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Dramatis Personae



Lie superalgebras

Let k be a field of (any) characteristic p. A Lie superalgebra over k is a
vector superspace g = g0 ⊕ g1 over k equipped with an even bilinear
map [·, ·] : g⊗ g → g and a quadratic operator q : g1 → g0 such that

(L0) q(λ · y) = λ2 · q(y) for all λ ∈ k and y ∈ g1,
(L1) [x, y] = −(−1)x·y[y, x]
(L2) [x, [y, z]] = [[x, y], z] + (−1)x·y[y, [x, z]] (Jacobi identity)
(L3) [x, x] = 0 for all x ∈ g0,
(L4) [y, [y, y]] = 0 for all y ∈ g1,
(L5) [x, y] = q(x+ y)− q(x)− q(y) for all x, y ∈ g1,
(L6) [y, [y, z]] = [q(y), z] for all y ∈ g1 and z ∈ g.

So in particular, g0 is an ordinary Lie algebra and g1 is a g0-module.



Lie superalgebras

(L0) q(λ · y) = λ2 · q(y) for all λ ∈ k and y ∈ g1 ,
(L1) [x, y] = −(−1)x·y[y, x]
(L2) [x, [y, z]] = [[x, y], z] + (−1)x·y[y, [x, z]] (Jacobi identity)
(L3) [x, x] = 0 for all x ∈ g0 ,
(L4) [y, [y, y]] = 0 for all y ∈ g1 ,
(L5) [x, y] = q(x + y) − q(x) − q(y) for all x, y ∈ g1 ,
(L6) [y, [y, z]] = [q(y), z] for all y ∈ g1 and z ∈ g.

Redundancy of q : g1 → g0 when char(k) 6= 2
(L5) implies for all y ∈ g1 that q(y) = 1

2 [y, y].

Underlying ordinary Lie algebra g when char(k) = 2
(L5) implies for all y ∈ g1 that [y, y] = 0. Then forgetting q, the Lie
bracket makes g into an ordinary Lie algebra, which we denote g.

So Lie superalgebras in char. 2 are just Z2-graded Lie algebras?



Lie superalgebras

Let T(g) =
⊕

i≥0 g
⊗i be the tensor (super)algebra on g. The universal

enveloping algebra of g is the k-superalgebra U(g) = T(g)/I, where I
is the two-sided ideal generated by

• x⊗ y− (−1)x·yy⊗ x− [x, y] for x, y ∈ g homogeneous,
• y⊗ y− q(y) for y ∈ g1.

‘Superness’ detected by the module theory in characteristic 2
There is a canonical quotient U(g) ↠ U(g) of Hopf (super)algebras.

g-supermodules are thus Z2-graded modules for the ordinary Lie
algebra g on which the identity y2 = q(y) holds for all y ∈ g1.



Restricted Lie superalgebras

Suppose char(k) = p > 0. Say that g is a restricted Lie superalgebra
if there exists a p-map x 7→ x[p] on g0 such that, for all x, y ∈ g0:

(R1) (α · x)[p] = αp · x[p] for all α ∈ k,
(R2) ad(x[p]) = ad(x)p where ad(x) : g → g, ad(x)(z) = [x, z],
(R3) (x+ y)[p] = x[p] + y[p] +

∑p−1
i=1 si(x, y), where i · si(x, y) is the

coefficient of ti−1 in the formal expression ad(t · x+ y)p−1(x).

In other words, g is a restricted Lie superalgebra if g0 is an ordinary
restricted Lie algebra, and g1 is a restricted g0-module.

Restricted enveloping algebra

V(g) = U(g)/〈xp − x[p] : x ∈ g0〉

For arbitrary g, the map q : g1 → g0 is like a 2-map defined only on g1 .



Restricted Lie superalgebras

Let g be a restricted Lie superalgebra over a field k of characteristic
p = 2, with p-operation x 7→ x[2] on g0, and let g be the ordinary Lie
algebra obtained from g by forgetting the operator q : g1 → g0.

Lifting the p-map from g0 to g when p = 2
Given z ∈ g, let z = z0 + z1 be its decomposition into even and odd
parts. Then the map

z 7→ z{2} := (z0)
[2] + q(z1) + [z1, z0]

defines a p-map on g that makes g into a (Z2-graded) ordinary
restricted Lie algebra, and the quotient map U(g) ↠ U(g) then
induces an isomorphism of Hopf (super)algebras V(g) ∼= V(g).

So in characteristic 2, restricted g-supermodules are Z2-graded
restricted g-modules.



Scenes



Motivating Question

Let g be a finite-dimensional Lie algebra over a field k.

What does the cohomology ring H•(g, k) = Ext•g(k, k) look like?

What does its maximal ideal spectrum Max(H•(g, k)) look like?

Elementary result
Let g be a finite-dimensional Lie algebra over a field k. Then
H•(g, k) is finite-dimensional, and Hi(g, k) = 0 for i > dimk(g), e.g.,
because H•(g, k) = H•(Λ(g∗), ∂) and Λi(g∗) = 0 for i > dimk(g).

So Max(H•(g, k)) is not very interesting in this situation.



Different Source of Motivation

Let k = k of characteristic p > 0.

Friedlander–Parshall (1980s), Suslin–Friedlander–Bendel (1997)
Let g be a finite-dimensional restricted Lie algebra over k. Then

Max (H•(V(g),C)) ' Np(g) =
{
x ∈ g : x[p] = 0

}
.

Np(g) is the restricted nullcone of g.

If g = gln(k), then x[p] = xp, and Np(g) is the variety of p-nilpotent
matrices. If p > n, then Np(g) is all nilpotent matrices in g.



Support varieties

Let A be a Hopf algebra over k. Then H•(A, k) is graded-commutative.
Suppose H•(A, k) is finitely-generated as a k-algebra.

Cohomological spectrum and support varieties
The cohomological spectrum of A is the affine algebraic variety

|A| = Max
(
H•(A, k)

)
.

Given an A-module M, let IA(M) be the kernel of the (k-algebra) map

H•(A, k) = Ext•A(k, k)
−⊗M−→ Ext•A(M,M).

The cohomological support variety associated to M is

|A|M = Max
(
H•(A, k)/IA(M)

)
,

which is a closed conical subvariety of |A|.



Friedlander–Parshall, Suslin–Friedlander–Bendel
Let g be a finite-dimensional restricted Lie algebra over k, and let M
be a finite-dimensional restricted g-module. Then

|V(g)|M '
{
x ∈ Np(g) : M|⟨x⟩ is not free

}
∪ {0} .

Moreover, |V(g)|M = {0} if and only if M is projective for V(g).

For x ∈ Np(g), M|⟨x⟩ is restriction to subalgebra of the form k[x]/(xp).



Superized Motivating Question

Let g be a finite-dimensional Lie superalgebra over a field k.

What does |U(g)| = Max(H•(g, k)) look like?

Example
Let g = gl(m|n), so that g0 = glm ⊕ gln. If m ≥ n, then the inclusion
glm ⊆ g induces H•(g,C) ∼= H•(glm,C). In particular, H•(g,C) is a
finite-dimensional exterior algebra.

So in general in characteristic 0, the cohomology ring H•(g, k) may
not lead to an interesting support variety theory.

But see work of Boe, Kujawa, and Nakano for an extensive support variety
theory based on relative cohomology for the pair (g, g0).



Support for Lie superalgebras in characteristic p > 0

Let g be a finite-dimensional Lie superalgebra over a field k = k of
characteristic p ≥ 2. Then H•(g, k) is finite over the image of a map
of graded (super)algebras φ : S(g∗1 [2])

(1) → H•(g, k).

Theorem (Drupieski–Kujawa)
The map φ : S(g∗1 )

(1) → H•(g, k) induces a homeomorphism

|U(g)| ' Nodd(g) := {x ∈ g1 : q(x) = 0} .

For each finite-dimensional g-supermodule M, one gets

|U(g)|M ' Xg(M) :=
{
x ∈ Nodd(g) : M|⟨x⟩ is not free

}
.

The set Nodd(g) is the odd nullcone of g. q(x) = 1
2 [x, x] if p 6= 2

Compare Xg(M) to the ‘associated variety’ of Duflo and Serganova.



Support for Lie superalgebras in characteristic p > 0

Theorem
Let M be a finite-dimensional g-supermodule. Then

|U(g)|M = {0} ⇐⇒ projdimU(g)(M) < ∞.

Corollary (cf. Bøgvad, 1984)

Nodd(g) = {0} ⇐⇒ gldim(U(g)) < ∞.



Support for restricted Lie superalgebras

Now let g be a finite-dimensional restricted Lie superalgebra over k.

What does |V(g)| = Max(H•(V(g), k)) look like?

For p = 2, we can appeal to the underlying ordinary Lie algebra g,
and the identification V(g) ∼= V(g).

Spectrum in characteristic 2

|V(g)| = |V(g)|
' Np(g)

= {z ∈ g : z{2} = 0}
= {z = z0 + z1 ∈ g : (z0)

[2] + q(z1) = 0 and [z1, z0] = 0}.

In characteristic p ≥ 3, we can currently only show that an
identification like this holds up to a finite morphism of varieties.



Support of a module in characteristic 2
Let M be a finite-dimensional g-supermodule. Then

|V(g)|M = |V(g)|M ' {z ∈ Np(g) : M|⟨z⟩ is not free}.

Let P = k[u, v]/(up + v2), with u even and v odd.

Given z = z0 + z1 ∈ g with z{2} = 0, let σz : P→ V(g) be the algebra
map defined by σz(u) = z0 and σz(v) = z1.

Reinterpreting support of a module in characteristic 2
Let M be a finite-dimensional g-supermodule. Then

|V(g)|M ' {z ∈ g : z{2} = 0 and projdimP(M↓σz) = ∞}.

In characteristic p ≥ 3, we can show that a description like this for
|V(g)|M holds when g is p-nilpotent (conjecturally for arbitrary g).



Tensor triangular geometry in characteristic 2

Let A = H•(V(g), k) = H•(V(g), k). Then A is graded both by the
cohomological degree and by superdegree.

Let Proj(A) be the set of all p ∈ Spec(A) such that p is homogeneous
with respect to the cohomological grading.

Theorem (Benson–Iyengar–Krause–Pevtsova)
There is a canonical homeomorphism

Proj (H•(V(g), k)) ' Spc
(
stmodV(g)

)
,

and there are inverse bijections

{specialization closed subsets V of Proj(H•(V(g), k))}
Γ
⇄
Θ{

thick ⊗-ideal subcategories J of stmodV(g)
}
.



Tensor triangular geometry in characteristic 2

Let A = H•(V(g), k) = H•(V(g), k). Then A is graded both by the
cohomological degree and by superdegree.

Projs(A)
Say that a bi-homogeneous ideal P ⊂ A is s-prime if it is prime
among the set of bi-homogeneous ideals in P.

Let Projs(A) be the set of all (bi-homogeneous) s-prime ideals that
are properly contained in H>0(V(g), k).

The Zariski topology on Projs(A) is defined via closures of
bi-homogeneous ideals I ⊂ A. There is a continuous surjection

φ : Proj(A) → Projs(A)

where φ(p) = ps is the largest bi-homogenous subideal of p.



Tensor triangular geometry in characteristic 2

Let st-smodV(g) be the stable module category of finite-dimensional
V(g)-supermodules.

Theorem
There is a canonical homeomorphism

Projs (H
•(V(g), k)) ' Spc

(
st-smodV(g)

)
,

and there are inverse bijections

{specialization closed subsets V of Projs(H•(V(g), k))}
Γ
⇄
Θ{

thick ⊗-ideal subcategories J of st-smodV(g)
}
.


