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Throughout, we’ll work over an algebraically closed field k of
characteristic p ≥ 3.
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Exposition: Finite Groups



Suppose G is a finite group.

Problem in modular representation theory
Describe the structure of the cohomology ring H•(G, k) = Ext•G(k, k).

More generally, given a kG-module M, describe Ext•G(M,M).

Cohomology groups encode representation-theoretic information.

Geometric interpretation of the problem
Describe the affine variety |G| := MaxSpec (H•(G, k)).

More generally, for each kG-module M, describe the subvariety

|G|M := MaxSpec (H•(G, k)/ ker(ΦM)) ,

where ΦM : Ext•G(k, k) → Ext•G(M,M) is the algebra homomorphism
induced by −⊗M.
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If H ≤ G, then get a restriction map resG,H : H•(G, k) → H•(H, k),
hence a map of varieties res∗G,H : |H| → |G|.

Theorem (Quillen, 1971)

|G| =
∪
E res∗G,E(|E|)

union is taken over the elementary abelian p-subgroups of G.

More precisely, |G| =
⊔
V+G,E, where the union is taken over the

conjugacy classes of elementary abelian p-subgroups of G.

V+G,E identifies up to inseparable isogeny with |E| /WG(E), where
WG(E) = NG(E)/CG(E).

Theorem (Avrunin and Scott, 1982)
There exists an analogous stratification of |G|M for each f.d.
kG-module M. If E is an elementary abelian p-group, then |E|M
identifies with Carlson’s rank variety VE(M).
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Cohomology of elementary abelian p-groups

E = (Z/pZ)×r elementary abelian p-group of rank r

kE = k[g1, . . . ,gr]/⟨gp1 − 1, . . . ,gpr − 1⟩ ∼= k[z1, . . . , zr]/⟨zp1 , . . . , z
p
r ⟩

Isomorphism of algebras via the identification zi = gi − 1.

Cohomology of E

H•(E, k) ∼= k[x1, . . . , xr]⊗ Λ(λ1, . . . , λr)

where deg(xi) = 2, and deg(λi) = 1. In particular,

|E| = MaxSpec (H•(E, k)) ∼= Ar.

Carlson’s Rank Variety

VE(M) =
{
v =

∑r
i=1 ai(gi − 1) : M|⟨1+v⟩ is not free

}
∪ {0}
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Rising Action: Generalizations



Restricted Lie algebras (RLAs)

g: finite-dimensional restricted Lie algebra with p-map x 7→ x[p]

V(g): restricted enveloping algebra (f.d. cocommutative Hopf algebra)

Friedlander–Parshall (1980s), Suslin–Friedlander–Bendel (1997)
There exist homeomorphisms

|V(g)| ∼=
{
X ∈ g : X[p] = 0

}
|V(g)|M ∼=

{
X ∈ g : X[p] = 0 and M|⟨X⟩ is not free

}
∪ {0} .

Varieties again determined by restrictions to certain simpler (cyclic)
sub-objects.
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Group schemes

Antiequivalence

finite group scheme G↔ f.d. commutative Hopf algebra k[G]

A finite group scheme G is infinitesimal if the augmentation ideal of
k[G] is nilpotent.

If G is a finite group scheme, then the dual Hopf algebra k[G]∗ is
denoted kG, and called the group algebra.

Examples

• If G is an ordinary finite group, then the group algebra kG is the
group algebra of a finite group scheme.

• If g is a finite-dimensional restricted Lie algebra, then V(g) is the
group algebra of an infinitesimal (height one) group scheme.

7



Examples of infinitesimal group schemes

GLn(r), r-th Frobenius kernel of GLn
Given a commutative algebra A,

GLn(r)(A) =
{
(aij) ∈ GLn(A) : ap

r

ij = δij

}

Ga(r), r-th Frobenius kernel of the additive group scheme Ga

k[Ga] = k[T]

k[Ga(r)] = k[T]/⟨Tp
r
⟩

So given a commutative algebra A, Ga(r)(A) =
{
a ∈ A : apr = 0

}
.

kGa(r) = k[u0, . . . ,ur−1]/⟨up0, . . . ,u
p
r−1⟩
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Infinitesimal one-parameter subgroups
Given an affine group scheme G, the scheme Vr(G) of infinitesimal
one-parameter subgroups ν : Ga(r) → G is defined by

Vr(G)(A) = HomGrp/A(Ga(r) ⊗k A,G⊗k A).

Theorem (Suslin–Friedlander–Bendel, 1997)
If G is infinitesimal of height ≤ r, then there is a homeomorphism

|G| ∼= Vr(G)(k) = HomGrp/k(Ga(r),G).

In particular,∣∣GLn(r)∣∣ ∼= {(α0, . . . , αr−1) ∈ Mn(k)×r : αpi = 0 and [αi, αj] = 0
}
.

More generally, SFB describe |G|M in terms of restriction of M to
k[ur−1]/⟨upr−1⟩ ⊂ k[Ga(r)] along homomorphisms ν : Ga(r) → G (must
also consider scalar extensions).
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Can this be generalized to supergroup schemes?

Something is “super” if it has a compatible Z/2Z-grading.

V⊗W ∼= W⊗ V via the supertwist v⊗ w 7→ (−1)v·ww⊗ v.

Define (Hopf) superalgebras and ‘super’ (co)commutativity in terms
of the “usual diagrams,” but use the supertwist when objects pass.

Super correspondences

finite supergroup scheme G

↕

f.d. (super)commutative Hopf superalgebra k[G]

↕

f.d. (super)cocommutative Hopf superalgebra kG = (k[G])∗
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Hopf superalgebras

Examples of Hopf superalgebras
– Ordinary Hopf algebras (as purely even superalgebras).

– Z-graded Hopf algebras in the sense of Milnor and Moore

– Enveloping superalgebras of (restricted) Lie superalgebras

An exterior algebra Λ(V) is a (super)commutative superalgebra:

ab = (−1)a·bba in Λ(V) if a,b ∈ V.

It is also a (super)cocommutative Hopf superalgebra.
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Conflict: A confounding example



Things seem to be more complicated, even if you only care about
restricted Lie superalgebras (height-one infinitesimal supergroups).

Cautionary example
g restricted Lie superalgebra (RLSA) generated by even element u
and odd element v such that V(g) = k[u, v]/⟨up, v2⟩.

The sub-RLSAs of g are k, k.u, k.v, and g.

Define M to be the g-supermodule with homogeneous basis

{x0, . . . , xp−1, y0, . . . , xp−1} xi even, yi odd,

such that u.xi = xi+1, u.yi = yi+1, v.xi = yi+1, and v.yi = xi+p−1.

Then M is projective over all proper RLSAs of g, but not over g.

Need more than just cyclic subalgebras to detect projectivity …
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Multiparameter supergroups

Let f = Tpt +
∑t−1

i=1 aiTp
i ∈ k[T] be a p-polynomial (no linear term).

Let η ∈ k be a scalar.

Definition of the multiparameter infinitesimal supergroupMr;f,η

DefineMr;f,η by specifying its group algebra.

kMr;f,η = k[u0, . . . ,ur−1, v]/⟨up0, . . . ,u
p
r−2,u

p
r−1 + v2, f(ur−1) + ηu0⟩

u0, . . . ,ur−1 are even; their coproducts look like they do in kGa(r).

v is an odd primitive generator.

Our multiparameter supergroups are a family of potential
replacements for Ga(r) when trying to apply the SFB setup to
infinitesimal supergroup schemes.
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Cohomology algebras

H•(Mr;Tp,0, k) ∼= k[x1, . . . , xr, y] ⊗g Λ(λ1, . . . , λr),

with deg(xi) = 2, deg(y) = deg(λi) = 1, xi = λi = 0, and y = 1.

If s ≥ 2, then

H•(Mr;Tps ,0, k) ∼= k[x1, . . . , xr, y,ws]/⟨xr − y2⟩ ⊗g Λ(λ1, . . . , λr).

where deg(ws) = 2 and ws = 0.

14



Representations ofMr;f,η

Let A = A0 ⊕ A1 be a commutative superalgebra.

Matm|n(A) = Matm|n(A)0 ⊕Matm|n(A)1
Matm|n(A)0 identifies with the set of all block matrices

T =
(
T1 T2
T3 T4

)
,

T1 ∈ Mm×m(A0), T2 ∈ Mm×n(A1), T3 ∈ Mn×m(A1), and T4 ∈ Mn×n(A0).

Matm|n(A)1 identifies with block matrices with parities reversed.
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Representations ofMr;f,η

Ambient scheme

Vr(GLm|n)(A) =
{
(α0, . . . , αr−1, β) ∈ (Matm|n(A)0)

×r ×Matm|n(A)1 :

[αi, αj] = [αi, β] = 0 for all 0 ≤ i, j ≤ r− 1,

αpi = 0 for all 0 ≤ i ≤ r− 2, and αpr−1 + β2 = 0
}
.

Homomorphisms ρ : Mr;f,η ⊗k A→ GLm|n ⊗k A, or equivalently,
representations of kMr;f,η ⊗K A, correspond to points in

Vr;f,η(GLm|n)(A) ={
(α0, . . . , αr−1, β) ∈ Vr(GLm|n)(A) : f(αr−1) + ηα0 = 0

}
.

Note that Vr(GLm|n)(k) =
∪
f,η Vr;f,η(GLm|n)(k).
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Climax: Applications to the
cohomology of GLm|n(r)



Following the approach of SFB

1. Explicitly calculated the images of certain “universal extension
classes” under the maps in cohomology

ρ∗(α|β) : H
•(GLm|n(r), k) → H•(Mr;f,η, k)

corresponding to homomorphisms ρ(α|β) : Mr;f,η → GLm|n(r).
2. Then able to construct algebra homomorphisms

k[Vr(GLm|n)]
ϕ→ H(GLm|n(r), k)

ψr;f,η→ k[Vr;f,η(GLm|n)]

such that H(GLm|n, k) := Heven(G, k)0 ⊕ Hodd(G, k)1 is finite over ϕ.
3. Get induced morphisms of varieties

Θr;f,η : Vr;f,η(GLm|n)(k)
Ψr;f,η−→

∣∣GLm|n(r)
∣∣ Φ−→ Vr(GLm|n)(k)

Showed that Θr;f,η is the Frobenius morphism composed with
the natural inclusion.
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Θr;f,η : Vr;f,η(GLm|n)(k)
Ψr;f,η−→

∣∣GLm|n(r)
∣∣ Φ−→ Vr(GLm|n)(k)

Since the Vr;f,η(GLm|n)(k) cover Vr(GLm|n)(k), we get

Corollary

Vr(GLm|n)(k) =
∪
im(Θr;f,η) =

∪
Vr;f,η(GLm|n)(k)

In particular Φ is a finite surjective map.

Some kind of analogue for GLm|n of the Quillen stratification.
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Falling Action and Denouement:
Open Problems



Open Problems

Problem
What is the correct coordinate-free approach?

— SFB looked at HomGrp(Ga(r),G)

— HomGrp(Mr;Tps ,0,Mr;Tps ,0) already seems too big

Problem
Can you detect projectivity of modules, or nilpotence of
cohomology classes, by looking at restrictions to multiparameter
supergroups…
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