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Notation and preliminaries Notation

e G - simple, simply-connected algebraic group scheme over k = F,
e B=T x U - "Borus”

e ® D dF O A - root system, positive subsystem, simple roots

e W - Weyl group

X(T) D X(T)4+ - weight lattice, subset of dominant weights

e F: G — G - Frobenius morphism

G(F,) = GF" - finite subgroup of Fy-rational points in G, g = p"
B(Fq), T(Fg), U(Fg) - finite subgroups of B, T, U

e G, =ker(F": G — G) - r-th Frobenius kernel of G

e.g.,
e G=S51L,
o G(Fq) = SLy(Fq)
e B, T - lower triangular, diagonal matrices in G

* F((ay)) = (af)
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Notation and preliminaries Preliminaries

We have various rational G-modules associated to each A € X(T)4:
e H°()\) = ind§()\) - induced module
e V()\) = Ho(—wpA)* - Weyl module
e L(\) =socg H°(A\) = V()\)/radg V()) - irreducible module

Facts:
e Forall n>0, H"(G(F,), V) = H"(B(F,), V) = H"(U(F,), V) TFa),
o Set X,(T)={AeX(T)+:0< (N, oY) < p forall a € A}
The L(\) for A € X,(T) form a complete set of pairwise
nonisomorphic irreducible G(F4)-modules (and similarly for G,).

o Exti-(V(\), H(1)) # 0 only if i =0 and A = p.
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Notation and preliminaries Preliminaries

Given X\ € X,(T), compute H(G(Fy), L(\)) and H?(G(Fy), L(\)).

Subgoals (i.e., what people have actually managed to do):
e Compute for L()\) in various classes of modules.
e Determine sufficient conditions for the cohomology groups to vanish.

e Compute under restrictions on p and g (specific small values, or > 0).
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Summary of some earlier work and calculations Cline, Parshall, Scott (1975, 1977), Jones (1975)

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Computed H'(G(FF,), L()\)) for A a minimal nonzero dominant weight, i.e.,

for A a minuscule weight or a maximal short root.

e No restrictions on p or q.

e Included the twisted groups of Steinberg, Ree, and Suzuki.
e Lower bound: dimradg V(\) < dimHY(G(F,), L(\))
Upper bound:

Z dim Z(Ua(Fy), V)T®) _ dim VT 4 dim VBEa),
acA

Requires analyzing whether weights of V' are Galois equivalent to
roots, i.e., whether o o w|r () = B|7(r,) for some o € Gal(Fy).
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WAYNE JONES AND BRIAN PARSHALL
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VWAVNE JONES AND BRIAN PARSHALL C. EXCEPTIONS TO THE ABOVE TABLE.
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Summary of some earlier work and calculations Avrunin (1978)

Avrunin (1978)

Suppose for all weights 1 of T(Fg) in V and for all o, 8 € ® that o # p
and (, B) # pmod Gal(Fg). Then H?(G(F,), V) = 0.

e Look at a central series for U(F4) where the factors are products of
root subgroups to analyze the weights of T(F,) in H*(U(Fy), V).

o Use this to deduce that H3(U(F,), V)74 = 0.
o Now use the fact that H?(G(Fy), V) — H?(B(F,), V).

Corollary (Avrunin)

Suppose g > 3. Let A\ € X(T); be minuscule. Then H?(G(F,), L()\)) =0,
except possibly in the cases shown on the next slide.
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G q
Aig) 2 A
Ay(q) 5,3% ALy Ag
Ayq) 2% A
A,(g),n =3 4 Ag s Aug
Byq) 28 A
By 2% A
C.q) 2 An
Dq(q) 4 A, A
Dy(q) 2k 1A
D,(ghn=3 2 Au
2A,(¢%) 4,3" ALy Ay
*45(q°) 2" Ay
2A4y(g%) 4 Ay Ay
2Colg?) 22412 A
Dy(g%) 4 ALy Ay
*D () 2% Ay A
2D, (¢}, n >3 2k A
3Dy(q°) 2% A Ass Ay
2Eq(q%) 4 Ay A

A few of these possibilities are, in fact, not exceptions. In unpublished work,
MecLaughlin has shown that the cohomology groups vanish in the cases above
where Gis 4,(4), Ay(4) with A = ), or Ay, o Dy(4) with A = , or A, . Landdzuri
[9) has shown that H(4,(4), V(N) = 0 for A = A, or A,_,, and the author
[2] has shown that H2CA,(16), V(N)) = 0 for A = &, or Ay..

Nonzero cohomology is known in some of these cases. McLaughlin has shown
that the cohomology groups are nontrivial when G is 4,(2¥) with & > 2, 4y(3%)
with & > 1 or Ay(5). Landézuri proved in [9] that HYB,(2¥), V(},)) 0 for
n=3,4and k> 2. Bell has computed the second degree cohomology of the
Suzuki groups on V(A;) in [3]; this is nonzero if g* > 8. Also, it follows from
work of Griess [8] that the second degree cohomology groups of Cy(2¥), Dy(2¥),
and *D,(2%) on V(),) are nonzero. Finally, the author [2] has shown that
H(Ax(g?), V(\) # 0 for i = 1,2 and ¢* = 16 or 3,



Summary of some earlier work and calculations = Bell (1978)

Bell (1978)
Computed Extg; ) (V7, V]) forall 1 <i,j < nand o,7 € Gal(Fg).
Here V; = N/(V) where V is the natural representation. Have V = L(w;).

e Rank one calculations preformed by hand.
e For higher ranks, use an LHS spectral sequence and induction on the
rank to compute for an appropriate maximal parabolic subgroup.

e When nonzero for the parabolic, explicitly construct a cocycle, and
then determine whether it can be extended to all of SL,1(Fy).
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dimy H(SL144(g), M)

M=V, 1<i<gl!

Exceptional
dimg  Exceptional (/, g, £) dimy
0 None —
0 (1,2 >21),2,2,1),(2,2,2),3,2,2 1

0 (1,20 > 4,1),(2,3° > 3,1),(2,3 > 3,2,(2,51,2,52, 1
(2,2,1),(2,2,2),(3,2,1),3,2,3),3,2> 2,2,
4,2,1),(4,2,4)

M= H(V,, V), 1<4j<], oel

Exceptional
dimg  Exceptional (/, g, 0,1, ) dimy
0 (,q,1,4,9) 1
0 g=2with{i, Nn{l,} = o ?
(1,354, 1,1),(1,51,1,1),2,2° #4,4,2,1), 1
(2,20 #4,2,1,2),(2,2° #4,2,2,1),(2, 2 # 4,},1,2)
(>2,2,4,2,1,0>22,2,1,2,0>22,211—1)
(>2,2,41-1,0,3211,3,3,2131)
(2,4,2,1,2),(2,4,2,2,1) 2
M = H,V:, H(V;, Vi), 1<ij,k<], o rel
Exceptional
dimyg  Exceptional (/, ¢, 0, 7,4, j, k) dimy

0 1,2,1,1,1,1,1,0¢,¢1,1,4,j,i + jimod I + 1)) 1




Summary of some earlier work and calculations Kleshchev (1994)

Kleshchev (1994)

Let A € X,(T). Suppose that all weights spaces of L()) are 1-dimensional.
Then HY(G(F,), L(\)) = 0 except for the cases on the next slide. In the
exceptional cases, one has

dim HY(Ax(4), L(3w1)) = dim HY(Ax(4), L(3w2)) = 2,

but in all other exceptional cases dim H}(G(F,), L()\)) = 1.

Obtains upper bound estimates depending on the composition factors of
L(X) restricted to a a suitable parabolic subgroup. Are 1-dimensional
weight spaces essential, or just a convenient class of L(\)??

Compare with work of Bell: Dimension of H! can grow as \ gets large.
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Group Highest weight A
a0t |l 20, et ey, pl (20, )+pj”wl‘
3=0,...,0-1;
0D @+ (P-2)0))s 0P (P22, )
A2(3n) 33(w1+u2), 3=0,...,n-1
2403 3d@uy), 3=0,....n-1
45 (2) Wy, Wy
A3<2) W,
5™ sd(20,), 3=0,...,0-1
0, @) w,
o,@™) adu,, 3=0,...,n1
£,6™ 3%, 3=0,...,n-1
6 M 2do,, 3=0,...,n-1
™) 2da,, $=0,...,01
jﬁs“) adu,, 3<0,...,n-1
G, (3% 0,43,
6,@™ 23w, 3=0,...,01




Summary of some earlier work and calculations Cline, Parshall, Scott, van der Kallen (1977)

Want more direct comparisons between cohomology for G and G(Fy).

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G-module, and let i € N. Then for
all sufficiently large e and g, the restriction map is an isomorphism

Hi(G, V(&) =5 HI(G(F,), V().

Stable value of H'(G(Fy), V) when g >> 0 is denoted H’,, (G, V).

gen

~

H(G,V) —=—=H/(B, V)

| |

H'(G(Fq), V) H'(B(Fq), V).
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Summary of some earlier work and calculations Cline, Parshall, Scott, van der Kallen (1977)

Some sharper statements for 1- and 2-cohomology:
e If p# 2, then

HY(G, V) 2 H,,(G, V) and H*(G, V) =H2

gen

(G, V).

gen

e If p#2,3 and if no root is a weight of V/, then

H2(G, V) = H2_ (G, V).

gen

o If VT = VT(Fa) then HY(G, V) < HY(G(F,), V).
e If U, W are finite-dimensional G-modules, and if every composition
factor of U and W have g-restricted highest weights, then

HY(G, Hom, (U, W)) < HY(G(F,), Hom,(U, W)).

So for H! and H2, we can get answers in terms of G if we take g > 0, and
if we sometimes also replace V by V(1) or V(2),
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Summary of some earlier work and calculations Bendel, Nakano, Pillen (2001—present)

Consider the (exact!) induction functor indg(]Fq)(—) = (— ® k[G])¢(Fa).
Generalized Frobenius Reciprocity: H(G,ind& y(N)) = H"(G(Fq), N).

Let 7 C X(T) be a saturated set of weights, and let C; be the category of
G-modules all of whose highest weights lie in 7. Let N be a G(F,)-module
and let M be a G-module. Then there exists a spectral sequence

Ey) = ExtG(M, ROy o indg g ,)(N)) = Ext%q)(/\/f, N).

Using this and related ideas, BNP have in a series of papers obtained
many results relating cohomology for G and G(F,), e.g., for p > 3(h — 1),
describe Exté(ﬂrq) between simple modules as Ext% plus a remainder term.
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Understanding restriction A long exact sequence for restriction

There exists a short exact sequence
0 — k — indg, y(k) = N — 0.
Let M be a rational G-module. From the tensor identity obtain

0— M — indg (M) = M& N — 0.

Now using Ext¢ (k, indg(Fq)(/\/I)) = Extgp,)(k, M), we get:

_‘
D
"

0 — Homg(k,M) —= HomG(Fq)(k,M) — Homg(k,M ® N)
— Extg(k,M) = Extgyy(k,M) — Extg(k, M@ N)
= Extz(k,M) = Extgp(k,M) — Extg(k, M N)
_> .
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Understanding restriction Analyzing terms via filtrations

Bendel, Nakano, Pillen (2010)

indg(Fq)(k) admits a filtration by G-submodules with sections of the form

HO(u) @ HO(u* )\ e X(T)4.

Corollary: N = coker(k — indg(Fq)(k)) admits such a filtration with p # 0.

v

Then Extlz(k, L(\) ® N) = 0 if it is zero for each section, i.e., if for u # 0,
Exti(V(1)), L(A) ® HO(u)) = 0.

Analyze the spectral sequences

Extls g, (V(1)"), Extl (k, L) @ HO())) = Ext? (V()"), L) @ HO (1)

and Riindg) g Exth, (k, L(\) ® ) = Extd (k, L(N) © HO(u)).
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The strategy is approximated by the following diagram stolen from BNP:

Induction
Functor

H(G(Fp. k) = H(G,G (k)
|l  Filtrations
HI(G, H'(\) ® HG.HT) — HYG;, H°(A)) = Root Combinatorics.

LHS Spectral Kostant Partition
Sequences Functions



Understanding restriction Isomorphisms with G cohomology

Theorem (UGA VIGRE Algebra Group)

Let A € X,(T). Suppose Ext}_,r(k, L(X)) is semisimple as a B/U,-module,
and that Ext{, (k, L(\))TF9) = Ext}, (k, L(A))". Then

HY(G, L(A)) = HY(G(Fq), L(A))-

Theorem (UGA VIGRE Algebra Group)

Let A € X,(T). Suppose Exty, (k, L())) is semisimple as a B/U,-module,
that Ext}, (k, L(\))TFa) = Ext], (k, L(\))T for i € {1,2}, and that

p" > max {—(v,7") vy € A, v e X(T),Exty, (k, L(\)), # 0} .

Then H2(G, L()\)) = H?(G(F,), L(\)).
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Critical calculation using Andersen's results on B-cohomology and lots of
weight combinatorics:

Theorem 3.2.4. Suppose A € X(T)+ is a dominant root or is less than or equal to a fundamental weight.
Assume that p > 5 if @ is of type Eg or G, and p > 3 otherwise. Then as a B/U,-module, Ext},y(L(A), k) =

socg,u, Extl, (L(%). k), that is,

Exty, (L. k) =P —sa 20 P -(r-p0)o P (-0)®™

aeA aeA oeX(T)+
O<n<r o <A

where my = dimExtl (L(1), H(0)).



Understanding restriction Results for 1- and 2-cohomology

First Cohomology Main Theorem

Let A € X(T)+ be a fundamental dominant weight. Assume g > 3 and

p>2 if ® has type A,, Dp;
p >3 if ® hastype B,, C,, Eg, E7, F4, Go;
p>5 if ® has type Es.

Then dim HY(G(Fy), L()\)) = dimHY(G, L()\)) < 1.

Space nonzero (and one-dimensional) in the following cases:
e ® has type E7, p=7, and A = we; and
e ® has type C,, n > 3, and A = w; with é a nonzero term in the
p-adic expansion of n+ 1, but not the last term in the expansion.

Reasons for vanishing: Linkage principle for G, Ext:(V/(0), H°(\)) = 0.
Reasons for non-vanishing: Weyl module structure.
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Understanding restriction Results for 1- and 2-cohomology

Second Cohomology Main Theorem A

Suppose p > 3 and g > 5. Let A € X(T)+ be less than or equal to a
fundamental dominant weight. Assume also that A is not a dominant root.

Then H2(G, L()\)) = H*(G(Fy), L(N)).

v

Corollary

Suppose p, g, A are as above. Then H2(G(IE‘q), L(X\)) = 0 except possibly in
a small number of explicit cases in exceptional types, and in type C, when
A = wj with j even and p < n.

Don't know H?(G, L(w;)) for all even j in type C, when p < n.
Come back to this at the end . ..
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Understanding restriction Results for 1- and 2-cohomology

Second Cohomology Main Theorem B

Let p >3 and g > 5. Let A = & (highest root). Assume p{n+ 1 in type
Apn, and pfn—1in type B,. Then

H?(G(Fq), L(@)) = k.

Also have H?(Ay(5), L(w1)) = H?(Ax(5), L(w2)) = k.

Different strategy for this case in analyzing the long exact sequence.
— H2(G, L(\)) = H*(G(Fq), L(\)) — H*(G,L(\) ® N) — H3(G,L(\)) —

Prove that H?(G(TF,), L()\)) is isomorphic to the cohomology of a single
filtration layer in H2(G, L(\) @ N), i.e., layer for HO(&) ® HO(a)(").

cf. to CPSvdK: H*(G, V) = HZ_ (G, V) if p # 2.
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Adamovich described combinatorially the submodule structure of Weyl
modules in Type C having fundamental highest weight. We use this and
ExtZ (k, L(wj)) = Ext¢ (radg V(wj), k) to make computations.

p=; @ %
@ — L(wi)
® o @ Ext: (k, L(w))) = k.

@ V(w): k=1
@ neither

(o —p(R}———(%)
®
(Ry—»(R)———»(5)
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2-cohomology in Type C for even fundamental weights

Values of n and j for which H(Span, L(w;)) # 0, p = 3.

In each case, H2 is 1-dimensional.

n|j n|j n|j n|j

6 |6 1516,8 24 16, 8,18 33 16,8, 18
716 16 | 6, 10 25 | 6, 10, 18 34 |6, 10, 18
8 17 26 35

916 18 | 6, 14 27 1 6, 14 36 | 6, 14

10| 6 19 | 6, 16 28 | 6, 16 37| 6,16

11 20 | 18 29 | 18 38 | 18

12 | 6 21 | 6, 18 30 | 6, 18 39 | 6, 18, 20
1316 22 16,18 316,18 40 | 6, 18, 22
14 23 | 18 32 | 18

For n = 12, we have also H}(Spa,, L(ws)) # 0 (parity vanishing violated).
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Values of n and j for which H*(Sp2,, L(wj)) # 0: p = 5.

In each case, H? is 1-dimensional.

nJj nlJ nlJ nJ nJj
10 | 10 20 | 10 30 | 10 40 | 10, 22 50 | 10, 42
11|10 21 | 10 31|10 41 | 10, 24 51 | 10, 44
12 | 10 22 | 10 32|10 42 |10, 26 52 | 10, 46
13| 10 23| 10 33|10 43 | 10, 28 53 | 10, 48
14 24 34 44 54 | 50

15 | 10 25 | 10 35| 10, 12 45 | 10, 32
16 | 10 26 | 10 36 | 10, 14 46 | 10, 34
17| 10 27 | 10 37 | 10, 16 47 | 10, 36
18 | 10 28 | 10 38 | 10, 18 48 | 10, 38
19 29 39 49

For n = 30, we also have H!(Spa,, L(w10)) # 0 (parity vanishing violated).
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