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Recollections



Support varieties

Suppose H•(A, k) is “commutative” and finitely generated. Then the
maximal ideal spectrum

|A| = Max
(
H•(A, k)

)
is an affine algebraic variety. Given an A-module M, have a map

H•(A, k) → Ext•A(M,M)

with annihilator ideal IA(M).

Support varieties
The cohomological support variety associated to M is

|A|M = Max
(
H•(A, k)/IA(M)

)
,

a closed subvariety of the cohomological spectrum |A|.
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Friedlander & Parshall (1986)

Given a finite-dimensional restricted Lie algebra g, let V(g) be its
restricted enveloping algebra. There exists a map

Φ∗ : S(g∗)(1) → H•(V(g), k).

and from this one gets a finite morphism Φ : |V(g)| → g.

Friedlander–Parshall (ca. 1986)
Given a finite-dimensional V(g)-module M,

Φ
(
|V(g)|M

)
=
{
X ∈ g : X[p] = 0 and M|⟨X⟩ is not free

}
∪ {0} .

Jantzen: First did cases p = 2 with M arbitrary, and p ≥ 3 with M = k.
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Later generalizations

Suslin–Friedlander–Bendel (ca. 1997)
Always have a homeomorphism

|V(g)|M ≃
{
X ∈ g : X[p] = 0 and M|⟨X⟩ is not free

}
∪ {0} .

More generally, they describe |G|M for infinitesimal group scheme G
in terms of the variety of 1-parameter subgroups ν : Ga(r) → G (first
investigated by Brian’s PhD student David Gross!).

Friedlander–Pevtsova (2000s)
Describe |G|M for G a finite group scheme in terms of Π-points.
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Question

How much of this generalizes to Z- or Z/2Z-graded settings?
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Super linear algebra

What does it mean to be “super”?
Something is “super” if it has a compatible Z/2Z-grading.

• Superspaces V = V0 ⊕ V1, W = W0 ⊕W1

• Induced gradings on tensor products, linear maps, etc.

(V⊗W)ℓ =
⊕
i+j=ℓ

Vi ⊗Wj

Homk(V,W)ℓ = {f ∈ Homk(V,W) : f(Vi) ⊆ Wi+ℓ}

• V⊗W ∼= W⊗ V via the supertwist v⊗ w 7→ (−1)v·ww⊗ v

Define (Hopf) superalgebras and ‘super’ (co)commutativity in terms
of the “usual diagrams,” but use the supertwist when objects pass.
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Simplest possible example

Exterior algebra of a finite-dimensional vector space V

The exterior algebra Λ(V) is a (super)commutative superalgebra:

ab = (−1)a·bba

It is also a (super)cocommutative Hopf superalgebra:

∆(uv)
= ∆(u)∆(v)
= (u⊗ 1+ 1⊗ u)(v⊗ 1+ 1⊗ v)
= (u⊗ 1)(v⊗ 1) + (u⊗ 1)(1⊗ v) + (1⊗ u)(v⊗ 1) + (1⊗ u)(1⊗ v)
= (uv⊗ 1) + (u⊗ v)− (v⊗ u) + (1⊗ uv)
= (uv⊗ 1) + (1⊗ uv)

10



Hopf superalgebras

Examples of Hopf superalgebras

– Ordinary Hopf algebras (as purely even superalgebras).

– Z-graded Hopf algebras in the sense of Milnor and Moore

– Enveloping superalgebras of (restricted) Lie superalgebras

Recall that a Lie superalgebra is a superspace g = g0 ⊕ g1 equipped
with an even map [·, ·] : g⊗ g → g such that for homogeneous x, y, z,

• [x, y] = −(−1)x·y[y, x]
• [x, [y, z]] = [[x, y], z] + (−1)x·y[y, [x, z]]
• [x, x] = 0 if x ∈ g0 and p = 2
• [x, [x, x]] = 0 if x ∈ g1 and p = 3

Say that g is restricted if g0 is an ordinary restricted Lie algebra and
g1 is a restricted g0-module under the adjoint action.
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Supergroup schemes

Classical correspondences

affine group schemes↔ cocommutative Hopf algebras

finite group schemes↔ f.d. cocommutative Hopf algebras

height-one group schemes↔ f.d. restricted Lie algebras

Super correspondences

affine supergroup schemes↔ cocommutative Hopf superalgebras

finite supergroup schemes↔ f.d. cocommut. Hopf superalgebras

height-one supergroup schemes↔ f.d. res. Lie superalgebras
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Finite supergroup schemes, p = 0



Simplest example

Theorem
Let V be a finite-dimensional space. Then H•(Λ(V), k) ∼= S•(V∗).

The cohomology ring is graded-(super)commutative in the sense

ab = (−1)deg(a)·deg(b)+a·bba.

Aramova–Avramov–Herzog (2000)
Let M be a finite-dimensional Λ(V)-supermodule. Then

|Λ(V)|M ∼=
{
v ∈ V : M|⟨v⟩ is not free

}
.

In the theorem, ⟨v⟩ refers to an algebra isomorphic to Λ(v) ∼= k[v]/⟨v2⟩.

In characteristic 0, this is most of the complete picture!
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Classification in characteristic zero

Suppose k is an algebraically closed field of characteristic 0.

Kostant
Let A be a cocommutative Hopf superalgebra over k. Then

A ∼= U(g)#kG

for some Lie superalgebra g over k and some subgroup G ≤ Aut(g).

Corollary
Let A be a finite-dimensional cocommutative Hopf superalgebra
over k. Then A ∼= Λ(V)#kG for some finite group G and some f.d.
purely odd kG-module V.

Given Λ(V)#kG as in the Corollary, denote the corresponding finite
supergroup scheme by V⋊ G.
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Cohomology and support varieties

Theorem
Let V ⋊ G be a finite k-supergroup scheme. Let M and N be V ⋊ G-
supermodules. Then Ext•V⋊G(M,N) ∼= Ext•Λ(V)(M,N)G. In particular,

H•(V⋊ G, k) ∼= H•(Λ(V), k)G ∼= S•(V∗)G.

Corollary
Let V ⋊ G be a finite k-supergroup scheme, and let M be a finite-
dimensional V⋊ G-supermodule. Then

|V⋊ G| ∼= V/G, the quotient of V by G, and
|V⋊ G|M ∼=

{
[v] ∈ V/G : M|⟨v⟩ is not free

}
∪ {0} .
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Finite-dim’l Lie superalgebras



Background

Cohomology of Lie superalgebras
H•(g, k) is the cohomology ring of enveloping superalgebra U(g)

H•(g, k) can be computed via the super Koszul resolution (Λ(g∗), ∂)

As a superalgebra, Λ(g∗) ∼= Λ(g∗0) ⊗g S(g∗1 ).

Results in characteristic zero
H•(g, k) can be either finite-dimensional or infinite-dimensional

If g = g1, then U(g) = Λ(g) and H•(g, k) ∼= S(g∗).

If g = gl(m|n), then H•(g, k) is a f.d. exterior algebra [Fuks–Leites]
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Competing variety theories in characteristic zero

Duflo–Serganova (arXiv 2005)
Given a g-supermodule M, defined the associated variety

XM =
{
x ∈ g1 : [x, x] = 0 and M|⟨x⟩ is not free

}
Relatively simple GLm × GLn orbit structure when g = gl(m|n).

Detect projectivity in category F of f.d. g-supermodules s.s. over g0.

Not defined via cohomology.

Boe–Kujawa–Nakano (2009, 2010, 2011, 2012)
Support varieties in terms of relative cohomology H•(g, g0; k).

Work in category F of f.d. g-supermodules that are s.s. over g0.

Variety theory can measure defect of g and atypicality of modules.
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For the rest of this talk, assume that k is of characteristic p ≥ 3.
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Positive characteristic (k algebraically closed, p ≥ 3)

Super Koszul complex Λ(g∗) ∼= Λ(g∗0) ⊗g S(g∗1 )

p-th powers in S(g∗1 ) ⊂ Λ(g∗) consist of cocycles, so get a map

φ : S(g∗1 [p])
(1) → H•(g, k).

Study |g| := Max (H•(g, k)) via this map.

Theorem
Let g be a finite-dimensional Lie superalgebra. Let M be a finite-
dimensional g-supermodule. Then there are homeomorphisms

|g| ∼= {x ∈ g1 : [x, x] = 0}
|g|M ∼=

{
x ∈ g1 : [x, x] = 0 and M|⟨x⟩ is not free

}
∪ {0} .

Since [x, x] = 0, have isomorphism of algebras ⟨x⟩ ∼= k[x]/⟨x2⟩.

Identical in definition to the Duflo–Serganova varieties!
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Cohomology of finite supergroup
schemes



CFG for finite supergroup schemes

First step toward support varieties: cohomological finite generation

Drupieski (Adv. Math. 2016)
Let G be a finite supergroup scheme over k and let M be a finite-
dimensional G-supermodule. Then H•(G, k) is a finitely-generated
k-superalgebra and H•(G,M) is finite over H•(G, k).

Proved by way of cohomology calculations in the category of strict
polynomial superfunctors, analogous to the argument for ordinary
finite group schemes by Friedlander and Suslin.

Remark
If A is a Hopf superalgebra, then the smash product A#(Z/2Z) is an
ordinary Hopf algebra, and H•(A#(Z/2Z), k) ∼= H•(A, k)0.
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Example of an ordinary strict polynomial functor
Suppose V has basis {u, v} and W has basis {x, y}.

Then S2(V) has basis
{
u2,uv, v2

}
and S2(W) has basis

{
x2, xy, y2

}
.

Let ϕ : V→ W be the linear map with associated matrix ( a bc d ).

The linear map S2(ϕ) : S2(V) → S2(W) is defined for f ∈ S2(V) by

S2(ϕ)(f(u, v)) = f(ϕ(u), ϕ(v)).

The associated matrix for S2(ϕ) is then a2 ab b2
2ac (ad+ cb) 2bd
c2 cd d2
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Strict polynomial superfunctors

Examples of strict polynomial superfunctors
Π parity flip functor (ΠV)0 = V1, (ΠV)1 = V0
Γd(V) = (V⊗d)Σd super-symmetric tensors Γ(V) = Γ(V0)⊗ Λ(V1)

Sd(V) = (V⊗d)Σd super-symmetric power S(V) = S(V0)⊗ Λ(V1)

Λd(V) super-exterior power Λ(V) = Λ(V0) ⊗g S(V1)

Ad(V) super-alternating tensors A(V) = Λ(V0) ⊗g Γ(V1)

I(r)(V) = V(r) r-th Frobenius twist (r ≥ 1) I(r) = I0(r) ⊕ I1(r)

Non-example: V 7→ V0 (incompatible with composing odd maps)

• SPSFs can restrict to ordinary SPFs in two different ways
• Ordinary SPFs in general don’t seem lift to SPSFs
• Frobenius twists of SPFs lift to SPSFs in several different ways
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Main calculation: structure of the extension algebra

Ext•P(I(r), I(r)) =
(
Ext•P(I(r)0 , I(r)0 ) Ext•P(I(r)1 , I(r)0 )

Ext•P(I(r)0 , I(r)1 ) Ext•P(I(r)1 , I(r)1 )

)
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Cohomology of strict polynomial superfunctors

Drupieski (2016)

Ext•P(I(r), I(r)) is generated as an algebra by extension classes

• e′i ∈ Ext
2pi−1

P (I0(r), I0(r)) and e′′i ∈ Ext2p
i−1

P (I1(r), I1(r)) (1 ≤ i ≤ r)

• cr ∈ Extp
r

P(I1(r), I0(r)) and cΠr ∈ Extp
r

P(I0(r), I1(r))

These generators satisfy:

• (e′i)p = 0 = (e′′i )p if 1 ≤ i ≤ r− 1.
• (e′r)p = cr ◦ cΠr and (e′′r )p = cΠr ◦ cr.
• The e′i , e′′i generate a commutative subalgebra.
• The e′i restrict to Friedlander and Suslin’s extension classes
• Have e′i ◦ cr = ±cr ◦ e′′i . But is it + or −? (It is + for i = r.)
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Support varieties for infinitesimal
supergroup schemes



Extension classes give a finite morphism

Let G ⊂ GL(m|n) be infinitesimal of height ≤ r.

Evaluation and restriction maps

Ext•P(I(r), I(r)) → Ext•GL(m|n)((km|n)(r), (km|n)(r))

∼= Ext•GL(m|n)(k, gl(m|n)(r))

→ Ext•G(k, gl(m|n)(r))
∼= Homk(gl(m|n)∗(r),H•(G, k))

For r = 1, the strict polynomial superfunctor extension classes give
rise to a superalgebra homomorphism over which H•(G, k) is finite:

φ : S(gl(m|n)∗0[2])
(1) ⊗ S(gl(m|n)∗1 [p])

(1) → H•(G, k).

Induced finite map of varieties |G| → gl(m|n) with image VG(k).
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Restricted Lie superalgebras

Theorem
Let g be a finite-dimensional restricted Lie superalgebra. Then

Vg(k) ∼= {x+ y | x ∈ g0, y ∈ g1, [x, y] = 0, x[p] = y2}

where y2 := 1
2 [y, y].

• Relations come from the functor cohomology calculations
• Sufficiency comes from explicit calculations for the restricted
subalgebra generated by x and y, using an “explicit” projective
resolution constructed by Iwai–Shimada and May.

• Agrees with results of Nakano & Palmieri (1998) for
finite-dimensional subalgebras of the Steenrod algebra

• Support variety Vg(M) of a nontrivial supermodule M?
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Arbitrary infinitesimal supergroup schemes

Now let G ⊂ GL(m|n) be a height-r infinitesimal supergroup scheme.

The polynomial superfunctor classes give rise to a homomorphism[ r⊗
i=1

S(gl(m|n)∗0[2p
i−1])(r)

]
⊗ S(gl(m|n)∗1 [p

r])(r) → H•(G, k)

over whose image H•(G, k) is finite.

Possible description for |G| à la Suslin–Friedlander–Bendel?
Set of all r-tuples (x0, . . . , xr−1, y) such that

• xi ∈ g0 for 0 ≤ i ≤ r− 1, and y ∈ g1

• Entries pairwise commute
• x[p]i = 0 for 0 ≤ i ≤ r− 2

• x[p]r−1 = y2
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Open and ongoing topics

• Completely identify the spectrum of H•(G, k) or H•(V(g), k)
• Rank variety description for support varieties?
• Super one-parameter subgroups?
• Super Π-points?
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