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Notation and preliminaries Notation

• G - simple, simply-connected algebraic group scheme over k = Fp

• B = T n U - “Borus”

• Φ ⊃ Φ+ ⊃ ∆ - root system, positive subsystem, simple roots

• W - Weyl group

• X (T ) ⊃ X (T )+ - weight lattice, subset of dominant weights

• F : G → G - Frobenius morphism

• G (Fq) = GF r
- finite subgroup of Fq-rational points in G , q = pr

• B(Fq), T (Fq), U(Fq) - finite subgroups of B,T ,U

• Gr = ker(F r : G → G ) - r -th Frobenius kernel of G

e.g.,

• G = SLn

• G (Fq) = SLn(Fq)

• B,T - lower triangular, diagonal matrices in G

• F ((aij)) = (apij)
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Notation and preliminaries Preliminaries

We have various rational G -modules associated to each λ ∈ X (T )+:

• H0(λ) = indG
B (λ) - induced module

• V (λ) = H0(−w0λ)∗ - Weyl module

• L(λ) = socG H0(λ) = V (λ)/ radG V (λ) - irreducible module

Facts:

• For all n ≥ 0, Hn(G (Fq),V ) ↪→ Hn(B(Fq),V ) = Hn(U(Fq),V )T (Fq).

• Set Xr (T ) = {λ ∈ X (T )+ : 0 ≤ (λ, α∨) < pr for all α ∈ ∆}.
The L(λ) for λ ∈ Xr (T ) form a complete set of pairwise
nonisomorphic irreducible G (Fq)-modules (and similarly for Gr ).

• ExtiG (V (λ),H0(µ)) 6= 0 only if i = 0 and λ = µ.
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Notation and preliminaries Preliminaries

Goal

Given λ ∈ Xr (T ), compute H1(G (Fq), L(λ)) and H2(G (Fq), L(λ)).

Subgoals (i.e., what people have actually managed to do):

• Compute for L(λ) in various classes of modules.

• Determine sufficient conditions for the cohomology groups to vanish.

• Compute under restrictions on p and q (specific small values, or � 0).
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Summary of some earlier work and calculations Cline, Parshall, Scott (1975, 1977), Jones (1975)

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Computed H1(G (Fq), L(λ)) for λ a minimal nonzero dominant weight, i.e.,
for λ a minuscule weight or a maximal short root.

• No restrictions on p or q.

• Included the twisted groups of Steinberg, Ree, and Suzuki.

• Lower bound: dim radG V (λ) ≤ dim H1(G (Fq), L(λ))

• Upper bound:∑
α∈∆

dimZ 1(Uα(Fq),V )T (Fq) − dimV T (Fq) + dimV B(Fq).

• Requires analyzing whether weights of V are Galois equivalent to
roots, i.e., whether σ ◦ ω|T (Fq) = β|T (Fq) for some σ ∈ Gal(Fq).
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Summary of some earlier work and calculations Avrunin (1978)

Avrunin (1978)

Suppose for all weights µ of T (Fq) in V and for all α, β ∈ Φ that α 6≡ µ
and (α, β) 6≡ µ mod Gal(Fq). Then H2(G (Fq),V ) = 0.

• Look at a central series for U(Fq) where the factors are products of
root subgroups to analyze the weights of T (Fq) in H2(U(Fq),V ).

• Use this to deduce that H2(U(Fq),V )T (Fq) = 0.

• Now use the fact that H2(G (Fq),V ) ↪→ H2(B(Fq),V ).

Corollary (Avrunin)

Suppose q > 3. Let λ ∈ X (T )+ be minuscule. Then H2(G (Fq), L(λ)) = 0,
except possibly in the cases shown on the next slide.
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A VANISHING THEOREM FOR COHOMOLOGY 387 

G 
- 

A,(q) 
A&) 
A&) 

A,(q), n 3 3 
B&d 
B,(q) 
G(q) 
D,(q) 
D,(q) 

D,(q), n >, 3 
24q”) 
2Mz2) 
2A,(q2) 
2c2(!72) 

24(q2) 
2D,W-) 

2D,(q2), n > 3 
3D,(q3) 
2Es(q2) 

P x 

2” 
$3” 
2’i 
4 
2k 
2L 
2” 
4 
2” 
2” 

4,37( 
2” 
4 

22k+1/2 

4 
2” 
2k 
2k 
4 

A few of these possibilities are, in fact, not exceptions. In unpublished work, 
McLaughlin has shown that the cohomology groups vanish in the cases above 
where G is A,(4), A,(4) with h = h, or h, , or D,(4) with X = h, or X2 . Landazuri 
[9] has shown that H2(A,(4), V(X)) = 0 for h = h, or h,-, , and the author 
[2] has shown that H2(2A,(16), V(h)) = 0 for h = X, or X3. 

Nonzero cohomology is known in some of these cases. McLaughlin has shown 
that the cohomology groups are nontrivial when G is A,(2”) with K > 2, A,(3”) 
with k > 1 or A,(5). Landazuri proved in [9] that N2(B,(2k), V(A,)) # 0 for 
n = 3,4 and K > 2. Bell has computed the second degree cohomology of the 
Suzuki groups on V(X,) in [3]; this is nonzero if q2 > 8. Also, it follows from 
work of Griess [8] that the second degree cohomology groups of C,(2”), D,(2”), 
and 2D,(22r) on V(X,) are nonzero. Finally, the author [2] has shown that 
H2(2A2(q2), V(h,)) # 0 for i = 1, 2 and q2 = 16 or 32”. 

REFERENCES 

1. G. S. AVRUNIN, “Second Degree Cohomology of Groups of Lie Type,” Ph.D. 
Thesis, The University of Michigan, 1976. 
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Summary of some earlier work and calculations Bell (1978)

Bell (1978)

Computed Ext1
SLn+1(Fq)(V σ

i ,V
τ
j ) for all 1 ≤ i , j ≤ n and σ, τ ∈ Gal(Fq).

Here Vi = Λi (V ) where V is the natural representation. Have V = L(ωi ).

• Rank one calculations preformed by hand.

• For higher ranks, use an LHS spectral sequence and induction on the
rank to compute for an appropriate maximal parabolic subgroup.

• When nonzero for the parabolic, explicitly construct a cocycle, and
then determine whether it can be extended to all of SLn+1(Fq).
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FINITE SPECIAL LINEAR GROUP, I 217 

the a-semilinear maps from U to W, and let W denote the module obtained from 
7J by twisting by the automorphism a. Then Table I gives the K-dimension of 
the groups H”(SL,+,(q), M) for various n, I, q, M. 

TABLE I 

dim, ff”WL+dqh Ml 

M = v,, l<i<l 

Exceptional 
n dim, Exceptional (1, q, i) dim, 

0 0 None - 

1 0 (1,2” > 2, 11, (292, 11, (2,2,2), (3,292) 1 

2 0 (1,2” > 4, l), (2, 3” > 3, l), (2, 3’ > 3,2),(2,5, 11, (2,5,2), 1 
(292, I), (2,2,2h (3,2,1), (3,2, 3h (3,2# > 2,2), 
(4,2, 11, (4,2,4) 

M = HJV< 9 Vj), 1 < i,.i < 1, OEr 

Exceptional 
n dim, Exceptional (1, q, o, i, j) dim, 

0 0 (44, 1,&i) 1 

1 0 q = 2with{i,j}n{1,1} = ,U ? 

(1, 3”, fr, 1, l), (1, 5, 1, 1, I), (2, 2” # 4,&, 2, 11, 1 
(2, 2” # 4,2, 1,2), (2,2’ # 4,2,2, l), (2, 2” # 4,&, 1,2) 
(I > 2, 2, +, 2, l), (1 > 2, 28, 2, 1, 2), (E > 2, 23, 2, 1, 1 - 1) 
(I > 2,2”, ;, l - 1, 0, (3, 2, 1, 1, 31, (3, 2, 1, 3, 1) 

(2,4,2,1,2), (2,4,2,2, 1) 2 

M = HJiV<, HJIVj 9 Vd), 1 < i, j, k < I, o,TEr 

Exceptional 
n dim, Exceptional (I, q, o, 7, i, j, k) dim, 

0 0 (1,2,1,1,1,1,1),(1,9,1,1,i,j,i+j(modI+l)) 1 

Remark 1. Sah [19] has shown that F(SL,+,(2), Hom,(Vi , V,)) # 0 when 
Ii-j] = 1. 

Remark 2. Since Ext,, ,+,(d( Vi”, V/) e F(SL,+,(2), Ho,-I( Vi , V,)) (see 
[ 13, Chap. lo] for the first isomorphism and (1 .l) and Lemma 1. I for the 
second), the results of Table I give a classification of the KSL1+I(q) extensions of 



Summary of some earlier work and calculations Kleshchev (1994)

Kleshchev (1994)

Let λ ∈ Xr (T ). Suppose that all weights spaces of L(λ) are 1-dimensional.
Then H1(G (Fq), L(λ)) = 0 except for the cases on the next slide. In the
exceptional cases, one has

dim H1(A2(4), L(3ω1)) = dim H1(A2(4), L(3ω2)) = 2,

but in all other exceptional cases dim H1(G (Fq), L(λ)) = 1.

Obtains upper bound estimates depending on the composition factors of
L(λ) restricted to a a suitable parabolic subgroup. Are 1-dimensional
weight spaces essential, or just a convenient class of L(λ)??

Compare with work of Bell: Dimension of H1 can grow as λ gets large.
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Summary of some earlier work and calculations Cline, Parshall, Scott, van der Kallen (1977)

Want more direct comparisons between cohomology for G and G (Fq).

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G -module, and let i ∈ N. Then for
all sufficiently large e and q, the restriction map is an isomorphism

Hi (G ,V (e))
∼−→ Hi (G (Fq),V (e)).

Stable value of Hi (G (Fq),V ) when q � 0 is denoted Hi
gen(G ,V ).

Hi (G ,V )

��

∼ // Hi (B,V )

��
Hi (G (Fq),V ) �

� // Hi (B(Fq),V ).
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Summary of some earlier work and calculations Cline, Parshall, Scott, van der Kallen (1977)

Some sharper statements for 1- and 2-cohomology:

• If p 6= 2, then

H1(G ,V ) ∼= H1
gen(G ,V ) and H2(G ,V (1)) ∼= H2

gen(G ,V ).

• If p 6= 2, 3 and if no root is a weight of V , then

H2(G ,V ) ∼= H2
gen(G ,V ).

• If V T = V T (Fq), then H1(G ,V ) ↪→ H1(G (Fq),V ).

• If U,W are finite-dimensional G -modules, and if every composition
factor of U and W have q-restricted highest weights, then

H1(G ,Homk(U,W )) ↪→ H1(G (Fq),Homk(U,W )).

So for H1 and H2, we can get answers in terms of G if we take q � 0, and
if we sometimes also replace V by V (1) or V (2).
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Summary of some earlier work and calculations Bendel, Nakano, Pillen (2001–present)

Consider the (exact!) induction functor indG
G(Fq)(−) = (−⊗ k[G ])G(Fq).

Generalized Frobenius Reciprocity: Hn(G , indG
G(Fq)(N)) ∼= Hn(G (Fq),N).

Bendel, Nakano, Pillen (2001)

Let π ⊂ X (T ) be a saturated set of weights, and let Cπ be the category of
G -modules all of whose highest weights lie in π. Let N be a G (Fq)-module
and let M be a G -module. Then there exists a spectral sequence

E i ,j
2 = ExtiG (M,R j(Oπ ◦ indG

G(Fq))(N))⇒ Exti+j
G(Fq)(M,N).

Using this and related ideas, BNP have in a series of papers obtained
many results relating cohomology for G and G (Fq), e.g., for p > 3(h − 1),
describe Ext1

G(Fq) between simple modules as Ext1
G plus a remainder term.
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Understanding restriction A long exact sequence for restriction

There exists a short exact sequence

0→ k → indG
G(Fq)(k)→ N → 0.

Let M be a rational G -module. From the tensor identity obtain

0→ M → indG
G(Fq)(M)→ M ⊗ N → 0.

Now using ExtnG (k, indG
G(Fq)(M)) ∼= ExtnG(Fq)(k ,M), we get:

Long exact sequence for restriction

0 → HomG (k,M)
res→ HomG(Fq)(k,M) → HomG (k ,M ⊗ N)

→ Ext1
G (k ,M)

res→ Ext1
G(Fq)(k ,M) → Ext1

G (k ,M ⊗ N)

→ Ext2
G (k ,M)

res→ Ext2
G(Fq)(k ,M) → Ext2

G (k ,M ⊗ N)

→ · · ·
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Understanding restriction Analyzing terms via filtrations

Bendel, Nakano, Pillen (2010)

indG
G(Fq)(k) admits a filtration by G -submodules with sections of the form

H0(µ)⊗ H0(µ∗)(r) µ ∈ X (T )+.

Corollary: N = coker(k → indG
G(Fq)(k)) admits such a filtration with µ 6= 0.

Then ExtiG (k, L(λ)⊗ N) = 0 if it is zero for each section, i.e., if for µ 6= 0,

ExtiG (V (µ)(r), L(λ)⊗ H0(µ)) = 0.

Analyze the spectral sequences

ExtiG/Gr
(V (µ)(r),ExtjGr

(k , L(λ)⊗H0(µ)))⇒ Exti+j
G (V (µ)(r), L(λ)⊗H0(µ))

and R i ind
G/Gr

B/Br
ExtjBr

(k, L(λ)⊗ µ)⇒ Exti+j
Gr

(k , L(λ)⊗ H0(µ)).
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Cohomology of Finite Groups of Lie Type 3

1.2

The strategy in addressing (1.1.1) and (1.1.2) will entail using new and powerful

techniques developed by the authors, which relate Hi(G(Fq), k) to extensions over G via a

truncated version of the induction functor (cf. [4–6, 8, 9]). An outline of the overall strat-

egy is presented in the diagram below. For the purposes in this paper we use a nontrun-

cated induction functor Gr(−) and provide new structural information about the image

of this functor (via the Lang map). In particular, we demonstrate that, when applied

to the trivial module k, Gr(k) has a filtration with factors of the form H0(λ) ⊗ H0(λ∗)(r)

(cf. Proposition 2.2). The G-cohomology of these factors can be analyzed by using the

Lyndon–Hochschild–Serre (LHS) spectral sequence involving the first Frobenius kernel

Gr (cf. Section 3.1). In particular for r = 1, we can apply the results of Kumar et al. [23] to

bound the dimension of the cohomology group H•(G(Fp), k) from above (cf. Theorem 3.1).

The upper bound on the dimension involves the combinatorics of the well-studied

Kostant Partition Function. This reduces the question of the vanishing of the finite group

cohomology to a question involving the combinatorics of the underlying root system Φ.

Hi(G(Fq), k) $⇒

Induction
Functor

Hi(G,Gr(k))

Hi(G, H0(λ) ⊗ H(λ∗)(r)) $⇒

⇓

LHS Spectral

Filtrations

Sequences

Hi(G1, H0(λ)) $⇒

Kostant Partition
Functions

Root Combinatorics.

More specifically, we show in Theorem 4.1 that, under the assumption p> h (the

Coxeter number), Hi(G(Fq), k) always vanishes for 0 < i < r(p− 2). This universal bound

improves upon (in almost all cases) the vanishing ranges of [18]. Furthermore, in type Cn

and An, we identify a sharp vanishing bound which addresses (1.1.2) (cf. Theorems 5.2,

6.3, 6.4). These bounds are established for primes larger than the Coxeter number, except

for type An with r > 1 where sharp vanishing bounds are found for p greater than twice

the Coxeter number. Finally, as a demonstration of the effectiveness of our methods, we

verify Barbu’s Conjecture for G = GLn(Fq) when n≥ 2 and p≥ n+ 2 (cf. Theorem 6.5).

Our results provide a conceptual description of how the geometry of the nilpo-

tent cone plays a role in the description of the cohomology Hi(G(Fp), k). In particular,

 at U
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The strategy is approximated by the following diagram stolen from BNP:



Understanding restriction Isomorphisms with G cohomology

Theorem (UGA VIGRE Algebra Group)

Let λ ∈ Xr (T ). Suppose Ext1
Ur

(k , L(λ)) is semisimple as a B/Ur -module,

and that Ext1
Ur

(k, L(λ))T (Fq) = Ext1
Ur

(k , L(λ))T . Then

H1(G , L(λ)) ∼= H1(G (Fq), L(λ)).

Theorem (UGA VIGRE Algebra Group)

Let λ ∈ Xr (T ). Suppose Ext1
Ur

(k , L(λ)) is semisimple as a B/Ur -module,

that ExtiUr
(k , L(λ))T (Fq) = ExtiUr

(k , L(λ))T for i ∈ {1, 2}, and that

pr > max
{
−(ν, γ∨) : γ ∈ ∆, ν ∈ X (T ),Ext1

Ur
(k, L(λ))ν 6= 0

}
.

Then H2(G , L(λ)) ∼= H2(G (Fq), L(λ)).
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34 University of Georgia VIGRE Algebra Group / Journal of Algebra 360 (2012) 21–52

We now give conditions under which Ext1
Ur

(L(λ),k) is semisimple as a B/Ur -module.

Theorem 3.2.4. Suppose λ ∈ X(T )+ is a dominant root or is less than or equal to a fundamental weight.
Assume that p > 5 if Φ is of type E8 or G2 , and p > 3 otherwise. Then as a B/Ur -module, Ext1

Ur
(L(λ),k) =

socB/Ur Ext1
Ur

(L(λ),k), that is,

Ext1
Ur

(
L(λ),k

) ∼=
⊕

α∈$

−sα · λ ⊕
⊕

α∈$
0<n<r

−
(
λ − pnα

)
⊕

⊕

σ∈X(T )+
σ<λ

(−σ )⊕mσ

where mσ = dim Ext1
G(L(λ), H0(σ )).

Proof. The strategy is the same as for the proof of [UGA2, Theorem 3.4.1]. Set M = Ext1
Ur

(L(λ),k), and
let Q be the injective B/Ur -module defined in (3.2.1). Define submodules Q 1, Q 2, Q 3 of Q by

Q 1 =
⊕

α∈$

Ir(−sα · λ),

Q 2 =
⊕

α∈$,0<n<r

Ir
(
−λ + pnα

)
, and

Q 3 =
⊕

σ∈X(T )+,σ<λ

Ir(−σ )⊕mσ .

The goal is to show that no weight from the second socle layer of Q is a weight of M .
First suppose that a weight from the second socle layer of Q 1 is a weight of M . Then by Lem-

mas 3.2.1 and 3.2.2, there exist simple roots α,β,γ ∈ $, integers m ! r and 0 " i < r, and a weight ν
of L(λ) such that −sα · λ + pmγ = piβ − ν , that is, such that

λ − ν = −piβ + pmγ +
(
λ + ρ,α∨)

α. (3.2.2)

Since λ ! ν and α, β , and γ are simple, this implies that β ∈ J := {α,γ }, and hence that ν is a
weight of the P J -module H0

J (λ); see [Jan2, II.5.21]. If (Φ, J ,λ) = (B2,$, α̃), then one can verify by
hand for every weight ν of H0(α̃) that the difference α̃ − ν cannot be written the form (3.2.2).
So suppose (Φ, J ,λ) &= (B2,$, α̃). Observe that the expression on the right-hand side of (3.2.2) has
height −pi + pm + (λ + ρ,α∨) ! p. In [UGA2, §7.2] we computed all possible differences λ − ν for ν
a weight of H0

J (λ) under the assumptions that λ is not orthogonal to Φ J and (Φ, J ,λ) &= (B2,$, α̃).
From the calculations there, one sees by the assumptions on p that the difference λ − ν always has
height strictly less than p, except for a few cases when (Φ, J ,λ, p) = (G2,$,ω2,7); for these extra
cases in type G2, one can rule out a solution to (3.2.2) by hand. Thus, if λ is not orthogonal to Φ J
and if (Φ, J ,λ) &= (B2,$, α̃), then (3.2.2) has no solution. Finally, if λ is orthogonal to Φ J , that is, if
(λ,α∨) = (λ,γ ∨) = 0, then dim H0

J (λ) = 1 and λ − ν = 0. This also contradicts the lower bound on
the height of λ − ν , so we conclude in all cases that no weight from the second socle layer of Q 1 is
a weight of M .

Next suppose that a weight from the second socle layer of Q 2 is a weight of M . Then as in the
previous paragraph, there exist simple roots α,β,γ ∈ $, integers 0 < n < r, m ! r, and 0 " i < r, and
a weight ν of L(λ) such that −λ + pnα + pmγ = piβ − ν , that is, such that

λ − ν = −piβ + pmγ + pnα. (3.2.3)

As in the previous paragraph, ν must be a weight of H0
J (λ), where J = {α,γ }. The right-hand side

of (3.2.3) has height −pi + pm + pn ! 2p−1. Then an analysis similar to that of the previous paragraph
shows for every weight ν of H0

J (λ) that the difference λ−ν has height strictly less than 2p − 1. Thus,

Critical calculation using Andersen’s results on B-cohomology and lots of
weight combinatorics:



Understanding restriction Results for 1- and 2-cohomology

First Cohomology Main Theorem

Let λ ∈ X (T )+ be a fundamental dominant weight. Assume q > 3 and

p > 2 if Φ has type An, Dn;
p > 3 if Φ has type Bn, Cn, E6, E7, F4, G2;
p > 5 if Φ has type E8.

Then dim H1(G (Fq), L(λ)) = dim H1(G , L(λ)) ≤ 1.

Space nonzero (and one-dimensional) in the following cases:

• Φ has type E7, p = 7, and λ = ω6; and

• Φ has type Cn, n ≥ 3, and λ = ωj with j
2 a nonzero term in the

p-adic expansion of n + 1, but not the last term in the expansion.

Reasons for vanishing: Linkage principle for G , Ext1
G (V (0),H0(λ)) = 0.

Reasons for non-vanishing: Weyl module structure.
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Understanding restriction Results for 1- and 2-cohomology

Second Cohomology Main Theorem A

Suppose p > 3 and q > 5. Let λ ∈ X (T )+ be less than or equal to a
fundamental dominant weight. Assume also that λ is not a dominant root.
Then H2(G , L(λ)) ∼= H2(G (Fq), L(λ)).

Corollary

Suppose p, q, λ are as above. Then H2(G (Fq), L(λ)) = 0 except possibly in
a small number of explicit cases in exceptional types, and in type Cn when
λ = ωj with j even and p ≤ n.

Don’t know H2(G , L(ωj)) for all even j in type Cn when p ≤ n.
Come back to this at the end . . .
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Understanding restriction Results for 1- and 2-cohomology

Second Cohomology Main Theorem B

Let p > 3 and q > 5. Let λ = α̃ (highest root). Assume p - n + 1 in type
An, and p - n − 1 in type Bn. Then

H2(G (Fq), L(α̃)) = k.

Also have H2(A2(5), L(ω1)) = H2(A2(5), L(ω2)) = k.

Different strategy for this case in analyzing the long exact sequence.

→ H2(G , L(λ))→ H2(G (Fq), L(λ))→ H2(G , L(λ)⊗N)→ H3(G , L(λ))→

Prove that H2(G (Fq), L(λ)) is isomorphic to the cohomology of a single
filtration layer in H2(G , L(λ)⊗ N), i.e., layer for H0(α̃)⊗ H0(α̃)(r).

cf. to CPSvdK: H2(G ,V (1)) ∼= H2
gen(G ,V ) if p 6= 2.
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2-cohomology in Type C for even fundamental weights

Adamovich described combinatorially the submodule structure of Weyl
modules in Type C having fundamental highest weight. We use this and
Ext2

Cn
(k , L(ωj)) ∼= Ext1

Cn
(radG V (ωj), k) to make computations.

i ←→ L(ωi )

i Ext1
Cn

(k , L(ωi )) ∼= k .

i [V (ωi ) : k] = 1

i neither
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2-cohomology in Type C for even fundamental weights

Values of n and j for which H2(Sp2n, L(ωj)) 6= 0, p = 3.

In each case, H2 is 1-dimensional.

n j

6 6
7 6
8
9 6

10 6
11
12 6
13 6
14

n j

15 6, 8
16 6, 10
17
18 6, 14
19 6, 16
20 18
21 6, 18
22 6, 18
23 18

n j

24 6, 8, 18
25 6, 10, 18
26
27 6, 14
28 6, 16
29 18
30 6, 18
31 6, 18
32 18

n j

33 6, 8, 18
34 6, 10, 18
35
36 6, 14
37 6, 16
38 18
39 6, 18, 20
40 6, 18, 22

For n = 12, we have also H1(Sp2n, L(ω6)) 6= 0 (parity vanishing violated).
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2-cohomology in Type C for even fundamental weights

Values of n and j for which H2(Sp2n, L(ωj)) 6= 0: p = 5.

In each case, H2 is 1-dimensional.

n j

10 10
11 10
12 10
13 10
14
15 10
16 10
17 10
18 10
19

n j

20 10
21 10
22 10
23 10
24
25 10
26 10
27 10
28 10
29

n j

30 10
31 10
32 10
33 10
34
35 10, 12
36 10, 14
37 10, 16
38 10, 18
39

n j

40 10, 22
41 10, 24
42 10, 26
43 10, 28
44
45 10, 32
46 10, 34
47 10, 36
48 10, 38
49

n j

50 10, 42
51 10, 44
52 10, 46
53 10, 48
54 50

For n = 30, we also have H1(Sp2n, L(ω10)) 6= 0 (parity vanishing violated).
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