1- and 2- cohomology for algebraic groups and finite groups of Lie type

Christopher Drupieski (UGA)

AIM Workshop on Cohomology Bounds and Growth Rates
June 5, 2012
(1) Notation and preliminaries
(2) Summary of some earlier work and calculations

- Results that do not attempt a direct comparison to G-cohomology
- Results that attempt a comparison to G-cohomology
(3) Understanding restriction from G to $G\left(\mathbb{F}_{q}\right)$
- Induction functors, long exact sequence for restriction, filtrations
- Results for 1- and 2-cohomology
(9) Some examples and open questions for symplectic groups
- G - simple, simply-connected algebraic group scheme over $k=\overline{\mathbb{F}}_{p}$
- $B=T \ltimes U$ - "Borus"
- $\Phi \supset \Phi^{+} \supset \Delta$ - root system, positive subsystem, simple roots
- W - Weyl group
- $X(T) \supset X(T)_{+}$- weight lattice, subset of dominant weights
- $F: G \rightarrow G$ - Frobenius morphism
- $G\left(\mathbb{F}_{q}\right)=G^{F^{r}}$ - finite subgroup of \mathbb{F}_{q}-rational points in $G, q=p^{r}$
- $B\left(\mathbb{F}_{q}\right), T\left(\mathbb{F}_{q}\right), U\left(\mathbb{F}_{q}\right)$ - finite subgroups of B, T, U
- $G_{r}=\operatorname{ker}\left(F^{r}: G \rightarrow G\right)$ - r-th Frobenius kernel of G
e.g.,
- $G=S L_{n}$
- $G\left(\mathbb{F}_{q}\right)=S L_{n}\left(\mathbb{F}_{q}\right)$
- B, T - lower triangular, diagonal matrices in G
- $F\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{p}\right)$

We have various rational G-modules associated to each $\lambda \in X(T)_{+}$:

- $H^{0}(\lambda)=\operatorname{ind}_{B}^{G}(\lambda)$ - induced module
- $V(\lambda)=H^{0}\left(-w_{0} \lambda\right)^{*}$ - Weyl module
- $L(\lambda)=\operatorname{soc}_{G} H^{0}(\lambda)=V(\lambda) / \operatorname{rad}_{G} V(\lambda)$ - irreducible module

Facts:

- For all $n \geq 0, \mathrm{H}^{n}\left(G\left(\mathbb{F}_{q}\right), V\right) \hookrightarrow \mathrm{H}^{n}\left(B\left(\mathbb{F}_{q}\right), V\right)=\mathrm{H}^{n}\left(U\left(\mathbb{F}_{q}\right), V\right)^{T\left(\mathbb{F}_{q}\right)}$.
- Set $X_{r}(T)=\left\{\lambda \in X(T)_{+}: 0 \leq\left(\lambda, \alpha^{\vee}\right)<p^{r}\right.$ for all $\left.\alpha \in \Delta\right\}$.

The $L(\lambda)$ for $\lambda \in X_{r}(T)$ form a complete set of pairwise nonisomorphic irreducible $G\left(\mathbb{F}_{q}\right)$-modules (and similarly for G_{r}).

- $\operatorname{Ext}_{G}^{i}\left(V(\lambda), H^{0}(\mu)\right) \neq 0$ only if $i=0$ and $\lambda=\mu$.

Goal

Given $\lambda \in X_{r}(T)$, compute $\mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$ and $\mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$.

Subgoals (i.e., what people have actually managed to do):

- Compute for $L(\lambda)$ in various classes of modules.
- Determine sufficient conditions for the cohomology groups to vanish.
- Compute under restrictions on p and q (specific small values, or $\gg 0$).

Cline, Parshall, Scott $(1975,1977)$, Jones (1975)

Computed $\mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$ for λ a minimal nonzero dominant weight, i.e., for λ a minuscule weight or a maximal short root.

- No restrictions on p or q.
- Included the twisted groups of Steinberg, Ree, and Suzuki.
- Lower bound: $\operatorname{dim} \operatorname{rad}_{G} V(\lambda) \leq \operatorname{dim} H^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$
- Upper bound:

$$
\sum_{\alpha \in \Delta} \operatorname{dim} Z^{1}\left(U_{\alpha}\left(\mathbb{F}_{q}\right), V\right)^{T\left(\mathbb{F}_{q}\right)}-\operatorname{dim} V^{T\left(\mathbb{F}_{q}\right)}+\operatorname{dim} V^{B\left(\mathbb{F}_{q}\right)} .
$$

- Requires analyzing whether weights of V are Galois equivalent to roots, i.e., whether $\left.\sigma \circ \omega\right|_{T\left(\mathbb{F}_{q}\right)}=\left.\beta\right|_{T\left(\mathbb{F}_{q}\right)}$ for some $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\right)$.

WAYNE JONES AND BRIAN PARSHALL

G_{σ}	char $k=p$	Dominant Weight	dim ${ }_{k}$	$\operatorname{dim}_{k} H^{1}\left(G_{G}, V\right)$
$A_{n}(q)$	arbitrary	$\lambda_{i}, 1 \leqslant i \leqslant n$	$\binom{n+1}{i}$	0 (*)
	$p ; n+1$	$\lambda_{1}+\lambda_{n}$	$n(n+2)$	0 (*)
	$p \mid n+1$	$\lambda_{1}+\lambda_{n}$	$n(n+2)-1$	1 (*)
$\begin{gathered} 2_{A_{n}}(q) \\ q>3 \end{gathered}$	arbitrary	$\lambda_{i}, 1 \leqslant i \leqslant n$	$\binom{n+1}{i}$	0
	p. $\mathrm{y}^{\text {n }}$ +1	$\lambda_{1}+\lambda_{n}$	$n(n+2)$	0
	$p \mid n+1$	$\lambda_{1}+\lambda_{n}$	$n(n+2)-1$	1
$\begin{gathered} B_{n}(q) \\ n \geqslant 3 \end{gathered}$	arbitrary	λ_{1}	2^{n}	0
	2	λ_{n}	2 n	1
	$\neq 2$	λ_{n}	$2 \mathrm{n}+1$	0
$\begin{aligned} & C_{n}(q) \\ & n \geqslant 2 \end{aligned}$	2	λ_{n}	$2 n$	1
	$\neq 2$	λ_{n}	2 n	0
	$p \mid n$	λ_{n-1}	$(n-1)(2 n+1)-1$	1
	p / n	λ_{n-1}	$(n-1)(2 n+1)$	0 (*)
${ }^{2} C_{2}\left(2^{2 n+1}\right)$	2	λ_{1}, λ_{2}	4	1 (*)

$D_{n}(q)$	arbitrary	$\lambda_{i}, 1=1, n-1, n$	$2 n$ if $i=1$ $2^{n-1} \text { if i } \neq 1$	0
$n>3$	$\neq 2$	λ_{2}	$(2 n-1) n$	0
$D_{2 n}(q)$	2	λ_{2}	$2 n(4 n-1)-2$	2
$D_{2 n+1}(q)$	2	λ_{2}	$(2 n+1)(4 n+1)-1$	0
$\begin{gathered} { }^{2} D_{n}(q) \\ n>3, \quad q>3 \end{gathered}$	arbitrary	$\lambda_{i}, j=1, n-1, n$	$\begin{array}{lll} 2 n & \text { if } i=1 \\ 2^{n-1} & \text { if } i \neq 1 \end{array}$	0
$\begin{aligned} & { }^{2} D_{2 n}(q) \\ & n>1, q>3 \end{aligned}$	2	λ_{2}	$2 n(4 n-1)-2$	2
	$\neq 2$	λ_{2}	$2 \mathrm{n}(4 n-1)$	0
$\begin{gathered} { }^{2} D_{2 n+1}(q) \\ q>3 \end{gathered}$	2	λ_{2}	$(2 n+1)(4 n+1)-1$	1
	$\neq 2$	λ_{2}	$(2 n+1)(4 n+1)$	0
$q>3$	arbitrary	$\lambda_{i}, i=1,2,4$	8	0
	2	λ_{2}	26	2
	$\neq 2$	λ_{2}	28	0
$E_{6}(\mathrm{q})$	arbitrary	λ_{1}, λ_{6}	27	0
	3	λ_{2}	77	1
	$\neq 3$	λ_{2}	78	0

325

WAVNE JONES AND BRIAN PARSHALL

C. Exceptions to the above table.
(a) $\quad \operatorname{dim}_{K_{k}}{ }^{1}\left(A_{1}\left(2^{n}\right), V\left(A_{1}\right)-i\right.$ for $n>?$
(b) $\quad \operatorname{dim}_{k} H^{1}\left(A_{2}(2), V\left(\lambda_{i}\right)\right)=1$ for $;=1,2$
(c) $\operatorname{dim}_{k^{-1}}^{-1}\left(A_{3}(2), v\left(\lambda_{2}\right)=;\right.$
(d) $\operatorname{dim}_{k^{-H}}{ }^{1}\left(A_{1}(5), V\{2 \ldots)=\right.$:
(e) $\operatorname{dim}_{k}{ }^{1}\left(A_{1}(2), V(2,)_{1}\right)=0$
(f) $\operatorname{dim}_{\mu_{k}^{-1}}{ }^{1}\left(C_{2}(3), V(x)=\right.$, ?
(g) $\quad \operatorname{dim}_{-{ }_{k}}{ }^{1}\left({ }^{2} C_{2}(2), V\left(i_{i}\right)\right)=0, i=1,2$
(h) $\quad \operatorname{dim}_{k} H^{1}\left({ }^{2} G_{2}(3), v\left(氵_{2}\right)\right)=1$

Avrunin (1978)

Suppose for all weights μ of $T\left(\mathbb{F}_{q}\right)$ in V and for all $\alpha, \beta \in \Phi$ that $\alpha \not \equiv \mu$ and $(\alpha, \beta) \not \equiv \mu \bmod \operatorname{Gal}\left(\mathbb{F}_{q}\right)$. Then $\mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), V\right)=0$.

- Look at a central series for $U\left(\mathbb{F}_{q}\right)$ where the factors are products of root subgroups to analyze the weights of $T\left(\mathbb{F}_{q}\right)$ in $\mathrm{H}^{2}\left(U\left(\mathbb{F}_{q}\right), V\right)$.
- Use this to deduce that $\mathrm{H}^{2}\left(U\left(\mathbb{F}_{q}\right), V\right)^{T\left(\mathbb{F}_{q}\right)}=0$.
- Now use the fact that $\mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), V\right) \hookrightarrow \mathrm{H}^{2}\left(B\left(\mathbb{F}_{q}\right), V\right)$.

Corollary (Avrunin)

Suppose $q>3$. Let $\lambda \in X(T)_{+}$be minuscule. Then $H^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)=0$, except possibly in the cases shown on the next slide.

G	q	λ
$A_{1}(q)$	2^{k}	λ_{1}
$A_{2}(q)$	$5,3^{k}$	λ_{1}, λ_{2}
$A_{3}(q)$	2^{k}	λ_{2}
$A_{n}(q), n \geqslant 3$	4	$\lambda_{3}, \lambda_{n-2}$
$B_{3}(q)$	2^{k}	λ_{1}
$B_{4}(q)$	2^{k}	λ_{1}
$C_{n}(q)$	2^{k}	λ_{n}
$D_{3}(q)$	4	λ_{1}, λ_{2}
$D_{4}(q)$	2^{k}	λ_{1}, λ_{2}
$D_{n}(q), n \geqslant 3$	2^{k}	λ_{n}
${ }^{2} A_{2}\left(q^{2}\right)$	$4,3^{k}$	λ_{1}, λ_{2}
${ }^{2} A_{3}\left(q^{2}\right)$	2^{k}	λ_{2}
${ }^{2} A_{3}\left(q^{2}\right)$	4	λ_{1}, λ_{3}
${ }^{2} C_{2}\left(q^{2}\right)$	$2^{2 k+1 / 2}$	λ_{2}
${ }^{2} D_{3}\left(q^{2}\right)$	4	λ_{1}, λ_{2}
${ }^{2} D_{4}\left(q^{2}\right)$	2^{k}	λ_{1}, λ_{2}
${ }^{2} D_{n}\left(q^{2}\right), n \geqslant 3$	2^{k}	λ_{n}
${ }^{3} D_{4}\left(q^{3}\right)$	2^{k}	$\lambda_{1}, \lambda_{2}, \lambda_{4}$
${ }^{2} E_{6}\left(q^{2}\right)$	4	λ_{1}, λ_{6}

A few of these possibilities are, in fact, not exceptions. In unpublished work, McLaughlin has shown that the cohomology groups vanish in the cases above where G is $A_{3}(4), A_{3}(4)$ with $\lambda=\lambda_{1}$ or $\dot{\lambda}_{3}$, or $D_{3}(4)$ with $\lambda=\lambda_{1}$ or λ_{2}. Landázuri [9] has shown that $H^{2}\left(A_{n}(4), V(\lambda)\right)=0$ for $\lambda=\lambda_{3}$ or λ_{n-2}, and the author [2] has shown that $H^{2}\left({ }^{2} A_{3}(16), V(\lambda)\right)=0$ for $\lambda=\lambda_{1}$ or λ_{3}.
Nonzero cohomology is known in some of these cases. McLaughlin has shown that the cohomology groups are nontrivial when G is $A_{1}\left(2^{k}\right)$ with $k>2, A_{2}\left(3^{k}\right)$ with $k>1$ or $A_{2}(5)$. Landázuri proved in [9] that $H^{2}\left(B_{n}\left(2^{k}\right), V\left(\lambda_{1}\right)\right) \neq 0$ for $n=3,4$ and $k \geqslant 2$. Bell has computed the second degree cohomology of the Suzuki groups on $V\left(\lambda_{2}\right)$ in [3]; this is nonzero if $q^{2}>8$. Also, it follows from work of Griess [8] that the second degree cohomology groups of $C_{n}\left(2^{k}\right), D_{n}\left(2^{k}\right)$, and ${ }^{2} D_{n}\left(2^{2 k}\right)$ on $V\left(\lambda_{n}\right)$ are nonzero. Finally, the author [2] has shown that $H^{2}\left({ }^{2} A_{2}\left(q^{2}\right), V\left(\lambda_{i}\right)\right) \neq 0$ for $i=1,2$ and $q^{2}=16$ or $3^{2 k}$.

Bell (1978)

Computed $\mathrm{Ext}_{S L_{n+1}\left(\mathbb{F}_{q}\right)}^{1}\left(V_{i}^{\sigma}, V_{j}^{\tau}\right)$ for all $1 \leq i, j \leq n$ and $\sigma, \tau \in \operatorname{Gal}\left(\mathbb{F}_{q}\right)$. Here $V_{i}=\Lambda^{i}(V)$ where V is the natural representation. Have $V=L\left(\omega_{i}\right)$.

- Rank one calculations preformed by hand.
- For higher ranks, use an LHS spectral sequence and induction on the rank to compute for an appropriate maximal parabolic subgroup.
- When nonzero for the parabolic, explicitly construct a cocycle, and then determine whether it can be extended to all of $S L_{n+1}\left(\mathbb{F}_{q}\right)$.

$$
M=V_{i}, \quad 1 \leqslant i \leqslant l
$$

n	dim_{K}	Exceptional (l, q, i)	Exceptional dim_{K}
0	0	None	-
1	0	$\left(1,2^{s}>2,1\right),(2,2,1),(2,2,2),(3,2,2)$	1
2	0	$\begin{aligned} & \left(1,2^{3}>4,1\right),\left(2,3^{*}>3,1\right),\left(2,3^{3}>3,2\right),(2,5,1),(2,5,2), \\ & (2,2,1),(2,2,2),(3,2,1),(3,2,3),\left(3,2^{8}>2,2\right), \\ & (4,2,1),(4,2,4) \end{aligned}$, 1
		$M=H_{\sigma}\left(V_{i}, V_{j}\right), \quad 1 \leqslant i, j \leqslant l, \quad \sigma \in \Gamma$	
n	dim_{K}	Exceptional (l, q, σ, i, j)	$\begin{gathered} \text { Exceptional } \\ \operatorname{dim}_{K} \end{gathered}$
0	0	($l, q, 1, i, i$)	1
1	0	$q=2$ with $\{i, j\} \cap\{1, l\}=\varnothing$?
		$\begin{aligned} & \left(1,3^{s}, \frac{1}{3}, 1,1\right),(1,5,1,1,1),\left(2,2^{s} \neq 4, \frac{1}{2}, 2,1\right), \\ & \left(2,2^{s} \neq 4,2,1,2\right),\left(2,2^{s} \neq 4,2,2,1\right),\left(2,2^{s} \neq 4, \frac{1}{2}, 1,2\right) \\ & \left(l>2,2^{s}, \frac{1}{2}, 2,1\right),\left(l>2,2^{s}, 2,1,2\right),\left(l>2,2^{s}, 2, l, l-1\right) \\ & \left(l>2,2^{s}, \frac{1}{2}, l-1, l\right),(3,2,1,1,3),(3,2,1,3,1) \end{aligned}$	1
		(2, 4, 2, 1, 2), (2, 4, 2, 2, 1)	2
		$M=H_{o}\left(V_{i}, H_{\tau}\left(V_{j}, V_{k}\right)\right), \quad 1 \leqslant i, j, k \leqslant l, \quad \sigma, \tau \in \Gamma$	
n	dim_{K}	Exceptional (l, q, σ, τ, i, j, k)	Exceptional dim_{K}
0	0	$(1,2,1,1,1,1,1),(l, q, 1,1, i, j, i+j(\bmod l+1))$	1

Kleshchev (1994)

Let $\lambda \in X_{r}(T)$. Suppose that all weights spaces of $L(\lambda)$ are 1-dimensional. Then $\mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)=0$ except for the cases on the next slide. In the exceptional cases, one has

$$
\operatorname{dim} \mathrm{H}^{1}\left(A_{2}(4), L\left(3 \omega_{1}\right)\right)=\operatorname{dim} H^{1}\left(A_{2}(4), L\left(3 \omega_{2}\right)\right)=2,
$$

but in all other exceptional cases $\operatorname{dim} \mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)=1$.

Obtains upper bound estimates depending on the composition factors of $L(\lambda)$ restricted to a a suitable parabolic subgroup. Are 1-dimensional weight spaces essential, or just a convenient class of $L(\lambda)$??

Compare with work of Bell: Dimension of H^{1} can grow as λ gets large.

Group	Highest welght λ
$A_{1}\left(p^{n}\right), n>1$	$\begin{gathered} p^{j}\left(\omega_{1-1}+(p-2) \omega_{1}\right)+p^{j+1} \omega_{1}, p^{j}\left((p-2) \omega_{1}+\omega_{2}\right)+p^{j+1} \omega_{1} \\ j=0, \ldots, n-1 ; \\ \omega_{1}+p^{n-1}\left(\omega_{1-1}+(p-2) \omega_{1}\right), \omega_{1}+p^{n-1}\left((p-2) \omega_{1}+\omega_{2}\right) \end{gathered}$
$A_{2}\left(3^{n}\right)$	$3^{j}\left(\omega_{1}+\omega_{2}\right), j=0, \ldots, n-1$
$A_{3}\left(3^{n}\right)$	$3^{j}\left(2 \omega_{2}\right), j=0, \ldots, n-1$
$\mathrm{A}_{2}(2)$	ω_{1}, ω_{2}
$A_{3}(2)$	ω_{2}
$\mathrm{C}_{2}\left(5^{\text {n }}\right.$)	$5^{j}\left(2 \omega_{2}\right), \quad j=0, \ldots, n-1$
$\mathrm{C}_{2}(3)$	ω_{2}
$C_{3}\left(3^{n}\right)$	$3^{j} \omega_{\omega_{2}}, \quad t=0, \ldots, n-1$
$C_{4}\left(3^{n}\right)$	$3^{f_{\omega_{4}}}, \quad \mathrm{l}=0, \ldots, \mathrm{n}-1$
$C_{1}\left(2^{n}\right)$	$2^{j}{ }_{\omega_{1}}, J=0, \ldots, n-1$
$C_{2}\left(2^{n}\right)$	$2^{j_{\omega_{2}}}, j=0, \ldots, n-1$
$F_{4}\left(3^{n}\right)$	$3^{j_{\omega_{4}},} \mathfrak{J}=0, \ldots, n-1$
$G_{2}\left(3^{n}\right)$	$\omega_{1}+3^{n-1} \omega_{2}$
$G_{2}\left(2^{n}\right)$	$2^{J_{W_{1}},} \mathrm{~J}=0, \ldots, \mathrm{n}-1$

Want more direct comparisons between cohomology for G and $G\left(\mathbb{F}_{q}\right)$.

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G-module, and let $i \in \mathbb{N}$. Then for all sufficiently large e and q, the restriction map is an isomorphism

$$
\mathrm{H}^{i}\left(G, V^{(e)}\right) \xrightarrow{\sim} \mathrm{H}^{i}\left(G\left(\mathbb{F}_{q}\right), V^{(e)}\right) .
$$

Stable value of $\mathrm{H}^{i}\left(G\left(\mathbb{F}_{q}\right), V\right)$ when $q \gg 0$ is denoted $\mathrm{H}_{\text {gen }}^{i}(G, V)$.

$$
\begin{gathered}
\mathrm{H}^{i}(G, V) \longrightarrow \mathrm{H}^{i}(B, V) \\
\downarrow \\
\mathrm{H}^{i}\left(G\left(\mathbb{F}_{q}\right), V\right) \longleftrightarrow \mathrm{H}^{i}\left(B\left(\mathbb{F}_{q}\right), V\right) .
\end{gathered}
$$

Some sharper statements for 1- and 2-cohomology:

- If $p \neq 2$, then

$$
\mathrm{H}^{1}(G, V) \cong \mathrm{H}_{g e n}^{1}(G, V) \quad \text { and } \quad \mathrm{H}^{2}\left(G, V^{(1)}\right) \cong \mathrm{H}_{g e n}^{2}(G, V)
$$

- If $p \neq 2,3$ and if no root is a weight of V, then

$$
\mathrm{H}^{2}(G, V) \cong \mathrm{H}_{g e n}^{2}(G, V)
$$

- If $V^{T}=V^{T\left(\mathbb{F}_{q}\right)}$, then $\mathrm{H}^{1}(G, V) \hookrightarrow \mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), V\right)$.
- If U, W are finite-dimensional G-modules, and if every composition factor of U and W have q-restricted highest weights, then
$\mathrm{H}^{1}\left(G, \operatorname{Hom}_{k}(U, W)\right) \hookrightarrow \mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), \operatorname{Hom}_{k}(U, W)\right)$.
So for H^{1} and H^{2}, we can get answers in terms of G if we take $q \gg 0$, and if we sometimes also replace V by $V^{(1)}$ or $V^{(2)}$.

Consider the (exact!) induction functor $\operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}(-)=(-\otimes k[G])^{G\left(\mathbb{F}_{q}\right)}$. Generalized Frobenius Reciprocity: $\mathrm{H}^{n}\left(G, \operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}(N)\right) \cong \mathrm{H}^{n}\left(G\left(\mathbb{F}_{q}\right), N\right)$.

Bendel, Nakano, Pillen (2001)

Let $\pi \subset X(T)$ be a saturated set of weights, and let C_{π} be the category of G-modules all of whose highest weights lie in π. Let N be a $G\left(\mathbb{F}_{q}\right)$-module and let M be a G-module. Then there exists a spectral sequence

$$
E_{2}^{i, j}=\operatorname{Ext}_{G}^{i}\left(M, R^{j}\left(\mathcal{O}_{\pi} \circ \operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}\right)(N)\right) \Rightarrow \operatorname{Ext}_{G\left(\mathbb{F}_{q}\right)}^{i+j}(M, N) .
$$

Using this and related ideas, BNP have in a series of papers obtained many results relating cohomology for G and $G\left(\mathbb{F}_{q}\right)$, e.g., for $p>3(h-1)$, describe $\operatorname{Ext}_{G\left(\mathbb{F}_{q}\right)}^{1}$ between simple modules as $\operatorname{Ext}_{G}^{1}$ plus a remainder term.

There exists a short exact sequence

$$
0 \rightarrow k \rightarrow \operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}(k) \rightarrow N \rightarrow 0
$$

Let M be a rational G-module. From the tensor identity obtain

$$
0 \rightarrow M \rightarrow \operatorname{ind}_{G\left(\mathbb{F}_{q)}\right)}^{G}(M) \rightarrow M \otimes N \rightarrow 0
$$

Now using $\operatorname{Ext}_{G}^{n}\left(k, \operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}(M)\right) \cong \operatorname{Ext}_{G\left(\mathbb{F}_{q}\right)}^{n}(k, M)$, we get:

Long exact sequence for restriction

```
\(0 \rightarrow \operatorname{Hom}_{G}(k, M) \xrightarrow{\text { res }} \operatorname{Hom}_{G\left(\mathbb{F}_{q}\right)}(k, M) \rightarrow \operatorname{Hom}_{G}(k, M \otimes N)\)
\(\rightarrow \operatorname{Ext}_{G}^{1}(k, M) \xrightarrow{\text { res }} \operatorname{Ext}_{G\left(\mathbb{F}_{q}\right)}^{1}(k, M) \quad \rightarrow \operatorname{Ext}_{G}^{1}(k, M \otimes N)\)
\(\rightarrow \operatorname{Ext}_{G}^{2}(k, M) \xrightarrow{\text { res }} \operatorname{Ext}_{G\left(\mathbb{F}_{q}\right)}^{2}(k, M) \quad \rightarrow \operatorname{Ext}_{G}^{2}(k, M \otimes N)\)
```


Bendel, Nakano, Pillen (2010)

$\operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}(k)$ admits a filtration by G-submodules with sections of the form

$$
H^{0}(\mu) \otimes H^{0}\left(\mu^{*}\right)^{(r)} \quad \mu \in X(T)_{+}
$$

Corollary: $N=\operatorname{coker}\left(k \rightarrow \operatorname{ind}_{G\left(\mathbb{F}_{q}\right)}^{G}(k)\right)$ admits such a filtration with $\mu \neq 0$.

Then $\operatorname{Ext}_{G}^{i}(k, L(\lambda) \otimes N)=0$ if it is zero for each section, i.e., if for $\mu \neq 0$,

$$
\operatorname{Ext}_{G}^{i}\left(V(\mu)^{(r)}, L(\lambda) \otimes H^{0}(\mu)\right)=0
$$

Analyze the spectral sequences
$\operatorname{Ext}_{G / G_{r}}^{i}\left(V(\mu)^{(r)}, \operatorname{Ext}_{G_{r}}^{j}\left(k, L(\lambda) \otimes H^{0}(\mu)\right)\right) \Rightarrow \operatorname{Ext}_{G}^{i+j}\left(V(\mu)^{(r)}, L(\lambda) \otimes H^{0}(\mu)\right)$ and $\quad R^{i} \operatorname{ind}_{B / B_{r}}^{G / G_{r}} \operatorname{Ext}_{B_{r}}^{j}(k, L(\lambda) \otimes \mu) \Rightarrow \operatorname{Ext}_{G_{r}}^{i+j}\left(k, L(\lambda) \otimes H^{0}(\mu)\right)$.

The strategy is approximated by the following diagram stolen from BNP:

```
    Induction
    Functor
H
    | Filtrations
    H}\mp@subsup{H}{}{i}(G,\mp@subsup{H}{}{0}(\lambda)\otimesH(\mp@subsup{\lambda}{}{*}\mp@subsup{)}{}{(r)})\quad\Longrightarrow\quad\mp@subsup{\textrm{H}}{}{i}(\mp@subsup{G}{1}{},\mp@subsup{H}{}{0}(\lambda))\quad\Longrightarrow\quad\mathrm{ Root Combinatorics.
        LHS Spectral Kostant Partition
    Sequences Functions
```


Theorem (UGA VIGRE Algebra Group)

Let $\lambda \in X_{r}(T)$. Suppose $\operatorname{Ext}_{U_{r}}^{1}(k, L(\lambda))$ is semisimple as a B / U_{r}-module, and that $\operatorname{Ext}_{U_{r}}^{1}(k, L(\lambda))^{T\left(\mathbb{F}_{q}\right)}=\operatorname{Ext}_{U_{r}}^{1}(k, L(\lambda))^{T}$. Then

$$
\mathrm{H}^{1}(G, L(\lambda)) \cong \mathrm{H}^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right) .
$$

Theorem (UGA VIGRE Algebra Group)

Let $\lambda \in X_{r}(T)$. Suppose $\operatorname{Ext}_{U_{r}}^{1}(k, L(\lambda))$ is semisimple as a B / U_{r}-module, that $\operatorname{Ext}_{U_{r}}^{i}(k, L(\lambda))^{T\left(\mathbb{F}_{q}\right)}=\operatorname{Ext}_{U_{r}}^{i}(k, L(\lambda))^{T}$ for $i \in\{1,2\}$, and that

$$
p^{r}>\max \left\{-\left(\nu, \gamma^{\vee}\right): \gamma \in \Delta, \nu \in X(T), \operatorname{Ext}_{U_{r}}^{1}(k, L(\lambda))_{\nu} \neq 0\right\} .
$$

Then $\mathrm{H}^{2}(G, L(\lambda)) \cong \mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$.

Critical calculation using Andersen's results on B-cohomology and lots of weight combinatorics:

Theorem 3.2.4. Suppose $\lambda \in X(T)_{+}$is a dominant root or is less than or equal to a fundamental weight. Assume that $p>5$ if Φ is of type E_{8} or G_{2}, and $p>3$ otherwise. Then as a B / U_{r}-module, $\operatorname{Ext}_{U_{r}}^{1}(L(\lambda), k)=$ $\operatorname{soc}_{B / U_{r}} \operatorname{Ext}_{U_{r}}^{1}(L(\lambda), k)$, that is,

$$
\operatorname{Ext}_{U_{r}}^{1}(L(\lambda), k) \cong \bigoplus_{\alpha \in \Delta}-s_{\alpha} \cdot \lambda \oplus \bigoplus_{\substack{\alpha \in \Delta \\ 0<n<r}}-\left(\lambda-p^{n} \alpha\right) \oplus \bigoplus_{\substack{\sigma \in X(T)_{+} \\ \sigma<\lambda}}(-\sigma)^{\oplus m_{\sigma}}
$$

where $m_{\sigma}=\operatorname{dim} \operatorname{Ext}_{G}^{1}\left(L(\lambda), H^{0}(\sigma)\right)$.

First Cohomology Main Theorem

Let $\lambda \in X(T)_{+}$be a fundamental dominant weight. Assume $q>3$ and

$$
\begin{array}{ll}
p>2 & \text { if } \Phi \text { has type } A_{n}, D_{n} ; \\
p>3 & \text { if } \Phi \text { has type } B_{n}, C_{n}, E_{6}, E_{7}, F_{4}, G_{2} ; \\
p>5 & \text { if } \Phi \text { has type } E_{8} .
\end{array}
$$

Then $\operatorname{dim} H^{1}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)=\operatorname{dim} H^{1}(G, L(\lambda)) \leq 1$.

Space nonzero (and one-dimensional) in the following cases:

- Φ has type $E_{7}, p=7$, and $\lambda=\omega_{6}$; and
- Φ has type $C_{n}, n \geq 3$, and $\lambda=\omega_{j}$ with $\frac{j}{2}$ a nonzero term in the p-adic expansion of $n+1$, but not the last term in the expansion.

Reasons for vanishing: Linkage principle for $G, \operatorname{Ext}_{G}^{1}\left(V(0), H^{0}(\lambda)\right)=0$. Reasons for non-vanishing: Weyl module structure.

Second Cohomology Main Theorem A

Suppose $p>3$ and $q>5$. Let $\lambda \in X(T)_{+}$be less than or equal to a fundamental dominant weight. Assume also that λ is not a dominant root. Then $\mathrm{H}^{2}(G, L(\lambda)) \cong \mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$.

Corollary

Suppose p, q, λ are as above. Then $\mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)=0$ except possibly in a small number of explicit cases in exceptional types, and in type C_{n} when $\lambda=\omega_{j}$ with j even and $p \leq n$.

Don't know $\mathrm{H}^{2}\left(G, L\left(\omega_{j}\right)\right)$ for all even j in type C_{n} when $p \leq n$. Come back to this at the end ...

Second Cohomology Main Theorem B

Let $p>3$ and $q>5$. Let $\lambda=\widetilde{\alpha}$ (highest root). Assume $p \nmid n+1$ in type A_{n}, and $p \nmid n-1$ in type B_{n}. Then

$$
\mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), L(\widetilde{\alpha})\right)=k
$$

Also have $\mathrm{H}^{2}\left(A_{2}(5), L\left(\omega_{1}\right)\right)=\mathrm{H}^{2}\left(A_{2}(5), L\left(\omega_{2}\right)\right)=k$.

Different strategy for this case in analyzing the long exact sequence.
$\rightarrow \mathrm{H}^{2}(G, L(\lambda)) \rightarrow \mathrm{H}^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right) \rightarrow \mathrm{H}^{2}(G, L(\lambda) \otimes N) \rightarrow \mathrm{H}^{3}(G, L(\lambda)) \rightarrow$
Prove that $H^{2}\left(G\left(\mathbb{F}_{q}\right), L(\lambda)\right)$ is isomorphic to the cohomology of a single filtration layer in $\mathrm{H}^{2}(G, L(\lambda) \otimes N)$, i.e., layer for $H^{0}(\widetilde{\alpha}) \otimes H^{0}(\widetilde{\alpha})^{(r)}$.
cf. to CPSvdK: $\mathrm{H}^{2}\left(G, V^{(1)}\right) \cong \mathrm{H}_{g e n}^{2}(G, V)$ if $p \neq 2$.

Adamovich described combinatorially the submodule structure of Weyl modules in Type C having fundamental highest weight. We use this and $\operatorname{Ext}_{C_{n}}^{2}\left(k, L\left(\omega_{j}\right)\right) \cong \operatorname{Ext}_{C_{n}}^{1}\left(\operatorname{rad}_{G} V\left(\omega_{j}\right), k\right)$ to make computations.

Values of n and j for which $\mathrm{H}^{2}\left(S p_{2 n}, L\left(\omega_{j}\right)\right) \neq 0, p=3$.
In each case, H^{2} is 1-dimensional.

n	j
6	6
7	6
8	
9	6
10	6
11	
12	6
13	6
14	

n	j
15	6,8
16	6,10
17	
18	6,14
19	6,16
20	18
21	6,18
22	6,18
23	18

n	j
24	$6,8,18$
25	$6,10,18$
26	
27	6,14
28	6,16
29	18
30	6,18
31	6,18
32	18

n	j
33	$6,8,18$
34	$6,10,18$
35	
36	6,14
37	6,16
38	18
39	$6,18,20$
40	$6,18,22$

For $n=12$, we have also $\mathrm{H}^{1}\left(S p_{2 n}, L\left(\omega_{6}\right)\right) \neq 0$ (parity vanishing violated).

Values of n and j for which $\mathrm{H}^{2}\left(S p_{2 n}, L\left(\omega_{j}\right)\right) \neq 0: p=5$.
In each case, H^{2} is 1-dimensional.

n	j	n	j	n	j	n	j	n	j
10	10	20	10	30	10	40	10, 22	50	10, 42
11	10	21	10	31	10	41	10, 24	51	10, 44
12	10	22	10	32	10	42	10, 26	52	10, 46
13	10	23	10	33	10	43	10, 28	53	10, 48
14		24		34		44		54	50
15	10	25	10	35	10, 12	45	10, 32		
16	10	26	10	36	10, 14	46	10, 34		
17	10	27	10	37	10, 16	47	10, 36		
18	10	28	10	38	10, 18	48	10, 38		
19		29		39		49			

For $n=30$, we also have $\mathrm{H}^{1}\left(S p_{2 n}, L\left(\omega_{10}\right)\right) \neq 0$ (parity vanishing violated).

