g-module of highest weight A, called the Verma module (or standard module) of highest
weight A. As a vector space, V(A) = U(n") ®c C,. Every g-module of highest weight A is
a homomorphic image of V(A). The Verma module V' (\) has a unique maximal submodule,
and its irreducible head is denoted L(\). The necessary and sufficient condition for L()\) to
be finite-dimensional is for A to be a dominant integral weight.

Consider an arbitrary finite-dimensional irreducible g-module V. Being a finite direct
sum of weight spaces for h, V must contain a weight space V) with Vy,, =0 for all « € &*
(i.e., A is maximal among all weights p of V' with respect to the partial order < on h*). Then
any v € V) is necessarily a maximal vector of weight A in V. By irreducibility, V' is generated
as a g-module by v, hence is a homomorphic image of the Verma module V(). But L(A) is
the unique irreducible quotient of V()), so we conclude that V' = L(\) and A € A™. Thus,
the finite-dimensional irreducible g-modules are parametrized (up to isomorphism) by their
highest weights, and we have a bijection between elements of AT and the finite-dimensional
irreducible g-modules given by A < L(A).

For future reference, we mention the following theorem:

Theorem 1.2.1 (Weyl’s Complete Reducibility Theorem). Let V' be a finite-dimensional
g-module. Then V decomposes as a direct sum of irreducible g-modules. In particular,
Exty(L(X), L(p)) = 0 for A # pu € AT,



1.3 Character and Dimension Formulae

Given a (not necessarily finite-dimensional) g-module V' such that V' is a direct sum of
finite-dimensional h-weight spaces V) (A € h*), we define the formal character of V' by

chV =3 (dimVy)e

Aebh*

Here the e* are formal symbols satisfying ete# = e**# for all A\, u € h*. By Weyl’s Complete
Reducibility Theorem [1.2.1], every finite-dimensional g-module decomposes as a direct sum of
irreducible g-submodules. So the problem of determining all characters of finite-dimensional
g-modules reduces to the problem of computing the ch L(\) for A € A™.

We begin by computing the formal character of the Verma module V' (\). The Verma
module V() has a finite composition series with composition factors of the form L(w - \)
for w € W, where w - X := w(A+ p) — p and p = %Zaeqyk o= Y! | w; is the Weyl weight.
Moreover, L(w - A) occurs as a composition factor of V' (A) only if w- A < A, and L(\) occurs
as a composition factor of V' (\) with multiplicity one.

Now chV(A) = X ,ew @wch L(w - A) for some non-negative integers a,, with a; = 1. A
similar equation holds for each chV(w - A) with w - A < A. We thus obtain a system of
equations describing each ch V' (w-\) (w € W) in terms of the characters ch L(y-\) (y € W).
Writing the coefficients of this system of equations with respect to a suitable ordering of
the set {w- X :w € W w- X <A}, we obtain an upper triangular matrix over Z having all
diagonal entries equal to one. Inverting this matrix we obtain an equation of the form

chL(A) = > bychV(w-A) (1)

weW

for some b,, € Z. Following [16], we can look at the action of the Weyl groupE] on both sides
of this equation and deduce the following famous result of Weyl:

Theorem 1.3.1 (Weyl’s Character Formula). Let A € AT. For w € W let I(w) denote the

length of w as a word in the generators si,...,s; of W. Then
chL(N) = Y (=1)'™chV(w-\) (2)
weW

From the vector space isomorphism V(w - A) = U(n") ®@c¢ C,.» we have that, for each
p € b*, dimV(w - \), is equal to the number of ways that w - A — p can be written as a
non-negative integral sum of positive roots. From this we deduce the formula

ew(A+p)

Zyew(_l)l(y)eyp

chV(w-\) =

and hence the following alternate formulation of Weyl’s character formula:

! Actually, to this point A could be any element of A. But when A is dominant, so that L()\) is finite-
dimensional, the Weyl group fixes char L()) is its action w(e*) = e*"W), pe A, w e W.



Theorem 1.3.2 (Weyl’s Character Formula, Alternate Formulation). Let A\ € A*. For

w € W let [(w) denote the length of w as a word in the generators sy, ..., s; of W. Then

Ewew(_l)l(w)ew(Hp)
Swew (—1)1ev

A further consequence of Weyl’s character formula is the following formula for the di-
mensions of the irreducible g-modules.

chL(\) = (3)

Theorem 1.3.3 (Weyl’s dimension formula). Let A € AT. Then

HaE<I>+ <)‘ + P, Oé>

dim L(\) = Mocwr (.0
aedt )

(4)

So far we have concentrated on the representation theory of semisimple complex Lie
algebras and have ignored the corresponding Lie groups. But since one can pass from the
Lie algebra to the Lie group through the process of exponentiation, the representation theory
of semisimple complex Lie groups exactly parallels that of the Lie algebras.

2 Algebraic Groups in Positive Characteristic

This section is based on [32].

It is well-known that the finite simple groups fall into three classes: the simple groups
associated to finite groups of Lie type (loosely also called groups of Lie type, or simple
groups of Lie type), the alternating groups, and the 26 sporadic finite simple groups, with
the simple groups of Lie type taking up the bulk of the simple groups in some sense. (Tits
has suggested that the alternating groups may be considered as groups of Lie type over the
field of one element, in which case the simple groups of Lie type take up all but 26 of the
known finite simple groupsE[) We begin our study of the irreducible representations of the
finite groups of Lie type with the irreducible representations of semisimple algebraic groups
over fields of positive characteristic.

The Lie algebra g of a semisimple algebraic group G over an algebraically closed field of
characteristic zero carries much information about the structure of G, and in this case one can
deduce results on the representation theory of G from results on the representation theory of
the semisimple Lie algebra g. But the situation becomes more complicated when one passes
from algebraically closed fields of characteristic zero to fields of arbitrary characteristic.

While the representation theory of semisimple algebraic groups in positive characteristic
largely parallels that of the complex semisimple Lie algebras elucidated above in Section
[[}—the finite-dimensional irreducible modules are still parametrized by dominant integral
weights—we lack complete information regarding the structure of the irreducible represen-
tations. Indeed, the problem of determining the formal characters and dimensions of the
irreducible modules, and the progress that has been made towards this end, will be our
central focus in the sections that follow.

2This is more than a joke, as it turns out. A theorem of Gordon James guarantees that the irreducible
modular representations of the symmetric group of degree r are determined by those of irreducible modular
representations of the degree r general linear group, via Schur-Weyl duality.



2.1 Notational Conventions

Let p be a prime number and let & = F,. An (affine) algebraic group G over k is an affine
algebraic variety G C k™ (for some n) with a compatible group structure in the sense that
multiplication G x G — G and inversion G — G are morphisms of algebraic varieties. Denote
the coordinate algebra of G by k[G].

More generally, we call G an affine k-group scheme if GG is a representable functor from
the category of commutative k-algebras to the category of groups. (For this more general
notion k need only be a commutative ring, though we will always assume that £ is at least a
field.) Thus there exists a commutative k-algebra k[G] such that G(A) = Homy_q,(k[G], A)
for all commutative k-algebras A. The fact that G is a group forces k[G] to be a Hopf
algebra. We say that G is an algebraic affine k-group scheme if k[G] is finitely generated
over k. Given a k-algebra A and f,g € G(A) = Homy_4,(k[G], A), the product fg € G(A)
is defined by fg = po (f ® g) o A, where here y: A® A — A denotes multiplication in A
and A : k[G] — k[G] ® k[G] is the comultiplication in k[G]. When k[G] is an affine algebraic
k-group scheme that is reduced (i.e., when k[G] has no nonzero nilpotent elements) and when
we specialize to the case k = F, and A = k, then G(A) is an affine algebraic group over
k (in the classical sense of an affine algebraic variety) having coordinate algebra k[G]. We
will feel free to consider our algebraic groups both in the classical sense as affine algebraic
varieties, and in the functorial sense as affine algebraic k-group schemes.

We say that an affine algebraic group G is defined over a subfield kg of k provided that
there exists a Hopf algebra Ay over ko such that the natural map k ®, Ag — k[G] is Hopf
algebra isomorphism. (We identify Ay with an algebra of kg-valued functions on G.) In
what follows we will generally assume G to be defined over some finite subfield F, of k = F,
(¢ = p" a prime power).

Let G be a semisimple algebraic group over k¥ = F,. Fix a maximal torus 7 in G, a
Borel subgroup B containing T and the opposite Borel subgroup B*. Let Ut = R,(B™)
the unipotent radical of B, and let U = R,(B). Denote the character group of T by
X = X(T). The torus T acts on the Lie algebra g = Lie(G) through the adjoint map Ad,
and g decomposes as a direct sum of weight spaces g, (o € X) for T. The nonzero weights
form a root system ® in F = X ®z R, and the choice of Borel subgroup B* determines a
positive system ®* in ® and hence a base II C &7 for ®.

Identify the co-character group Y = Y (7T') = Hom(G,,,, T') with the group Homgz (X (7, Z)
via the pairing (-,-) : X(T) x Y(T) — 7Z, where t™ = Xo p(t) for all t € T, A € X(T),
w € Y(T). (Note that Hom(G,,,G,,) = Z.) Now identify £* = Y ®z R with E via the
pairing (-, -). Then for each root v € ® we have the associated coroot a¥ € Y.

The abstract weights in F (i.e., the yp € X ®7R satisfying (i, @) € Z for all « € ®) span
a lattice A containing the root lattice A, (subgroup generated by all « € ®) as a subgroup
of finite index. In fact, we have A, C X(7) C A. If X(T) = A we say that G is simply
connected.

We say that a character A € X is a dominant weight if (A\,a¥) > 0 for all « € ®T, or
equivalently if A\ can be written as a non-negative integral combination of the fundamental
dominant weights w; € A. Denote the collection of dominant weights in X by X+ = X (T')*.
We call A € X(T)* an r-th restricted dominant weight if 0 < (A, a") < p” for all a € II.
Denote the collection of r-th restricted dominant weights by X, (7). We may refer to the



elements of X;(7") simply as the restricted dominant weights.

Example 2.1.1. Let G = GL,. Then k[G] = k[(det)™, X;; : 1 < 4,5 < n], where det €
k[Xi; + 1 < 4,7 < n] is the determinant function (a polynomial in the variables Xj;).
Identifying GL,(A) with the set of all n x n invertible matrices with entries in the given k-
algebra A, we may take B to be the subgroup of all upper triangular matrices, U™ to be the
subgroup of all strictly upper triangular matrices, and T to be the subgroup of all diagonal
matrices. Multiplication in G is given by ordinary matrix multiplication. Comultiplication
in k[G] is given by A(X;;) = X Xir ® Xyj. The group G = GL, has unipotent radical
equal to the collection of scalar matrices, hence is reductive but not semisimple.

Example 2.1.2. Let G = SL,. Since SL, is the subgroup of GL,, defined by the vanishing
of the polynomial det —1 € k[GL,], SL, is a closed subgroup (closed subfunctor) of GL,,.
We have k[G] = k[(1 —det), X;; : 1 < 4,j < n], and we may take BT, U, T to be the
subgroups of upper triangular, strictly upper triangular and diagonal matrices, respectively.
The group G = SL, is semisimple. If ¢, = X;;|7 is the i-th coordinate function on 7', then
the characters a; := ¢; — €;41 (1 < i <n —1) form a basis for X(7') and a base for ®. (So
SL, is simply connected.) We have w; = ¢; + -+ + ¢;.

Example 2.1.3. Let p be a prime number, ¢ = p" a power of p, and G = GU,(q) the
general unitary group. Then G = {U € GL,(Fp): Ul = 1}, where U € GL,(F ) denotes
the matrix obtained from U by raising each entry to the ¢-th power and U denotes the matrix
transpose of U. The special unitary group SU,(q) is the subgroup of GU,(q) of elements

with determinant equal to one. Evidently GU,(q) and SU,(q) are both closed subgroups of
GL,(F,).

For further reference on general properties of affine algebraic groups, consult the stan-
dard references [5], [17], [36]. For further reference on algebraic group schemes and their
representations, consult [20].

2.2 Chevalley Groups and other Finite Groups of Lie Type

The Chevalley groups over k (also called split semisimple groups of Lie type over k) are
certain concrete constructions of semisimple algebraic groups from representations of complex
semisimple Lie algebras. We briefly sketch their construction here; for further reference
consult [37]. To begin, let gc be a complex semisimple Lie algebra with Cartan subalgebra
be, and let V' be a faithful finite-dimensional gec-module. Let L; = A the weight lattice of
dc, (cf. Section , let Lo = A, the root lattice of gc, and let Ly denote the sublattice of
Ly generated by all weights of hc on V. Then Ly C Ly C L.

There exists a basis {X,, H; : a € ®,1 <i <[} for gc with X, € g., H; € b, called a
Chevalley basis, such that all of the structure constants of g¢ relative to the Chevalley basis
are integers. Let Uz denote the subalgebra of U(gc) generated by all X := X" /n! (a €
®,n € N). (This subalgebra is known as the Kostant Z-form of #(gc).) Then there exists a
lattice V7 in V' invariant under ;. Now given t € k and a € ®, we define an automorphism
of V¥ :=V; ®y k as follows. Because V is finite-dimensional and since X, V) C Vi, for all
weights A of V', multiplication by X, is a locally nilpotent endormorphism of V. Then the



map exptX, : V¥ — V¥ defined by (exptX,) (v ®a) = 3200, XM v ® t"a is a well-defined
automorphism of V*.

Let G be the group of automorphisms of V* generated by all exptX, (t € k,a € ®).
We call G a Chevalley group. In fact, G is a semisimple algebraic group with Lie(G) =
g = gz ®z k, where gz is the lattice in g¢ preserving the Z-form V3. The lattice Ly is
realized as the character group of a maximal torus 7" of GG, and the lattices Ly and L, are
realized respectively as the root and weight lattices of G with respect to T'. Moreover, every
semisimple algebraic group G’ over k can be constructed in this fashion by the choice of
an appropriate faithful finite-dimensional gc-module V' for some complex semisimple Lie
algebra gc.

If Ly = Ly we say that GG is a universal Chevalley group. The reason for this terminology
is that if G’ is another Chevalley group over k constructed from a faithful finite-dimensional
gc-module V7| then there exists a surjective homomorphism ¢ : G — G’ with kerp C Z(G)
the center of G. So if G is the universal Chevalley group constructed from gc¢, then G is
a covering group for all other Chevalley groups constructed from ge. Since L; = A and
Ly = X(T) for some maximal torus T of G, we see that G is universal if and only if it is
simply connected.

2.3 Frobenius Morphisms

Let G be an affine algebraic group defined over F,. Identify k[G] with k ®g, Ay, and define
the Frobenius comorphism F* : k|G| — k[G] by F*(a® f) = a® fP. This map is readily seen
to be a Hopf algebra map, and hence is the comorphism of an algebraic group morphism
F = F; : G — @ called the Frobenius morphism. We call the r-th power F" of F' the r-th
Frobenius morphism.

(The comorphism F* defined above is called the geometric Frobenius endomorphism of
k[G]. There is a second Frobenius endomorphism of k[G], called the arithmetic Frobenius
endomorphism, defined by a® f — a?® f. There are also more general notions of a Frobenius
morphism: Let X be an affine algebraic variety over k = F,, with coordinate algebra A. If
F*: A — Ais an algebra homomorphism such that F* is injective, F*(A) = A? for some
p-th power ¢ = p", and if for each f € A there exists m > 1 such that (F*)™(f) = f7",
then we call the coordesponding morphism of varieties ' : X — X a generalized Frobenius
morphism on X, cf. [13] Chapter 4.)

Associated to the r-th Frobenius morphism F" are two subgroups of G. The kernel
of F" is a normal subgroup called the r-th Frobenius kernel of GG, and is denoted by G,.
In the language of affine group schemes, G, is an infinitesimal group scheme. We have
G,(K) = Homy_,(k[G,], K) = {e}, the trivial group, for any field extension K of k. So
Frobenius kernels are always trivial when we consider them in the classical sense as affine
algebraic varieties, but they may no longer be trivial when we consider G as an affine group
scheme and permit k-algebras A that are not fields.

The fixed points GI" of G under the r-th Frobenius morphism form a finite subgroup of
G, denoted G(q) or G(F,) (where ¢ = p"). (If we consider G as an affine algebraic variety
over k = F,, then G(q) consists of those points in G C k™ all of whose coordinates lie in
F,.) If G is a Chevalley group, then we call G(¢) a finite Chevalley group (also called a
finite group of Lie type). Other finite groups of Lie type are obtained from a Chevalley



group G through various “twistings” of the Frobenius morphism or by taking the fixed point
subgroup of GG under a generalized Frobenius morphism.

The table on page 6 of [I8] lists the orders of the finite Chevalley groups G(q) when G is
a universal Chevalley group.

Example 2.3.1. Let G = G,, the additive group, considered as an affine group scheme.
Then k[G] = Ek[X], a polynomial ring in one indeterminate X, and G(A) = (A4,+) the
additive group of A, for each k-algebras A. The Frobenius morphism satisfies F'(t) = ¢? for
all t € G(A), so

GF(A)={te At =t}  and  G,(A)={teGA):# =0}

Example 2.3.2. Let G = G,,, the multiplicative group, considered as an affine group
scheme. Then k[G] = k[X, X~!], a Laurent polynomial ring in one indeterminate X, and
G(A) = (A%, x) the multiplicative group of units in A, for each k-algebra A. The Frobenius
morphism satisfies F'(t) = t? for all t € G(A), so

G"(A)={te A :t" =t} and G (A)={te At =1}

2.4 Representations of Algebraic Groups
Let G be the universal Chevalley group constructed from g¢ as in Section [2.2]

While the Lie algebra of an algebraic group over a field of positive characteristic carries
less information concerning the structure and representations of the group than it does in
characteristic zero, Chevalley showed that the high weight theory of complex Lie algebras and
Lie groups does carry over to semisimple algebraic groups in the sense that the irreducible
modules for a semisimple algebraic group G are still parameterized by dominant highest
weights. So, loosely speaking, we have the same “number” of irreducible modules in positive
characteristic as in characteristic zero.

One approach to constructing the irreducible G-module L()\) parametrized by a given
dominant weight A € X is to construct L(\) as a certain submodule of the coordinate
algebra k|G| (which is a G-module via the left regular representation). To begin, for a given
A € XT let X denote the one-dimensional B-module of T-weight \. Set

V(A) == indG A = {f € k[G] : f(gb) =A(b")f(g)Vg € G, Vbe B}

the induced module of A from B to G. (Another common notation for ind% A is H°(\).)
Then V() is a (finite-dimensional) G-submodule of k[G] of highest weight A. One can show
that L(\) := socg V() is an irreducible G-module of highest weight A € X*. Now let
A(X) = V(—wpA)*. One can show that A(X) is generated by a BT-stable line of highest
weight A and that any other such G-module is a homomorphic image of A()). Moreover,
A(X) has a unique maximal submodule, and A(X)/radg A(N) = L(A). We call A(\) the Weyl
module of highest weight A. Evidently the finite-dimensional Weyl module A()) assumes a
position in the representation theory of GG similar to that held by the infinite-dimensional
Verma module V'(A) in the representation theory of gc (cf. Section[1.2). (Another common
notation for A()\) is V()), further emphasizing its similarity to the Verma modules of g¢.)
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A second approach to the construction of the irreducible G-modules makes more clear
the connection between the simple modules L(\)¢ for gc and the simple modules L(A) for
G. Given X € AT, let L(\)c denote the simple ge-module of highest weight A\. Then by the
construction in Section [2.2] there exists a lattice L()\)z C L()\)c such that the group G acts
naturally on L(\)z ® k. This G-module is no longer simple in general, but it does have an
irreducible head. Indeed, L(\)z ® k = A()\) the Weyl moduld of highest weight A, so its
head is isomorphic to the simple G-module L(\).

Before we address the structure of the simple modules for the finite Chevalley group G(q),
we state the following theorem of Steinberg:

Theorem 2.4.1 (Steinberg’s Tensor Product Theorem). Let A € X(T)* and write A =
Yo P A with Ay € X, (T). Then L(A) = L(Xo) ® LMY ® -+ @ L(A,)M, where L();)Y!
denotes the G-module obtained by composing the structure map for L();) with the j-th
Frobenius morphism.

In principle then, the structures of the irreducible G-modules L(A) are completely de-
termined by those L(\) with restricted weights A € X;(7) and by the Frobenius morphism
F:G—dG.

Now, each simple G-module L(\) remains simple on restriction to the finite Chevalley
group G(q), cf. [I8] Section 2.12. Steinberg showed that in fact every irreducible G(g)-module
can be obtained in this manner. (His result also holds for any finite group G of Lie type,
F' as discussed above.)

Theorem 2.4.2 (Steinberg, 1963). Let L be an irreducible module over k for the finite
group G(q). Then L is the restriction from G of an irreducible G-module.

On the other hand, distinct irreducible G-modules may no longer be non-isomorphic
on restriction to G(q). Indeed, let A € X;(7). Then by the Tensor Product Theorem,
L(p'A) = LA But G(q) = G is the fixed point subgroup of G under the r-th Frobenius
morphism, so G(q) doesn’t “see” the twist on L(\) and we have L(\) = L(p"\) as G(q)-
modules. To parametrize the simple G(g)-modules, we must then restrict our attention
to some subset of the dominant weights. Steinberg showed that the necessary dominant
weights are precisely the r-th restricted dominant weights A € X,.(A). (He also gives a precise
description of the weights needed in the general finite group of Lie type case. We stick to
the Chevalley groups here and below for simplicity.) By the Tensor Product Theorem, one
may even restrict attention to the restricted weights A\ € X (T).

An important step in understanding the irreducible G-modules L(A) with A € X,(T),
and hence their restrictions to the finite group G(q), would be to know their dimensions and
the dimensions of their weight spaces.

Problem 1. Give a “Weyl character formula” (cf. Theorem [1.3.1)) for the irreducible G-
modules L(A), A € X,.(T) an r-th restricted dominant weight.

3This fact is quite nontrivial. It is a consequence of ‘Kempf’s Vanishing Theorem’ for line bundles on
G/ B; equivalently, a statement regarding the vanishing of higher derived functors H¢(\) = R'Ind§()),i > 0
of certain induction functors. See [20] for an exposition.
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A second problem, and one that only becomes interesting for finite-dimensional represen-
tations in the case of fields of positive characteristic (cf. Theorem , is to understand the
ways in which the irreducible G-modules L(\) can “fit together.” More precisely, we want
to understand the morphisms between the irreducible G-modules, and hence (recursively)
the structure of G-modules admitting a composition series.

Problem 2. Determine Extg,(L()), L(1)), Exte ) (L(X), L)) for A, p € X,.(T).

Both problems may (and should) be formulated for general finite groups G of Lie type,
with a suitable modification of X,.(T"). Also, one may pose problems analogous to Problem 2
for Ext? or higher Ext groups. The emphasis on Ext' here is partly motivated by the special
role of H' in the next section.

Analogous to the situation of Section Equation [1} we can write an equation of the
form

chL(A) = Y bychA(w-\)

weWp

wAeXt
for some b,, € Z, relating the characters of the simple G-module L(\) to the characters of
the Weyl modules A(w - X\) with w an element of the affine Weyl group W, = pZ® x W.
Since the characters ch A(u) are given by Weyl’s Character Formula (i.e., by Equation
of Theorem with A(u) substituted for L(u)), cf. [20] Section I1.5.10, the solution of
Problem 1 above amounts to the determination of the integers b,,.

Lusztig’s conjecture, below, asserts that the coefficients b,, are in effect given by the values
at 1 of certain polynomials P, ,, called Kazhdan-Lusztig polynomials, associated with the
Coxeter group W,. Though Lusztig’s formula is known to be correct for p > h, where
h =1+ (p,ay) is the Coxeter number of ® (¢ is the longest short root of @), a lower bound
for p is not known. Before stating Lusztig’s conjecture we need some terminology: We say
that a dominant weight p lies in the Jantzen region if (1 + p, ay) < p(p — h + 2).

Conjecture 2.4.1 (Lusztig, 1979). Let X be a weight in the Jantzen region (which includes
all restricted weights if p > 2h — 2, h the Coxeter number of ®). Then if p > h, dim L()),
is given as follows: Choose w in the affine Weyl group W, = pZ® x W such that A = w - A,
for some ¢ (unique) with —p < (Ao + p)(H,) < 0 for all & € &F. (We say that Ag is in the
antidominant lowest alcove). Let wy denote the longest element of W. Then

dim L(\), = Y (1) p, (1) dim A(woy - M)~ (5)

where the sum is taken over all y € W such that woy- g is dominant and woy-A\g < wow-Ag =
A, Awoy - Ag) is the Weyl module of highest weight woy - Ao, and P, ,, is a Kazhdan-Lusztig
polynomial associated with the Coxeter group W,,.

In a helpful strengthening of the conjecture, Kato has proposed that formula always
holds for A € X;(T) provided p > h, thus not requiring p > 2h — 2. This strengthening
seems to hold up empirically in the one (meager) case in which the result is known, i.e., for
SLs over 5, cf. [35]. The result remains an open problem for SLg and SL; over F;.
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3 Maximal Subgroups

This section is based on [33].

Suppose G is a finite group, and H < G is a maximal subgroup. Historically, the study of
maximal subgroups (or, more precisely, pairs (G, H)) has been a principle topic in the theory
of finite groups. For example, through the study of maximal subgroups, one may hope to
obtain structural information about groups in general, through a recursive procedure. As
another example, and one which is the principle motivating factor for the rest of these notes,
is the role maximal subgroups play in the theory of permutation representations of finite
groups. The group G acts on G/H not only transitively, but primitively, and the permutation
representations associated to the pairs (G, H) for H running over all maximal subgroups of
G constitute the building blocks for all permutation representations of G (analogous for
nonlinear representations to the role played by the irreducible representations in the linear
case). Finite automata theory provides one interesting modern application of permutation
representations; see Chapters 6 and 7 of [14], entitled “Covering by permutation and reset
machines” and “The theory of Krohn and Rhodes.” We remark that any permutation
machine may be “covered,” in the terminology of [14], by a “cascade” (wreath-like) product
of primitive permutation machines.

Determining maximal subgroups of an arbitrary finite group reduces to the case of solving
this problem for simple or nearly simple groups by a theorem of Ashbacher and Scott, which
we loosely paraphrase below.

Theorem 3.1. (Aschbacher—Scott, 1985 [4]) The determination (up to conjugacy) of all
pairs (G, M), G a finite group and M < G a maximal subgroup, reduces modulo “smaller
or easier” problems to the following:

1. G is almost simple (and M is maximal in G)

2. G = H.V asemidirect product of a quasisimple finite group H and one of its irreducible
modules V' over F,,, and M is a complement to V. In this case, the conjugacy classes in
G of such maximal subgroups M correspond bijectively to elements of the cohomology
group H'(H, V).

Remark.

1. Recall a finite group G is almost simple if G can be sandwiched as Gy < G < Aut(Gy)
for a finite simple group G and its automorphism group. By the Schreier Conjecture
(now a theorem), Aut(G)) is a solvable group; usually it is “fairly small”.

2. Recall a finite group G with center Z(G) is quasisimple if G/Z(G) is simple, and if G
is equal to its commutator subgroup (i.e., G is perfect).

As mentioned previously, the finite groups of Lie type constitute a ‘large’ subcollection
of the finite simple groups. The finite groups of Lie type split into two collections: those
arising from the classical groups (associated to root systems of types A, B,C, D) and those
of exceptional type (associated to root systems of types Eg, E7, Es, Fy, G3). The following
(very roughly phrased) theorem of Aschbacher’s thus determines the maximal subgroups for
a very large selection of all finite groups.
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Theorem 3.2 (Aschbacher, 1984 [3]). Let G be a finite classical group associated to a vector
space V', and M < G a maximal subgroup. Then one of the following holds:

1. M belongs to a natural list subgroups of G (suspected maximal subgroups, constructed
in relatively obvious ways), or to a small list of non-natural cases.

2. M is the normalizer in G of a quasisimple subgroup H < GL(V') acting irreducibly on
the vector space V.

Remark.

1. Ttem (2) of Theorem is sometimes called “Dynkin’s principle”, since Dynkin pio-
neered this idea in the Lie theoretic context; a paper of Dynkin’s in the 1950s actually
classified maximal connected closed subgroups of classical Lie groups through this idea.
Dynkin eventually determined all maximal connected closed subgroups of semisimple
complex Lie groups. An analogous program for finite groups was proposed by Scott in
[34].

2. O’Nan and Scott determined candidate maximal subgroups for the alternating groups
[34], the first general result of this type. Candidate maximal subgroups for sporadic
and exceptional groups have also been given, cf. references in [33] pages 3-4. As
remarked in [33], many “candidates” have been shown to be maximal (or nearly so).

3. Aschbacher’s theorem is fundamental to the ‘geometric approach’ to finite linear
groups in computational group theory (see [30] §3).

A significant problem stemming from part (2) of Theorem is that, while H and M
may both be finite subgroups of Lie type, one may arise as G(¢q) and the other as G(¢’) for
some prime powers ¢ = p™, ¢ = (p')" but with p’ # p. In this manner naturally arises the
problem of determining modular representations V' for a finite group G(q) of Lie type in
the ‘cross-characteristic’ (or ‘non-describing’) case, that is, when V' is a G(g)-representation
over a field of characteristic p’ that does not divide ¢. For this problem, the whole idea in
the defining characteristic, i.e., relating representations for G(q) to modules for G and its
Frobenius kernels G, as outlined in Section [2.4] is not applicable, and other methods must
be employed.

Problem 3. Describe all the irreducible modules over a field k of characteristic p, p t ¢, of
a finite group of Lie type G(q).

By and large, current progress on the modular representation theory of finite groups of
Lie type in the non-describing case is constrained to G of type A, e.g., G = GL,(q) or
G = SL,(q). Dipper and James [9] described all of the irreducible representations over a
field k of characteristic p, p 1 ¢, of GL(n,q). (Dipper and James also considered SL,(q), but
there some issues remain.) Their approach used the ¢-Schur algebra; this concept and the
related theories of Hecke algebras and quantum groups (i.e., quantum enveloping algebras)
will be discussed in the next section.
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4 Hecke Algebras, Schur Algebras, and
Quantum Enveloping Algebras

Throughout this section, take G = GL,(F) to be the general linear group over an alge-
braically closed field F', with Weyl group W = &,;; let gc = gl,,(C). For r > 1, and the
standard generating set S = {(12),(23),...,(r—1r)} for &,, the pair (W, S) = (&,,95) is a
Coxeter system, and for any such system one can define the Hecke algebra H, (W) over the
Laurent polynomial ring Z := Z[v,v'] in the indeterminate v to be the free Z-module on
basis symbols T;,, w € W with relations

TTy = Tsw, l(sw)=1+1l(w), seSweW;
(Ts+1)(Ts_Q>:0a s €S,

where ¢ := v% For a free Z-module V of rank n, H,(1W) acts naturally on V®" by the right
action determined by ‘place permutations’. First defined in 1989 [9], the ¢g-Schur algebra
Sq(n,r) over Z can then realized as the endomorphism algebra

Sq(n,7) = Endp, ) (V")

When n = r, we shall write S,(n) for the ¢g-Schur algebra S,(n,n).

Specializing ¢ to 1 € F (that is, regarding F' as a Z module via a morphism Z — F, g —
1 € F, and taking the tensor product H,(W)p := H,(W) ®z F') there is an isomorphism of
algebras H := H,(W)p = FW = F'G,,, that is, the Hecke algebra is a ‘deformation’ of the
group algebra of G,,. Moreover, in this case, the ¢g-Schur algebra reduces to the Schur algebra
S(n,r) = Endpg, (V@) for the vector space V' = F™. Classical Schur-Weyl reciprocity relates
the representation theory of G = GL,(C) to that of the Hecke algebra H = CG,. via the
(GL,(C),8,)-bimodule (V™)®" (V = C") which has a decomposition as a sum of certain
tensor products L(A) ® Sy of irreducible rational modules L(\) (that are ‘polynomial’ and
homogeneous of degree r) for GL, (C) and irreducible modules S (Specht modules, cf. [31])
for &,. For F' = C the representation theories of S(n,r) and H are related by the famous
Schur functors and the double centralizer property S(n,r) = Endy(V®"), H = g(un)(VE").
(For F' of prime characteristic, the double centralizer property still holds, but the same
decomposition of V¥ into terms L(\) ® S, does not necessarily hold, cf. [12], [10].)

As we shall discuss further below in this section, a generalization of this classical Schur-
Weyl duality to the so-called ‘quantum case’ will make it possible to connect the repre-
sentations of a ‘quantum’ analog U, for the group G = GL,(F) to representations of the
g-Schur algebra S,(n), and aspects of this picture will be central to gaining information
about non-describing representations of the finite group G(gq) when char(F') is positive and
q is some power of char(F'). First, however, we provide an alternate formulation of the rele-
vant (specialized) Hecke and ¢-Schur algebras that may better hint at the connections with
non-describing representations and the theory of ¢g-Schur algebras.

Under the assumption F' has positive characteristic and specializing ¢ to be a power of
char(F'), the Schur algebra S,(n) and the Hecke algebra H, (V) associated to the Weyl group
W of G can be defined in the following way. Let B(q) denote a Borel subgroup of G(q) and
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let P(q) denote a generic parabolic subgroup of G(¢). Then

H,(W) 2 Endy() (F 15(9) and
Sy(n,n) = End @ Fi1u9
g\, TV NArG(q) P(q)
P(q)>B(q)

where the direct sum is taken over all parabolic subgroups of G/(¢) containing B(q). Moreover,
we have

Sq(n,n) = Endg, w) (@ F TZZE%%)
with J ranging over the fundamental reflections in W.

A later formulation of Dipper-James theory, e.g. by Takeuchi (for the unipotent represen-
tations, cf. [38]), and Cline, Parshall, and Scott (in general, cf. [7]), results in a categorical
equivalence that guarantees that the irreducible modules for G(q) in the cross-characteristic
case can be recovered from knowledge of irreducible modules for ¢*—Schur algebras Sy (r,) :

Theorem 4.1 (cf. Theorem 9.17 of [7]). Let O be the ring of integers of a p-adic number
field K, 7 a generator of the unique maximal ideal of O, and k = O/7O the residue field
of characteristic p. Let G(q) = GL(n,q), p 1 q. Then there exists a quotient OG(q)/J(q),
J(q) € rad OG(q), such that OG(q)/J(q) is Morita equivalent to a direct sum of tensor
products @; Sye (1;) of ¢*-Schur algebras with Y-, a;r; = n.

It follows from the theorem above that a parametrization of irreducible G(g)-modules
in non-describing characteristic will follow from the same data for ¢-Schur algebras; like-
wise, character formulas for the ¢g-Schur algebras will imply the same for G(g)-modules in
cross-characteristic. It was known by the early 90s that the ¢-Schur algebra (in at least
characteristic zero, though also later shown to be true in other characteristics) at ¢ equal
to an /" root of unity is a homomorphic image of a quantum enveloping algebra for gc¢
e.g., [II]. Set U = U(gc) to be the quantized enveloping algebra over Q(v) associated
to the complex Lie algebra g¢ (that is, the quantum enveloping algebra U,(R) for a root
datum realization R associated to the Cartan matrix for g¢; see below for a precise defi-
nition of the algebras U,(fR) and a realization R for gc). For H := Q(v) ®z H,(W) and
Sy(n,7) == Q(v) ®z S4(n,r), and rank n free Z-module V, there is a surjective algebra
morphism 6, : U — End((V ®z Q(v))®") which factors through a natural surjective algebra
morphism U — S, (n, r); restricting d, to a particular integral form Uz of U yields a surjec-
tive morphism Uz — End(V®") with image Endg, ) (V") 2 Sy(n,r). From this ‘integral’
result one can base-change to get a version for any Z-algebra in place of Z; by this means,
one obtains Schur-Weyl duality at ¢ a root of unity via specialization, one step in a more
difficult program to obtain quantum Schur-Weyl reciprocity in general [12], [§].

We now take a few moments to define the algebra U,(R), for !’ a root-datum realization
of an arbitrary m x m symmetrizable Cartan matrix C', with symmetrizing diagonal matrix
D[] Our presentation is taken from [8]. Recall a matrix C' = (¢;;) € M,,(Z) is a Cartan

4For C the Cartan matrix of gc, D will be simply an identity matrix and the definitions below will simplify
considerably, but because of the applications in these notes of the quantum enveloping algebras beyond type
A, as well as applications to Kac-Moody algebras not discussed in these notes, we include the more general
definition.

15



matrix if (i) ¢;; = 2 for 1 <@ <m; (ii) ¢ # j implies ¢; ; < 0; and (iii) ¢; ; = 0iff ¢;; = 0, for all
i,7. A Cartan matrix is symmetrizable if there is a diagonal matrix D = diag(dy,...,d,) €
M,,,(Z") such that DC' is symmetric.

By definition, a root datum realization SR of the m x m symmetrizable Cartan matrix C'
is the 4-tuple R := (II, X, IIV, XV) having the ingredients below.

e a free Z-module XV of finite rank m+s having an ordered basis {ay, ..., ), b1,...,bs},
where s is a fixed positive integer

e the set of simple coroots II := {af,..., o} C XV

e the linear dual X := Homg(XV,Z), also a free Z-module of rank m + s, called the
weight lattice of C' (or its realization)

e the simple roots IT := {ay,...,q,} determined via duality pairing X x XV — Z,
(o, h) = (@, h) = a(h) and (o, af) = c;; for all 4, j

e assume also that for all 4,7, a;,; := (;,b;) € {0,1} are chosen so that the (m + s) x
m matrix (§) has rank m, where A := (a;;); consequently, II consists of linearly
independent vectors.

The root datum realization R is minimal if s = m — rank(C'); it follows from the item
above that s > m — rank(C'). The root lattice of the realization (II, X,IIV, XV) of C is
R(II) := @™, Zo, C X, h = by := X" @, R.

Example 4.2. For n > 1, let ky,...,k,, denote basis elements for a free Z-module XV
with dual space X := Homgz(X",Z), and corresponding dual basis €y, ..., €,. Setting o) =
Ki — kip1 for 1 <1 < (n — 1) and setting by := k,, gives a new Z-basis {ay,..., o/ _ 1,b1}
for XV. Taking «; := ¢, — ¢;_1 for 1 < i < (n — 1) yields vectors satisfying <ozz, ) = ¢j;
for C' = (¢;;) the Cartan matrix of gc = gl,(C), with ¢;; = 2,¢;,41 = 41, = —1, for all
1 <i<mn-—1,and ¢ ; = 0 otherwise. Taking Il = {ay,...,0,—1} and IT = {of, ... ,a}{_l},
the 4-tuple R = (II, X, IV, XV) gives a root datum realization for C. Replacing X by the
Z-span X" := Y7 Zay and X by X' := 7! Za; yields a minimal root datum realization
of C, this time corresponding at the Lie algebra level to s(,(C).

More generally, every root datum realization R of a (symmetrizable) Cartan matrix C'
gives rise to a complex Lie algebra, i.e., the associated Kac-Moody Lie algebra; see [§] or [6].

With the notion of a root datum realization R of a symmetrizable Cartan matrix C' in
hand, we need just a bit more notation in order to define the associated quantized enveloping
algebra U, (R). For any positive]] integers n, m set

b= bl = 1+ = T s
n]  [nln—1]---[n—m+1]
m) =l =1 RIA

5Actually, n any integer can be assumed for the first and third definitions below.
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n

where [0]! := 1 and [§] := 1. Let [n]¢ (vesp., [n]¢!,[;m];) denote the outcome of replacing v
in [n| (resp., [n]!, [/]) with C.

For R := (IT, X, IV, X) the root-datum realization for the m x m Cartan matrix C' =
(¢;;) (with symmetrizing matrix D = diag(dy, ..., d,,) € M,,(Z")), the quantum enveloping
algebra U,(R) is the Q(v)-algebra generated by E;, F; (1 < i < m), K, (h € XV) subject
to the relations:

(QEAL) Ky :=1and Ky, p = K, Ky, for h, i € XV,
(QEA2) KyE; = v\ EK),, for h€ XV and 1 <i <m;
(QEA3) KpF; = v @M E K, for he€ XV and 1 <i < m;

EA4) EF, — FE = 6, , K=K for 1 < i, j <m;
J J N A— J
(QEAS) S (-1 (v, BSEE =0, for 1<i#j<m

s+t=1—c;,;

(QEA6) > (=1)*['7gw ], FYFjF; =0, for 1 <i#j<my

st+t=1—c; ;

where f(z- = K, diarY and v; 1= v%, for oy; € II. The quantum Serre relations are those relations
given by (QEA5) and (QEAG). As already suggested by the terminology, comparing the
relations above with Serre’s relations (cf. [16]) for defining a complex Lie algebra with a root
datum R show the algebra U,(R) to be a ‘quantized’ version of such a Lie algebra. (The
same analogy also holds more generally when fR is a root datum realization associated to a
Cartan matrix for a Kac-Moody Lie algebra.) We next consider an analogue of Kostant’s
Z-form in the quantum case.
Define the divided powers Ei("), Fi(n), by

Er
E(n) :: 2 6
Z ), (6)
Fn
F(n) :: 71 7
2 ), (7)

The Lusztig integral form Uz(fR) is the Z—subalgebra of U,(R) generated by all divided
powers B F™ (1 < i < m,n > 1), and elements K}, for h € XV. For K; := Kov,1 <
i < m and Kpy; = K,,1 < j < s, one has in fact that Uz(R) is generated by all
Ei(n),ﬂ(n),l <i<m,n>1land K;,1 <i<m+s,n>1.

Finally, for any commutative ring R and invertible element ¢ € R, there is a unique ring
homomorphism e, : Z2 — k with e,(v) = ¢q. The specialization U, zg(R) := Uz(R) ®z R
is obtained from the integral form Uz(R). In the rest of our discussion, we will assume for
the sake of simplicity that $R is the root datum for a semisimple algebraic group (utilizing
other accompanying notation such as X (T')*, L(\) etc., as before in these notes) and we
write simply U, r for U, r(fR). Having been somewhat careful in giving definitions up to
this point, we will now proceed to balance the resulting length and detail involved in that
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endeavor by simply sketching the representation theory for the relevant algebras U, x and
its applications of importance for these notes.

Suppose K is a field of characteristic 0 and ¢ is a primitive £** root of unity £ > 3 (and
ged(?,3) = 1if the root system has a component of type Gy). Then without loss of generality,
in studying the representation theory of U, i, we can restrict attention to ‘integrable type 1’
U, x-modules (see e.g., the brief exposition in [20], based largely on the fundamental papers
[29],[2]). For each A € X(T)* there is a simple and finite dimensional integrable U, ;-module

L,()\) of type 1 generated by a vector v € L,(\)y, v # 0 such that E™v =0 for all n > 0 and
for all 1 < ¢ < m, and each simple finite-dimensional type 1 module for U, is isomorphic
to some L,(A). In general the finite-dimensional type 1 U, ;-modules are not completely
reducible, but they are direct sums of their weight spaces running over weights X (7). This
(characteristic zero) representation theory of U, x (¢ a primitive ¢ root of unity) models
(crudely, but still significantly) the modular representation theory of algebraic groups, and
hence gives applications to the defining characteristic representations of finite groups of Lie
type (more on this connection at the end of this section). At the same time, for the type
A case when R corresponds to gc, the integral form Uz introduced earlier is closely related
to the Lusztig integral form Uz(ge) of U(ge) (cf. [8, Ch. 14] for more details), and the
connections between U, x(gc) = Uz(ge) ®z K and ¢-Schur algebras S,(n, )k will prove
instrumental to analyzing the non-describing representations of finite groups of Lie type, the
story to which we now return.

It was in the early 1990s, using many deep results, that Kazhdan-Lusztig [24] [25] [20]
[27] [28] and Kashiwara-Tanisaki [22] [23] determined that the (integrable, type 1) irreducible
modules for U, i for any characteristic zero field K with ¢ an ¢*" root of unity, parametrized
by dominant weights X (7")", have character formulas very similar to Lusztig’s formula for
algebraic group representations as in Section [2.4] In fact, there are quantum Weyl modules
V,(A) (as well as quantum induced modules, e.g., [2]) and the character for L,()), an irre-
ducible U, g-module associated to A € X(T)* (in a sufficiently restricted region) is given
by the very same formula as Conjecture Equation [5 with the affine Weyl group W,
acting in place of W,,. However, compared with the algebraic group case, information about
L,(X) is much more complete, that is, with a few limitations, the character formula for an
irreducible L,()) is not a conjecture, but a theorem (see, e.g., [20] H.12 for a brief sketch
and further comments on the references given above).

In particular, putting this information on irreducible U, x-modules together with the
identification of S,(n)-modules as U, x(gc)-modules obtained via specialization from the
integral quantum Schur-Weyl duality setting produces a parametrization of irreducible char-
acteristic zero S,(n)-modules at ¢ an ¢ root of unity, along with character formulas for
them. What is needed now to complete our story for cross-characteristic representations
in type A is a relationship between the ordinary and modular representation theories for
the g-Schur algebras, and this is provided by James’ conjecture (stated before the advent of
quantum enveloping algebras); see [33] for a discussion and further references.

Conjecture 4.3 (James). Return to the hypotheses that O is the ring of integers of a p-adic
number field K, 7 a generator of the unique maximal ideal of O, and k = O/7O the residue
field of characteristic p. Let G(q) = GL,(q), p1q. For £p > n, { fixed, ¢ an (** root of unity
in K, the irreducible representations of the ¢-Schur algebra in characteristic zero at an ¢
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root of unity reduce to those in k. More precisely, for S,(n)o the g—Schur algebra over O
(with ¢ specialized a primitive ¢"-root of unity), all irreducible S,(n)e-lattices in irreducible
Sq(n,n)g-modules reduce modulo 7O to given irreducible S, (n)-modules [

For p > 0, with the size of p depending upon a given n, Gruber-Hiss (drawing from
observations of Geck) noted the validity of James” Conjecture. James [2I] showed that the
conjecture holds for n < 10. See [33] for more details.

Theorem 4.4 (Gruber-Hiss [I5]). Return to the hypotheses that O is the ring of integers
of a p-adic number field K, 7 a generator of the unique maximal ideal of O, and k = O/7O
the residue field of characteristic p. Let G(q) = GL,(q), ptq. For p > n, ¢ fixed, g an {-th
root of unity in K, the irreducible representations of the g-Schur algebra in characteristic
zero at an (-th root of unity reduce to those in k.

For non-describing characteristic representations of finite groups of Lie type beyond type
A, it is not clear that ¢-Schur algebras (and hence quantum enveloping algebras) will be
the right objects to use. Raphael Rouquier has proposed utilizing in place of the ¢g-Schur
algebras an analogous class of algebras (the Cherednik algebras), and work of Michelle Broué
linking Hecke-type algebras for complex reflection groups and blocks for unipotent characters
arising from (‘cuspidal’ characters) in ‘Deligne-Lusztig induction’ provides one suggestive
replacement to substitute for the type A connection between GL,(C) and H (or between
U(gc) and H and their associated specializations at ¢ an /" root of unity) but it is not yet
clear whether these will do the trickﬂ. Currently, for non-describing representation theory in
the non-type A case, there is not even a parametrization of irreducible G(¢)-modules, much
less character formulas.

Although quantum enveloping algebras may not provide the ‘right stuff’ for the cross-
characteristic case (non-type A), we shall close these notes with a comment on their impor-
tance for the defining characteristic case (in any type). Building on the work of Kazhdan-
Lusztig and Kashiwara-Tanisaki (see references given above) that established the validity of
Lusztig’s character formula for the irreducible U, g-modules L,()\) (¢ a primitive £ root of
unity in the characteristic 0 field K'), Andersen, Jantzen, and Soergel [1] proved the Lusztig
Conjecture for irreducible modular representations of algebraic groups, in that for each
fixed root systemﬁ there is some number such that if p is a prime greater than the number,
the Lusztig conjecture for any group G over k with char k = p. A key fact is that simple G-
modules L(\) for A € X(7');, can be obtained via reduction modulo p from simple modules
L,(X) for U, . The Kazhdan-Lusztig polynomials P, ,,, whose values appear as the needed
coefficients in Lusztig’s Conjecture [2.4.1] can themselves be characterized as coefficients aris-
ing from base changing from a standard basis T,,w € W, to a ‘Kazhdan-Lusztig basis’ in
an appropriately defined Hecke algebra (the Iwahori-Hecke algebra) associated to the affine
Weyl group Wy; see [19] Chapter 7 for details.

6 Actually, there are some hypotheses on /; see e.g., [33] Conjecture 2.2 for details. Also, James’ Conjecture
was stated for defining as well as cross characteristic representations.

"We hope before the start of the AIM workshop, or at least by its end, to add further comments on this
front to these notes.

8 Assume that the rank of the root system is > 3.
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Disclaimers

These notes are only scratching the surface of the topic, and then only lightly. Many key
themes have, at present, been omitted entirely or almost entirely, including, but not limited
to, the cohomology of finite groups of Lie type (in both describing and non-defining char-
acteristics) and its connections with the Lusztig conjecture via Kazhdan-Lusztig theory, the
deep geometric underpinnings essential to current progress on Lusztig’s conjectures (e.g.,
perverse sheaves and intersection cohomology), the theory of quivers and Ringel-Hall alge-
bras as related to quantum groups, more on the the role of symmetric group representations
and their analogues in the theory of Hecke algebras, the theory of highest weight categories,
quasi-hereditary algebras and stratified algebras, Alperin’s Conjecture and Broué’s Conjec-
ture, calculations in small primes, support varieties, and more. We hope to see these topics
added to these notes in the future.

The authors welcome suggestions and corrections; please e-mail Terrell Hodge at ter-
rell. hodge@wmich.edu. Any omission of important topics or references are the result of
constraints on time and the effort to limit the survey to some significant background ma-
terial to serve as a common base for the June 2007 AIM Workshop “Representations and
Cohomology of Finite Groups of Lie Type: Computations and Consequences”, and lack of
knowledge on the authors’ parts, not intentional slight. The authors thank Brian Parshall
and Len Scott for reviewing drafts of these notes, but claim remaining inaccuracies as their
own.
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