1- and 2- cohomology for algebraic groups and finite groups of Lie type

Christopher Drupieski (UGA)

AIM Workshop on Cohomology Bounds and Growth Rates

June 5, 2012

- Notation and preliminaries
- Summary of some earlier work and calculations
 - Results that do not attempt a direct comparison to G-cohomology
 - Results that attempt a comparison to G-cohomology
- **1** Understanding restriction from G to $G(\mathbb{F}_q)$
 - Induction functors, long exact sequence for restriction, filtrations
 - Results for 1- and 2-cohomology
- Some examples and open questions for symplectic groups

- ullet G simple, simply-connected algebraic group scheme over $k=\overline{\mathbb{F}}_p$
- $B = T \ltimes U$ "Borus"
- $\Phi \supset \Phi^+ \supset \Delta$ root system, positive subsystem, simple roots
- W Weyl group
- $X(T) \supset X(T)_+$ weight lattice, subset of dominant weights
- ullet F:G o G Frobenius morphism
- $G(\mathbb{F}_q)=G^{F'}$ finite subgroup of \mathbb{F}_q -rational points in $G,\ q=p^r$
- $B(\mathbb{F}_q)$, $T(\mathbb{F}_q)$, $U(\mathbb{F}_q)$ finite subgroups of B, T, U
- $G_r = \ker(F^r : G \to G)$ r-th Frobenius kernel of G

e.g.,

- $G = SL_n$
- $G(\mathbb{F}_q) = SL_n(\mathbb{F}_q)$
- B, T lower triangular, diagonal matrices in G
- $F((a_{ij})) = (a_{ii}^p)$

We have various rational *G*-modules associated to each $\lambda \in X(T)_+$:

- $H^0(\lambda) = \operatorname{ind}_B^G(\lambda)$ induced module
- $V(\lambda) = H^0(-w_0\lambda)^*$ Weyl module
- $L(\lambda) = \operatorname{soc}_G H^0(\lambda) = V(\lambda) / \operatorname{rad}_G V(\lambda)$ irreducible module

Facts:

- For all $n \geq 0$, $H^n(G(\mathbb{F}_q), V) \hookrightarrow H^n(B(\mathbb{F}_q), V) = H^n(U(\mathbb{F}_q), V)^{T(\mathbb{F}_q)}$.
- Set $X_r(T) = \{\lambda \in X(T)_+ : 0 \le (\lambda, \alpha^{\vee}) < p^r \text{ for all } \alpha \in \Delta\}.$ The $L(\lambda)$ for $\lambda \in X_r(T)$ form a complete set of pairwise nonisomorphic irreducible $G(\mathbb{F}_q)$ -modules (and similarly for G_r).
- $\operatorname{Ext}_G^i(V(\lambda), H^0(\mu)) \neq 0$ only if i = 0 and $\lambda = \mu$.

Goal

Given $\lambda \in X_r(T)$, compute $H^1(G(\mathbb{F}_q), L(\lambda))$ and $H^2(G(\mathbb{F}_q), L(\lambda))$.

Subgoals (i.e., what people have actually managed to do):

- Compute for $L(\lambda)$ in various classes of modules.
- Determine sufficient conditions for the cohomology groups to vanish.
- Compute under restrictions on p and q (specific small values, or $\gg 0$).

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Computed $H^1(G(\mathbb{F}_q), L(\lambda))$ for λ a minimal nonzero dominant weight, i.e., for λ a minuscule weight or a maximal short root.

- No restrictions on p or q.
- Included the twisted groups of Steinberg, Ree, and Suzuki.
- Lower bound: dim rad_G $V(\lambda) \leq \dim H^1(G(\mathbb{F}_q), L(\lambda))$
- Upper bound:

$$\sum_{\alpha\in\Delta}\dim Z^1(U_\alpha(\mathbb{F}_q),V)^{T(\mathbb{F}_q)}-\dim V^{T(\mathbb{F}_q)}+\dim V^{B(\mathbb{F}_q)}.$$

• Requires analyzing whether weights of V are Galois equivalent to roots, i.e., whether $\sigma \circ \omega|_{T(\mathbb{F}_q)} = \beta|_{T(\mathbb{F}_q)}$ for some $\sigma \in Gal(\mathbb{F}_q)$.

WAYNE JONES AND BRIAN PARSHALL

G _U	char k = p	Dominant Weight	dim _k √	dim _k H ¹ (G _σ ,V)
	arbitrary	λ ₁ , 1<1 <a< td=""><td>(ⁿ⁺¹)</td><td>0 (*)</td></a<>	(ⁿ⁺¹)	0 (*)
A _n (q)	p/n+1	λ ₁ + λ _n	n(n+2)	0 (*)
	p n+1	λ ₁ + λ _n	n(n+2)-1	1 (*)
	arbitrary	λ _{i,} 1 <i≤n< td=""><td>(ⁿ⁺¹₁)</td><td>0</td></i≤n<>	(ⁿ⁺¹ ₁)	0
² A _n (q) q>3	p/n+1	λ ₁ + λ _n	n(n+2)	0
	p n+1 λ ₁ + λ _n		n(n+2)-1	1
	arbitrary	λ ₁	2 ⁿ	0
B _n (q) n≥3	2	λ _n	2n	1
	≠ 2	λ _n	2n+1	0
	2	λ _n	2n	1
C _n (q)	≠ 2	λ _n	2n	0
n≫2	p n	λ _{n-1}	(n-1)(2n+1)-1	1
	p/n	λ _{n-1}	(n-1)(2n+1)	0 (*)
² c ₂ (2 ²ⁿ⁺¹)	2	λ ₁ , λ ₂	4	1 (*)

2n if i=1 2ⁿ⁻¹ if i#1 arbitrary λ_i ,1=1,n-1,n 0 $D_{n}(q)$ n>3 **#**2 (2n-1)n 0 λ_2 $D_{2n}(q)$ 2 2n(4n-1)-2 2 λ2 2n+1)(4n+1)-1 D_{2n+1}(q) 2 0 λ2 2n if i=1 2ⁿ⁻¹ if i≠1 $^{2}D_{n}(q)$ arbitrary λ,,i=1,n-1,n 0 n>3, q>3 2 $^{2}D_{2n}(q)$ 2n(4n-1)-2 2 λ_2 **#**2 2n(4n-1) n>1, q>3 λ_2 0 ²D_{2n+1}(q) 2 2n+1)(4n+1)-1 λ_2 q>3 **#2** (2n+1)(4n+1) 0 λ_2 arbitrary λ,,1=1,2,4 8 0 $^{3}D_{\Delta}(q)$ 2 λ_2 26 2 q>3 £2 28 λ2 0 arbitrary 27 0 $\lambda_1 \cdot \lambda_6$ 77 E6(q) 3 λ2 1 **#**3 78 0 λ_2 (Cont.)

(Cont.)

325

WAYNE JONES AND BRIAN PARSHAL

2 _{E5} (e)	arbitrary	1 6	27	0
q>3	3	1	77	1
	# 3	λ2	78	0
	arbitrary	17	56	0
E ₇ (a)	2	Ί	132	1
	¥2	1	133	0
Ε ₈ (q)	arbitrary	8	248	0
	3	4	25	1
F _A (a)	≠3		26	0
2F4(2 ²ⁿ⁺¹) n#0. 1	2	`4	26	0
0 (=)	2	'2	6	1
G ₂ (q)	+2	'2	7	0
² 0 ₂ (3 ²ⁿ⁺¹ . 3		2	7	0 (*)

C. EXCEPTIONS TO THE ABOVE TABLE.

 $(a) \qquad dim_{\overline{K}}H^{1}(A_{\gamma}(2^{n}),V(\triangle_{\gamma}) \ -1 \ \text{for} \ n\geq 1$

(b)
$$\dim_{\mathbb{R}^{H}}^{1}(A_{2}(2),V(\lambda_{1})) = 1$$
 for $i = 1,2$

- (c) $\dim_{\overline{\mathbb{H}}^1}(A_3(2),V(\lambda_2)) = 1$
 - $dim_{\overline{k}}H^{1}(A_{1}(5),V(2_{-1})) = 1$
- (e) $\dim_{\overline{K}} H^{1}(A_{1}(2),V(2,1),=0$
- (f) $\dim_{\overline{k}} H^1(C_2(3),V(x_1))^{-1}$
- (g) $\dim_{\overline{K}^{H}} {}^{1}({}^{2}C_{2}(2),V(2_{1})) = 0$, i = 1,2
- $(h) \qquad \text{dim}_{\overline{k}} \text{H}^{1}(^{2}\textbf{G}_{2}(3), \textbf{V}(\lambda_{2})) \ = \ 1$

Avrunin (1978)

Suppose for all weights μ of $T(\mathbb{F}_q)$ in V and for all $\alpha, \beta \in \Phi$ that $\alpha \not\equiv \mu$ and $(\alpha, \beta) \not\equiv \mu \mod \operatorname{Gal}(\mathbb{F}_q)$. Then $H^2(G(\mathbb{F}_q), V) = 0$.

- Look at a central series for $U(\mathbb{F}_q)$ where the factors are products of root subgroups to analyze the weights of $T(\mathbb{F}_a)$ in $H^2(U(\mathbb{F}_a), V)$.
- Use this to deduce that $H^2(U(\mathbb{F}_q), V)^{T(\mathbb{F}_q)} = 0$.
- Now use the fact that $H^2(G(\mathbb{F}_q), V) \hookrightarrow H^2(B(\mathbb{F}_q), V)$.

Corollary (Avrunin)

Suppose q > 3. Let $\lambda \in X(T)_+$ be minuscule. Then $H^2(G(\mathbb{F}_q), L(\lambda)) = 0$, except possibly in the cases shown on the next slide.

1(4)	_	1
$A_2(q)$	$5,3^{k}$	λ_{1} , λ_{2}
$A_3(q)$	2^k	λ_2
$A_n(q), n \geqslant 3$	4	λ_3 , λ_{n-2}
$B_3(q)$	2^k	λ_{1}
$B_4(q)$	2^k	λ_{1}
$C_n(q)$	2^k	λ_n
$D_3(q)$	4	λ_1 , λ_2
$D_4(q)$	2^k	λ_1 , λ_2
$D_n(q), n \geqslant 3$	2^k	λ_n
${}^{2}A_{2}(q^{2})$	$4,3^{k}$	λ_{1} , λ_{2}
${}^{2}A_{3}(q^{2})$	2^k	λ_2
$^{2}A_{3}(q^{2})$	4	λ_1 , λ_3
${}^{2}C_{2}(q^{2})$	$2^{2k+1/2}$	λ_2
$^{2}D_{3}(q^{2})$	4	λ_1 , λ_2
$^{2}D_{4}(q^{2})$	2^k	λ_1 , λ_2
$^2D_n(q^2), n \geqslant 3$	2^k	λ_n
$^{3}D_{4}(q^{3})$	2^k	λ_1 , λ_2 , λ_4
${}^{2}E_{6}(q^{2})$	4	λ_{1} , λ_{6}

 2^k

λ

λ,

G

 $A_1(q)$

A few of these possibilities are, in fact, not exceptions. In unpublished work, McLaughlin has shown that the cohomology groups vanish in the cases above where G is $A_1(h)$, $A_2(h)$ with $\lambda = \lambda_1 = \lambda_1$, α_1 , $\alpha_1(h)$ with $\lambda = \lambda_1$ α_2 , λ_1 and result [9] has shown that $H^2(A_1(h), V(h)) = 0$ for $\lambda = \lambda_1$ or λ_{-1} , and the author [2] has shown that $H^2(A_1(h), V(h)) = 0$ for $\lambda = \lambda_1$ or λ_{-1} , and the author [2] has shown that $H^2(A_1(h), V(h)) = 0$ for $\lambda = \lambda_1$ or λ_1 . Nonzero cohomology is known in some of these cases. McLaughlin has shown that the cohomology groups are nontrivial when G is $A_1(2^h)$ with k > 2, $A_2(3^h)$ with k > 1 or $A_2(5)$. Landszuri proved in [9] that $H^2(B_1(2^h), V(\lambda_1)) \neq 0$ for n = 3, 4 and $k \ge 2$. Bell has computed the second degree cohomology of the Suzuki groups of $V(\lambda_1)$ in [3]; this is nonzero if $q^h > 8$. Also, it follows from work of Griess [8] that the second degree cohomology groups of $C_{A_1}(2^h)$, $D_1(2^h)$, and $D_1(2^h)$ on $V(\lambda_1)$ are nonzero. Finally, the author [2] has shown that

 $H^{2}(^{2}A_{o}(q^{2}), V(\lambda_{i})) \neq 0$ for i = 1, 2 and $q^{2} = 16$ or 3^{2k} .

Computed $\operatorname{Ext}^1_{\operatorname{SL}_{n+1}(\mathbb{F}_q)}(V_i^{\sigma},V_j^{\tau})$ for all $1\leq i,j\leq n$ and $\sigma,\tau\in\operatorname{Gal}(\mathbb{F}_q)$. Here $V_i=\Lambda^i(V)$ where V is the natural representation. Have $V=L(\omega_i)$.

- Rank one calculations preformed by hand.
- For higher ranks, use an LHS spectral sequence and induction on the rank to compute for an appropriate maximal parabolic subgroup.
- When nonzero for the parabolic, explicitly construct a cocycle, and then determine whether it can be extended to all of $SL_{n+1}(\mathbb{F}_q)$.

Exceptional \dim_K Exceptional (l, q, i) $\dim_{k'}$ 0 0 None

 $\dim_{\mathbb{Z}} H^n(SL_{l+1}(q), M)$ $M = V_i$, $1 \le i \le l$

0 $(1, 2^* > 2, 1), (2, 2, 1), (2, 2, 2), (3, 2, 2)$ 2 0 $(1, 2^s > 4, 1), (2, 3^s > 3, 1), (2, 3^s > 3, 2), (2, 5, 1), (2, 5, 2),$ (2, 2, 1), (2, 2, 2), (3, 2, 1), (3, 2, 3), (3, 2^s > 2, 2),

		(4, 2, 1), (4, 2, 4)	
		$M = H_{\sigma}(V_i, V_j), 1 \leq i, j \leq l, \sigma \in \Gamma$	
п	dim _K	Exceptional (l, q, σ, i, j)	Exception:
0	0	(l,q,1,i,i)	1
1	0	$q=2$ with $\{i,j\}\cap\{1,l\}=\varnothing$?
		$\begin{array}{c} (1,3^{\prime},\frac{1}{3},1,1),(1,5,1,1,1),(2,2^{\prime}\neq4,\frac{1}{2},2,1),\\ (2,2^{\prime}\neq4,2,1,2),(2,2^{\prime}\neq4,2,2,1),(2,2^{\prime}\neq4,\frac{1}{2},1,2)\\ (l>2,2^{\prime},\frac{1}{2},2,1),(l>2,2^{\prime},2,1,2),(l>2,2^{\prime},2,l,l-1)\\ (l>2,2^{\prime},\frac{1}{2},l-1,l),(3,2,1,1,3),(3,2,1,3,1) \end{array}$	1
		(2, 4, 2, 1, 2), (2, 4, 2, 2, 1)	2

 $(1, 2, 1, 1, 1, 1, 1), (l, q, 1, 1, i, j, i + j \pmod{l+1})$

Exceptional $(l, q, \sigma, \tau, i, j, k)$

 \dim_K

0 0

n	\dim_{K}	Exceptional (l, q, σ, i, j)	Exceptional dim _K				
0	0	(l,q,1,i,i)	1				
1	$0 q = 2 with \{i,j\} \cap \{1,l\} = \emptyset$						
		$(1, 3^i, \frac{1}{3}, 1, 1), (1, 5, 1, 1, 1), (2, 2^i \neq 4, \frac{1}{2}, 2, 1), (2, 2^i \neq 4, \frac{1}{2}, 1), (2, 2^i \neq 4, \frac{1}{2}, 1, 2), (2, 2^i \neq 4, \frac{1}{2}, 1, 2), (2, 2^i \neq 4, \frac{1}{2}, 1, 2), (l > 2, 2^i, \frac{1}{2}, 2, 1), (l > 2, 2^i, 2, 1, l - 1), (l > 2, 2^i, \frac{1}{2}, l - 1, l), (3, 2, 1, 1, 3), (3, 2, 1, 3, 1)$	1				
		(2, 4, 2, 1, 2), (2, 4, 2, 2, 1)	2				
		$M = H_{\sigma}(V_i, H_{\tau}(V_j, V_k)), \qquad 1 \leqslant i, j, k \leqslant l, \qquad \sigma, \tau \in \Gamma$					
			Exceptional				

 $\dim_{\mathcal{K}}$

Kleshchev (1994)

Let $\lambda \in X_r(T)$. Suppose that all weights spaces of $L(\lambda)$ are 1-dimensional. Then $H^1(G(\mathbb{F}_q),L(\lambda))=0$ except for the cases on the next slide. In the exceptional cases, one has

$$\dim H^1(A_2(4), L(3\omega_1)) = \dim H^1(A_2(4), L(3\omega_2)) = 2,$$

but in all other exceptional cases $\dim H^1(G(\mathbb{F}_q), L(\lambda)) = 1$.

Obtains upper bound estimates depending on the composition factors of $L(\lambda)$ restricted to a a suitable parabolic subgroup. Are 1-dimensional weight spaces essential, or just a convenient class of $L(\lambda)$??

Compare with work of Bell: Dimension of H^1 can grow as λ gets large.

Group	Highest weight λ
$A_1(p^n), n \ge 1$	$p^{j}(\omega_{1-1}+(p-2)\omega_{1})+p^{j+1}\omega_{1}, p^{j}((p-2)\omega_{1}+\omega_{2})+p^{j+1}\omega_{1},$
	j=0,,n-1;
	$\omega_1 + p^{n-1} (\omega_{1-1} + (p-2)\omega_1), \ \omega_1 + p^{n-1} ((p-2)\omega_1 + \omega_2)$
A ₂ (3 ⁿ)	$3^{j}(\omega_{1}+\omega_{2}), j=0,,n-1$
A ₃ (3 ⁿ)	3 ^j (2ω ₂), j=0,,n-1
A ₂ (2)	ω ₁ , ω ₂
A ₃ (2)	ω ₂
C ₂ (5 ⁿ)	5 ^j (2ω ₂), j=0,,n-1
C ₂ (3)	ω ₂
C ₃ (3 ⁿ)	3 ^j ω ₂ , j=0,,n-1
C ₄ (3 ⁿ)	3 ^Ĵ ω ₄ , J=0,,n−1
$C_1(2^n)$	2 ^j ω₁, j≕0,,n-1
C ₂ (2 ⁿ)	2 ^j w ₂ , j=0,,n-1
$F_4(3^n)$	3 ^j ω ₄ , j=0,,n−1
G ₂ (3 ⁿ)	$\omega_1 + 3^{n-1}\omega_2$
G ₂ (2 ⁿ)	2 ^j ω ₄ , j≈0,,n-1

Want more direct comparisons between cohomology for G and $G(\mathbb{F}_q)$.

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G-module, and let $i \in \mathbb{N}$. Then for all sufficiently large e and q, the restriction map is an isomorphism

$$\mathsf{H}^i(G,V^{(e)})\stackrel{\sim}{\longrightarrow} \mathsf{H}^i(G(\mathbb{F}_q),V^{(e)}).$$

Stable value of $H^i(G(\mathbb{F}_q), V)$ when $q \gg 0$ is denoted $H^i_{gen}(G, V)$.

$$H^{i}(G, V) \xrightarrow{\sim} H^{i}(B, V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{i}(G(\mathbb{F}_{q}), V) \hookrightarrow H^{i}(B(\mathbb{F}_{q}), V).$$

Some sharper statements for 1- and 2-cohomology:

• If $p \neq 2$, then

$$H^1(G, V) \cong H^1_{gen}(G, V)$$
 and $H^2(G, V^{(1)}) \cong H^2_{gen}(G, V)$.

• If $p \neq 2,3$ and if no root is a weight of V, then

$$H^2(G, V) \cong H^2_{gen}(G, V).$$

- If $V^T = V^{T(\mathbb{F}_q)}$, then $H^1(G, V) \hookrightarrow H^1(G(\mathbb{F}_q), V)$.
- If U, W are finite-dimensional G-modules, and if every composition factor of U and W have q-restricted highest weights, then

$$H^1(G, \operatorname{Hom}_k(U, W)) \hookrightarrow H^1(G(\mathbb{F}_q), \operatorname{Hom}_k(U, W)).$$

So for H^1 and H^2 , we can get answers in terms of G if we take $q \gg 0$, and if we sometimes also replace V by $V^{(1)}$ or $V^{(2)}$.

Consider the (exact!) induction functor $\operatorname{ind}_{G(\mathbb{F}_q)}^G(-) = (-\otimes k[G])^{G(\mathbb{F}_q)}$. Generalized Frobenius Reciprocity: $\operatorname{H}^n(G,\operatorname{ind}_{G(\mathbb{F}_q)}^G(N)) \cong \operatorname{H}^n(G(\mathbb{F}_q),N)$.

Bendel, Nakano, Pillen (2001)

Let $\pi \subset X(T)$ be a saturated set of weights, and let C_{π} be the category of G-modules all of whose highest weights lie in π . Let N be a $G(\mathbb{F}_q)$ -module and let M be a G-module. Then there exists a spectral sequence

$$E_2^{i,j} = \operatorname{Ext}_G^i(M, R^j(\mathcal{O}_\pi \circ \operatorname{ind}_{G(\mathbb{F}_q)}^G)(N)) \Rightarrow \operatorname{Ext}_{G(\mathbb{F}_q)}^{i+j}(M, N).$$

Using this and related ideas, BNP have in a series of papers obtained many results relating cohomology for G and $G(\mathbb{F}_q)$, e.g., for p>3(h-1), describe $\operatorname{Ext}^1_{G(\mathbb{F}_q)}$ between simple modules as Ext^1_G plus a remainder term.

There exists a short exact sequence

$$0 \to k \to \operatorname{ind}_{G(\mathbb{F}_q)}^G(k) \to N \to 0.$$

Let M be a rational G-module. From the tensor identity obtain

$$0 o M o \operatorname{ind}_{G(\mathbb{F}_q)}^G(M) o M \otimes N o 0.$$

Now using $\operatorname{Ext}_G^n(k,\operatorname{ind}_{G(\mathbb{F}_q)}^G(M))\cong \operatorname{Ext}_{G(\mathbb{F}_q)}^n(k,M)$, we get:

Long exact sequence for restriction

Bendel, Nakano, Pillen (2010)

 $\operatorname{ind}_{G(\mathbb{F}_q)}^G(k)$ admits a filtration by G-submodules with sections of the form

$$H^{0}(\mu) \otimes H^{0}(\mu^{*})^{(r)} \quad \mu \in X(T)_{+}.$$

Corollary: $N=\operatorname{\mathsf{coker}}(k o\operatorname{\mathsf{ind}}_{G(\mathbb{F}_q)}^G(k))$ admits such a filtration with $\mu
eq 0$.

Then $\operatorname{Ext}_G^i(k,L(\lambda)\otimes N)=0$ if it is zero for each section, i.e., if for $\mu\neq 0$,

$$\operatorname{Ext}_G^i(V(\mu)^{(r)}, L(\lambda) \otimes H^0(\mu)) = 0.$$

Analyze the spectral sequences

$$\operatorname{Ext}_{G/G_r}^i(V(\mu)^{(r)},\operatorname{Ext}_{G_r}^i(k,L(\lambda)\otimes H^0(\mu)))\Rightarrow\operatorname{Ext}_G^{i+j}(V(\mu)^{(r)},L(\lambda)\otimes H^0(\mu))$$

and
$$R^i \operatorname{ind}_{B/B_r}^{G/G_r} \operatorname{Ext}_{B_r}^j(k, L(\lambda) \otimes \mu) \Rightarrow \operatorname{Ext}_{G_r}^{i+j}(k, L(\lambda) \otimes H^0(\mu)).$$

The strategy is approximated by the following diagram stolen from BNP:

$$\mathrm{H}^i(G(\mathbb{F}_q),k) \implies \mathrm{H}^i(G,\mathcal{G}_r(k))$$

Filtrations

 $\mathrm{H}^i(G,H^0(\lambda)\otimes H(\lambda^*)^{(r)}) \implies \mathrm{H}^i(G_1,H^0(\lambda)) \implies \mathrm{Root} \ \mathrm{Combinatorics}.$

Sequences

LHS Spectral Kostant Partition Functions

Theorem (UGA VIGRE Algebra Group)

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k,L(\lambda))$ is semisimple as a B/U_r -module, and that $\operatorname{Ext}^1_{U_r}(k,L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^1_{U_r}(k,L(\lambda))^T$. Then

$$\mathsf{H}^1(G,L(\lambda))\cong \mathsf{H}^1(G(\mathbb{F}_q),L(\lambda)).$$

Theorem (UGA VIGRE Algebra Group)

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k,L(\lambda))$ is semisimple as a B/U_r -module, that $\operatorname{Ext}^i_{U_r}(k,L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^i_{U_r}(k,L(\lambda))^T$ for $i \in \{1,2\}$, and that

$$p^r > \max\left\{-(\nu, \gamma^\vee): \gamma \in \Delta, \nu \in X(T), \operatorname{Ext}^1_{U_r}(k, L(\lambda))_\nu \neq 0\right\}.$$

Then $H^2(G, L(\lambda)) \cong H^2(G(\mathbb{F}_q), L(\lambda))$.

Critical calculation using Andersen's results on B-cohomology and lots of weight combinatorics:

Theorem 3.2.4. Suppose $\lambda \in X(T)_+$ is a dominant root or is less than or equal to a fundamental weight. Assume that p > 5 if Φ is of type E_8 or G_2 , and p > 3 otherwise. Then as a B/U_r -module, $\operatorname{Ext}^1_{U_r}(L(\lambda), k) = \operatorname{soc}_{B/U_r} \operatorname{Ext}^1_{U_r}(L(\lambda), k)$, that is,

$$\operatorname{Ext}^1_{U_r}\big(L(\lambda),k\big) \cong \bigoplus_{\alpha \in \Delta} -s_\alpha \cdot \lambda \oplus \bigoplus_{\substack{\alpha \in \Delta \\ 0 < n < r}} -\big(\lambda - p^n \alpha\big) \oplus \bigoplus_{\substack{\sigma \in X(T)_+ \\ \sigma < \lambda}} (-\sigma)^{\oplus m_\sigma}$$

where $m_{\sigma} = \dim \operatorname{Ext}_{G}^{1}(L(\lambda), H^{0}(\sigma)).$

First Cohomology Main Theorem

Let $\lambda \in X(T)_+$ be a fundamental dominant weight. Assume q>3 and

$$p>2$$
 if Φ has type A_n , D_n ; $p>3$ if Φ has type B_n , C_n , E_6 , E_7 , F_4 , G_2 ; $p>5$ if Φ has type E_8 .

Then dim $H^1(G(\mathbb{F}_q), L(\lambda)) = \dim H^1(G, L(\lambda)) \leq 1$.

Space nonzero (and one-dimensional) in the following cases:

- Φ has type E_7 , p=7, and $\lambda=\omega_6$; and
- Φ has type C_n , $n \geq 3$, and $\lambda = \omega_j$ with $\frac{j}{2}$ a nonzero term in the p-adic expansion of n+1, but not the last term in the expansion.

Reasons for vanishing: Linkage principle for G, $\operatorname{Ext}_G^1(V(0),H^0(\lambda))=0$. Reasons for non-vanishing: Weyl module structure.

Second Cohomology Main Theorem A

Suppose p>3 and q>5. Let $\lambda\in X(T)_+$ be less than or equal to a fundamental dominant weight. Assume also that λ is not a dominant root. Then $H^2(G,L(\lambda))\cong H^2(G(\mathbb{F}_q),L(\lambda))$.

Corollary

Suppose p, q, λ are as above. Then $H^2(G(\mathbb{F}_q), L(\lambda)) = 0$ except possibly in a small number of explicit cases in exceptional types, and in type C_n when $\lambda = \omega_j$ with j even and $p \leq n$.

Don't know $H^2(G, L(\omega_j))$ for all even j in type C_n when $p \leq n$. Come back to this at the end . . .

Second Cohomology Main Theorem B

Let p>3 and q>5. Let $\lambda=\widetilde{\alpha}$ (highest root). Assume $p\nmid n+1$ in type A_n , and $p\nmid n-1$ in type B_n . Then

$$H^2(G(\mathbb{F}_q), L(\widetilde{\alpha})) = k.$$

Also have $H^2(A_2(5), L(\omega_1)) = H^2(A_2(5), L(\omega_2)) = k$.

Different strategy for this case in analyzing the long exact sequence.

$$\rightarrow \mathsf{H}^2(\mathcal{G}, \mathit{L}(\lambda)) \rightarrow \mathsf{H}^2(\mathcal{G}(\mathbb{F}_q), \mathit{L}(\lambda)) \rightarrow \mathsf{H}^2(\mathcal{G}, \mathit{L}(\lambda) \otimes \mathit{N}) \rightarrow \mathsf{H}^3(\mathcal{G}, \mathit{L}(\lambda)) \rightarrow$$

Prove that $H^2(G(\mathbb{F}_q), L(\lambda))$ is isomorphic to the cohomology of a single filtration layer in $H^2(G, L(\lambda) \otimes N)$, i.e., layer for $H^0(\widetilde{\alpha}) \otimes H^0(\widetilde{\alpha})^{(r)}$.

cf. to CPSvdK: $H^2(G, V^{(1)}) \cong H^2_{gen}(G, V)$ if $p \neq 2$.

Adamovich described combinatorially the submodule structure of Weyl modules in Type C having fundamental highest weight. We use this and $\operatorname{Ext}^2_{C_n}(k,L(\omega_j))\cong\operatorname{Ext}^1_{C_n}(\operatorname{rad}_GV(\omega_j),k)$ to make computations.

Values of *n* and *j* for which $H^2(Sp_{2n}, L(\omega_j)) \neq 0$, p = 3.

In each case, H² is 1-dimensional.

n	j	n	j	n	j	n	j
6	6	15	6, 8	24	6, 8, 18	33	6, 8, 18
7	6	16	6, 10	25	6, 10, 18	34	6, 10, 18
8		17		26		35	
9	6	18	6, 14	27	6, 14	36	6, 14
10	6	19	6, 16	28	6, 16	37	6, 16
11		20	18	29	18	38	18
12	6	21	6, 18	30	6, 18	39	6, 18, 20
13	6	22	6, 18	31	6, 18	40	6, 18, 22
14		23	18	32	18		

For n=12, we have also $H^1(Sp_{2n},L(\omega_6))\neq 0$ (parity vanishing violated).

Values of *n* and *j* for which $H^2(Sp_{2n}, L(\omega_j)) \neq 0$: p = 5.

In each case, H² is 1-dimensional.

n	j	n	j	n	j	n	j	n	j
10	10	20	10	30	10	40	10, 22	50	10, 42
11	10	21	10	31	10	41	10, 24	51	10, 44
12	10	22	10	32	10	42	10, 26	52	10, 46
13	10	23	10	33	10	43	10, 28	53	10, 48
14		24		34		44		54	50
15	10	25	10	35	10, 12	45	10, 32		
16	10	26	10	36	10, 14	46	10, 34		
17	10	27	10	37	10, 16	47	10, 36		
18	10	28	10	38	10, 18	48	10, 38		
19		29		39		49			

For n=30, we also have $H^1(Sp_{2n},L(\omega_{10}))\neq 0$ (parity vanishing violated).