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Motivation: cohomology of finite
supergroup schemes



Motivating question

CFG Question
Let G be a finite supergroup scheme over a field k of characteristic
p > 2. Is the cohomology ring

H•(G, k) = Ext•G(k, k)

finitely-generated as a k-superalgebra?
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Reducing the problem

Lemma
Let G be a finite supergroup scheme over k. Then

G ∼= G0 ⋊ π0(G)

where G0 is infinitesimal and π0(G) is an etale group scheme.

Up to field extension, π0(G) corresponds to an ordinary finite group.

G0 is filtered by infinitesimal Frobenius kernels G1 ⊂ G2 ⊂ · · · ⊂ G0.

Rep(G1) ≡ Rep(V(g)), where V(g) is the restricted enveloping algebra
of the restricted Lie superalgebra g = Lie(G). So let’s start here…
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Toy example

First consider an ordinary (non-super) f.d. restricted Lie algebra g.

V(g) is filtered by monomial length, with associated graded algebra

gr(V(g)) ∼= V(gab) ∼= k[x1, . . . , xm]/(xp1 , . . . , x
p
m).

Filtration gives rise to spectral sequence converging to H•(V(g), k).

E0 = H•(V(gab), k) ∼= S(g∗)(1) ⊗ Λ(g∗),

E2i,j2
∼= Si(g∗)(1) ⊗ Hj(g, k), E2i+1,j2 = 0.

E2 is finite over the subalgebra of permanent cycles E•,02 ∼= S(g∗)(1).
Then H•(V(g), k) is finite over a map of graded algebras

Φ : S(g∗[2])(1) → H•(V(g), k).

5



Complications arising from super phenomena

Now let g be a finite-dimensional restricted Lie superalgebra.

V(g) is filtered by monomial length, with associated graded algebra

gr(V(g)) ∼= V(gab) ∼= k[x1, . . . , xm]/(xp1 , . . . , x
p
m)⊗ Λ(y1, . . . , yn).

Filtration gives rise to a spectral sequence converting to H•(V(g), k).

E0 = H•(V(gab), k) ∼= S(g∗0)
(1) ⊗ Λ(g∗),

E2i,j2
∼= Si(g∗0)

(1) ⊗ Hj(g, k), E2i+1,j2 = 0.

Here Λ(g∗) ∼= Λ(g∗0)⊗ S(g∗1 ) is the superexterior algebra on g∗.

E2 is finite over a map of graded superalgebras

S(g∗0[2])
(1) ⊗ S(g∗1 [p])

(1) → E2,

but it’s not clear at the outset if the image of this map consists of
permanent cycles, hence if H•(V(g), k) is finitely-generated.
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Problem

Given an arbitrary infinitesimal supergroup G, need to cook up a nice
subalgebra of cohomology classes over which H•(G, k) finite.
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Enter strict polynomial functors



Classical polynomial functors

A classical polynomial functor is a functor on the category of (f.d.)
vector spaces that acts on morphisms via a polynomial map.

Example: the second symmetric power
Suppose V has basis {u, v} and W has basis {x, y}.

Then S2(V) has basis {u2,uv, v2} and S2(W) has basis {x2, xy, y2}.

Let φ : V→ W be a linear map with associated matrix ( a bc d ).

The associated matrix for S2(φ) is then a2 ab b2
2ac (ad+ cb) 2bd
c2 cd d2

 .
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Classical polynomial functors

Example: Frobenius twist of a vector space
Let k = F2, and let I(1) : V→ V(1) be the Frobenius twist functor.

Identify V(1) with the subspace of S2(V) spanned by {u2, v2}.

Then φ : V→ W induces the map φ(1) : V(1) → W(1) with matrix

φ(1) =

(
a2 b2
c2 d2

)
=

(
a b
c d

)

Then I(1) : V 7→ V(1) is isomorphic to the identity functor!

But do we want it to be…?

“Strict” polynomial functors address this ambiguity by requiring that
fixed polynomials defining the action on morphisms be built into the
definition of the functor.
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The category ΓdV

Let V be the category of finite-dimensional k-vector superspaces.

Given V ∈ V , the symmetric group Σd acts on V⊗d by signed place
permutations.

V⊗W ∼= W⊗ V, v⊗ w 7→ (−1)v·ww⊗ v

Given V ∈ V , set Γd(V) = (V⊗d)Σd .

The category ΓdV
Let ΓdV be the category whose objects are the same as those in V ,
but in which spaces of morphisms are defined by

HomΓdV(V,W) = Γd Homk(V,W) ∼= HomkΣd(V
⊗d,W⊗d),

and composition is that of kΣd-module homomorphisms.
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Strict polynomial superfunctors, after Pirashvili

The category Pd (Axtell 2013)
The category Pd of degree-d homogeneous strict polynomial
superfunctors is the category of even linear functors

F : ΓdV → V ,

i.e., functors such that for all V,W ∈ V , the function

FV,W : Γd Homk(V,W) = (Homk(V,W)⊗d)Σd → Homk(F(V), F(W))

is an even linear map.

If ϕ : V→ W is an even linear map, then ϕ⊗d ∈ Γd Homk(V,W). Thus, each
F ∈ Pd restricts to an ordinary functor F : Vev → Vev on the underlying even
subcategory of V , with action on morphisms defined by ϕ 7→ F(ϕ⊗d).
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Connection to polynomial maps

For V ∈ V , the supersymmetric power Sd(V) is defined by

Sd(V) = (V⊗d)Σd (coinvariants).

Let A = Homk(V,W) and B = Homk(F(V), F(W)).

Then FV,W is required to be an even element in

Homk([A⊗d]Σd ,B) ∼= B⊗ ([A⊗d]Σd)∗

∼= B⊗ ([A⊗d]∗)Σd

∼= B⊗ ([(A∗)⊗d])Σd

∼= B⊗ Sd(A∗)
= Pold(A,B)
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Examples of strict polynomial superfunctors

• Π ∈ P1 parity change functor
• I(r) ∈ Ppr for r ≥ 1 Frobenius twist functor
• Γd : V 7→ (V⊗d)Σd Γ(V) ∼= Γ(V0)⊗ Λ(V1)
• Ad : V 7→ [sgn⊗(V⊗d)]Σd A(V) ∼= Λ(V0)⊗ Γ(V1)
• Sd : V 7→ (V⊗d)Σd S(V) ∼= S(V0)⊗ Λ(V1)
• Λd : V 7→ [sgn⊗(V⊗d)]Σd Λ(V) ∼= Λ(V0)⊗ S(V1)
• Ad ' Γd(Homk(k0|1,−)) isomorphism of superdegree d
• Λd ' Sd(k0|1 ⊗−) isomorphism of superdegree d

Duality F 7→ F# on Pd defined by F#(V) = F(V∗)∗.

• (Γd)# ∼= Sd

• (Ad)# ∼= Λd
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(Non)examples of strict polynomial superfunctors

Non-examples
• I0 : V 7→ V0 projection onto even subspace
• I1 : V 7→ V1 projection onto odd subspace

are not natural with respect to odd linear maps:

k1|0 ≃ //

I0
��

k0|1 ≃ //

I0
��

k1|0

I0
��

k1|0 // 0 // k1|0

However, for r ≥ 1 the Frobenius twist functor does decompose:

I(r) = I(r)0 ⊕ I(r)1 where I(r)0 (V) = V(r)0 and I(r)1 (V) = V(r)1 .

Power maps induce embeddings I(r)0 ↪→ Sp
r
and I(r)1 ↪→ Λp

r
.
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Projective and injective objects

Yoneda Lemma
For all W ∈ V and all F ∈ Pd, there are natural isomorphisms

HomP(Γd(Homk(W,−)), F) ∼= F(W),

HomP(F, Sd(W⊗−)) ∼= F#(W).

Consequence
Functors of the form

• Γd(Homk(W,−)) and Ad(Homk(W,−)) are projective objects
• Sd(W⊗−) and Λd(W⊗−) are injective objects
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Connection to Schur superalgebras

Schur superalgebra
Let V = km|n. The Schur superalgebra S(m|n,d) can be defined by

S(m|n,d) = HomkΣd(V
⊗d, V⊗d) = EndΓdV(V).

S(m|n,d)-smod ' category of degree-d polynomial rep. of GLm|n.

Evaluation on V defines a functor Pd → S(m|n,d)-smod.

Theorem (Axtell 2013)
Let V ∈ V . If V ∼= km|n and m,n ≥ d, then evaluation on V

F 7→ F(V)

defines an equivalence of categories Pd ' S(m|n,d)-smod.
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Applications to and from finite
supergroup schemes



Fundamental Ext calculation

The sum I(r) = I(r)0 ⊕ I(r)1 gives rise to the matrix decomposition

Ext•P(I(r), I(r)) =
(
Ext•P(I(r)0 , I(r)0 ) Ext•P(I(r)1 , I(r)0 )

Ext•P(I(r)0 , I(r)1 ) Ext•P(I(r)1 , I(r)1 )

)
.

Theorem (Drupieski 2016)

ExtsP(I(r)1 , I(r)1 ) ∼= ExtsP(I(r)0 , I(r)0 ) ∼=

{
k if s ≥ 0 is even,
0 otherwise.

ExtsP(I(r)0 , I(r)1 ) ∼= ExtsP(I(r)1 , I(r)0 ) ∼=

{
k if s ≥ pr is odd,
0 otherwise.
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Restriction to the Frobenius kernel GLm|n(r)

Ext•P(I(r), I(r)) is generated as an algebra by extension classes

cr ∈ Extp
r

P(I(r)1 , I(r)0 ), cΠr ∈ Extp
r

P(I(r)0 , I(r)1 ),

ei ∈ Ext2p
i−1

P (I(r)0 , I(r)0 ), eΠi ∈ Ext2p
i−1

P (I(r)1 , I(r)1 ),

for 1 ≤ i ≤ r, whose restrictions to G = GLm|n(r) are nonzero:

Ext•P(I(r), I(r)) → Ext•GLm|n(r)
((km|n)(r), (km|n)(r))

∼= Ext•GLm|n(r)
(k, k)⊗ Homk(km|n, km|n)(r)

∼= H•(GLm|n(r), k)⊗ gl(m|n)(r)

∼= Homk(gl(m|n)∗(r),H•(GLm|n(r), k))
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CFG for finite supergroup schemes

Putting together the linear maps from all generators, and extending
multiplicatively, get a homomorphism of graded superalgebras

φGLm|n(r) :

( r⊗
i=1

S(gl(m|n)∗0[2p
i−1])(r)

)
⊗ S(gl(m|n)∗1 [p

r])(r)

→ H•(GLm|n(r), k).

Theorem (Drupieski 2016)
Let G ⊂ GLm|n(r) be an infinitesimal supergroup scheme, and let φG
be the composition of φ with the restriction map in cohomology.
Then H•(G, k) is finite over the image of φG.

Consequence
Let G be a finite supergroup scheme. Then H•(G, k) is finitely
generated as a k-superalgebra.
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Algebra relations in Ext•P(I(r), I(r))

Ext•P (I(r), I(r)) =
(
Ext•P (I(r)0 , I(r)0 ) Ext•P (I(r)1 , I(r)0 )

Ext•P (I(r)0 , I(r)1 ) Ext•P (I(r)1 , I(r)1 )

)
.

Ext•P(I(r), I(r)) is generated as an algebra by (even) extension classes

cr ∈ Extp
r

P(I(r)1 , I(r)0 ), cΠr ∈ Extp
r

P(I(r)0 , I(r)1 ),

ei ∈ Ext2p
i−1

P (I(r)0 , I(r)0 ), eΠi ∈ Ext2p
i−1

P (I(r)1 , I(r)1 ),

for 1 ≤ i ≤ r, subject only to the relations imposed by the matrix ring and

• the ei and eΠi generate commutative subalgebras,
• (ei)p = 0 = (eΠi )p for 1 ≤ i ≤ r− 1,

• ei ◦ cr = cr ◦ eΠi and eΠi ◦ cΠr = cΠr ◦ ei,
• (er)p = cr ◦ cΠr and (eΠr )p = cΠr ◦ cr.

For r > 1, only proof I know of the last relation is to look at how the classes restrict to
certain supergroup schemes, to show (er)p ̸= 0 and (eΠr )p ̸= 0.

20



Reinterpreting the algebra relations

Relations in Ext•P(I(r), I(r)) imply that φGLm|n(r) factors through a map

φGLm|n(r)
: k[Cr(GLm|n)] → H•(GLm|n(r), k),

where

Cr(GLm|n) =
{
(α0, . . . , αr−1, β) ∈ (gl(m|n)0)

×r × gl(m|n)1 :

[αi, αj] = [αi, β] = 0 for all 0 ≤ i, j ≤ r− 1,

αpi = 0 for all 0 ≤ i ≤ r− 2, and αpr−1 +
1
2 [β, β] = 0

}
.

Theorem (Drupieski–Kujawa, 2019)
φGLm|n(r)

induces a finite surjective morphism of varieties

MaxSpec
(
H•(GLm|n(r), k)

)
→ Cr(GLm|n).

If r = 1 and G ⊂ GLm|n(1) , i.e., if G corresponds to a restricted Lie superalgebra, then an
analogous result holds for G. More on this subject in Jon Kujawa’s talk …
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Other directions



Rational cohomology

A byproduct of the arguments inspecting how the extension class

e1 ∈ Ext2P(I(1)0 , I(1)0 )

restricts to the Frobenius kernel GL(m|n)1 is the curious observation:

For m,n ≥ 1, Ext2GL(m|n)(k, k) 6= 0.

Problem
Compute the structure of the rational cohomology ring

H•(GLm|n, k) = Ext•GLm|n
(k, k).

For m = n = 1, appears to be a polynomial ring generated in degree 2.

Also an open problem for the algebraic supergroup Q(n), for which Brundan and Kleshchev (2003)
computed Ext1Q(n)(k, k) ∼= k0|1 . Axtell’s “Type II” strict polynomial functors, related to the Schur
superalgebra Q(n, d) of Type Q, may be relevant.
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Frobenius twists of ordinary strict polynomial functors

Let F ∈ Pd be an ordinary (non-super) strict polynomial functor.

In general, there’s no obvious way to lift F to the structure for a strict
polynomial superfunctor, but for r ≥ 1 the twists

F(r)0 = F ◦ I(r)0 , F(r)1 = F ◦ I(r)1

do make sense as strict polynomial superfunctors, with action on
morphisms defined by

Γdp
r
Homk(V,W)

ΓdI(r)0−−−→ Γd Homk(V(r)0 ,W(r)
0 )︸ ︷︷ ︸

purely even!

F−→ Homk(F(V(r)0 ), F(W(r)
0 )),

Γdp
r
Homk(V,W)

ΓdI(r)1−−−→ Γd Homk(V(r)1 ,W(r)
1 )︸ ︷︷ ︸

purely even!

F−→ Homk(F(V(r)1 ), F(W(r)
1 )).
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Giordano’s Conjectures

Set Er = Ext•P(I(r)0 , I(r)0 ). For G ∈ P and W ∈ V , set GW = G(W⊗−).

Conjecture (Giordano)
Let F,G ∈ P be ordinary strict polynomial functors. Then

Ext•P(F(r)0 ,G(r)
0 ) ∼= Ext•P(F,GEr).

More generally, and let A,B ∈ P be additive strict polynomial
superfunctors of degree > 1. Then

Ext•P(F ◦ A,G ◦ B) ∼= Ext•P(F,GExt•P (A,B)).

Additive functors direct sums of I, Π, and (for r ≥ 1) I(r)0 , I
(r)
1 , I

(r)
0 ◦Π, I(r)1 ◦Π.

Touzé established that a result like this holds in the classical (non-super) setting for
many F and G, by exploiting some nice injective resolutions constructed by Troesch.
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Superized Troesch complexes



Troesch complexes, after Touzé

Goal
For m, r ≥ 1, describe an injective resolution in Pprm of Sm(r).

Describe what happens for r = 1.

Consequence

LetX be the graded k-space with basis x0, . . . ,xp−1, deg(xi) = i.

Consider the functor S(X⊗−) : U 7→ S(X⊗ U).

S(X⊗ U) ∼= S(x0 ⊗ U)⊗ S(x1 ⊗ U)⊗ · · · ⊗ S(xp−1 ⊗ U)

S(X⊗ U) inherits an N-grading from that onX:

Sn(X⊗ U)ℓ ∼=
⊕

i0+i1+···+ip=n
i0·0+i1·1+···+ip−1·(p−1)=ℓ

Si0(U)⊗ Si1(U)⊗ · · · ⊗ Sip−1(U).
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Troesch complexes, after Touzé

Define ρ : X → X by ρ(xi) =

{
xi+1 if 0 ≤ i ≤ p− 2,
0 if i = p− 1.

Define d : Sn(X⊗ U)ℓ → Sn(X⊗ U)ℓ+1 to be the composite

Sn(X⊗ U) ∆−→ Sn−1(X⊗ U)⊗ S1(X⊗ U)
id⊗S(ρ⊗idU)−−−−−−−−→ Sn−1(X⊗ U)⊗ S1(X⊗ U) m−→ Sn(X⊗ U).

Remark
For r = 1, the map d is simply the algebra derivation on S(X⊗ U)
induced by the vector space map ρ⊗ idU : X⊗ U→ X⊗ U.
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Troesch complexes, after Touzé

Now d : Sn(X⊗−)ℓ → Sn(X⊗−)ℓ+1 is a p-differential, i.e., dp = 0.

Then the contraction

B•n : Sn(X⊗−)0
d−→ Sn(X⊗−)1

dp−1
−→ Sn(X⊗−)p

d−→ Sn(X⊗−)p+1
dp−1
−→ Sn(X⊗−)2p

d−→ · · ·

is an ordinary cochain complex with

B2in = Sn(X⊗−)pi and B2i+1n = Sn(X⊗−)pi+1.

Theorem (Troesch)
B•n is acyclic if p ∤ n, and is an injective resolution of Sm(1) if n = pm.

More generally, he constructs an injective resolution of Sm(r), r ≥ 1.

Note: For fixed n, one has Bin = 0 for i� 0.
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Why are Troesch complexes so useful?

Yoneda isomorphism, compatible with Z-gradings
Let F ∈ Pm. Let F(1) = F ◦ I(1). Then

HomP(F(1), Spm(X⊗−)) ∼= F#(X(1))

is concentrated in Z-degrees divisible by p.

Then HomP(F(1),B•pn) is concentrated in even degrees.

Corollary

Ext•P(I(1), I(1)) ∼= HomP(I(1),B•p) ∼= E1,

where E1 the spaceX regraded so that deg(xi) = 2i (0 ≤ i < p).
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Naive generalization of Troesch’s construction

ConsiderX as a Z-graded superspace of purely even superdegree.

For U = U0 ⊕ U1, consider

S(X⊗ U) ∼= S(x0 ⊗ U)⊗ S(x1 ⊗ U)⊗ · · · ⊗ S(xp−1 ⊗ U).

Define d : S(X⊗ U)ℓ → S(X⊗ U)ℓ+1 exactly as before.

Cocycles (by virtue of d being a derivation when r = 1)
For u ∈ U0, get

(x0 ⊗ u)p ∈ Sp(X⊗ U)0.

New for super: If u ∈ U1, get

u(1) := (x0 ⊗ u)⊗ (x1 ⊗ u)⊗ · · · ⊗ (xp−1 ⊗ u) ∈ Sp(X⊗ U)p(p−1)/2

in the exterior algebra part of S(X⊗ U) ∼= S(X⊗ U0)⊗ Λ(X⊗ U1)
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Naive generalization of Troesch’s construction

Let B•n be the contracted complex of strict polynomial superfunctors

B•n : Sn(X⊗−)0
d−→ Sn(X⊗−)1

dp−1
−→ Sn(X⊗−)p

d−→ Sn(X⊗−)p+1
dp−1
−→ Sn(X⊗−)2p

d−→ · · ·

Theorem (Drupieski–Kujawa)

H•(Bn) ∼=
{
0 if p ∤ n,
Sm(1) if n = pm.

In the latter case, for 0 ≤ ` ≤ m, the summand

(Sm−ℓ ◦ I(1)0 )⊗ (Λℓ ◦ I(1)1 )

of Sm(1) is in cohomological degree ` · (p− 1).
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Resolutions of injectives

In the case n = p, get a complex of injective objects

B0p → B1p → · · · → Bp−1p → · · · → B2(p−1)p

with H0(Bp) ∼= I(1)0 , Hp−1(Bp) ∼= I(1)1 , and Hi(Bp) = 0 otherwise.

These complexes can be spliced together:
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Calculations

End result of splicing
For all r ≥ 1, construct periodic injective resolutions

I(r)0 → J(r) and I(r)1 → J(r).

Corollary (“quick” recalculation)

Ext•P(I(r)0 , I(r)0 ) ∼= HomP(I(r)0 , J(r)) ∼=
⊕
n≥0

Er〈2npr〉

Ext•P(I(r)1 , I(r)0 ) ∼= HomP(I(r)1 , J(r)) ∼=
⊕
n≥0

Er〈(2n+ 1)pr〉

where Er =
⊕

0≤i<pr k〈2i〉.
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More calculations (after Franjou, Friedlander, Scorichenko, and Suslin)

For 1 ≤ j ≤ r and ℓ ∈ {0, 1}, set

Vj,ℓ = Ext•P (I(r)ℓ , Sp
r−j(j)
0 ), Wj,ℓ = Ext•P (I(r)ℓ ,Λ

pr−j(j)
0 ),

Vj,ℓ = Ext•P (I(r)ℓ , Sp
r−j(j)
1 ), Wj,ℓ = Ext•P (I(r)ℓ ,Λ

pr−j(j)
1 ).

Using the superized Troesch complexes in lieu of the de Rham and Koszul complexes:

Theorem
Let ℓ ∈ {0, 1}. For all d ≥ 1 and all 1 ≤ j ≤ r, the cup product maps

(Vj,ℓ)⊗d → Ext•P (Γ
d(r)
ℓ , Sdp

r−j(j)
0 ), (Wj,ℓ)

⊗d → Ext•P (Γ
d(r)
ℓ ,Λ

dpr−j(j)
0 ),

(Vj,ℓ)⊗d → Ext•P (Γ
d(r)
ℓ , Sdp

r−j(j)
1 ), (Wj,ℓ)

⊗d → Ext•P (Γ
d(r)
ℓ ,Λ

dpr−j(j)
1 )

factor to induce isomorphisms of graded vector spaces

Sd(Vj,ℓ) ∼= Ext•P (Γ
d(r)
ℓ , Sdp

r−j(j)
0 ), Λd(Wj,ℓ) ∼= Ext•P (Γ

d(r)
ℓ ,Λ

dpr−j(j)
0 ),

Sd(Vj,ℓ) ∼= Ext•P (Γ
d(r)
ℓ , Sdp

r−j(j)
1 ), Λd(Wj,ℓ) ∼= Ext•P (Γ

d(r)
ℓ ,Λ

dpr−j(j)
1 ).
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