Support varieties for Lie superalgebras and finite graded group schemes

Brian Parshall Day

Christopher Drupieski

DePaul University

Southeastern Lie Theory Workshop on Algebraic Groups, Quantum Groups, and Geometry

Joint with Jonathan Kujawa (University of Oklahoma) arXiv:1601.04565

Unless stated otherwise, work over an algebraically closed field k of characteristic p > 0.

- 1. Recollections
- 2. Finite supergroup schemes in characteristic 0
- 3. Finite-dimensional Lie superalgebras
- 4. Cohomology of finite supergroup schemes
- 5. Support varieties for infinitesimal supergroup schemes

Recollections

Support varieties

Suppose $H^{\bullet}(A, k)$ is "commutative" and finitely generated. Then the maximal ideal spectrum

$$|A| = \operatorname{Max}\left(\operatorname{H}^{\bullet}(A, k)\right)$$

is an affine algebraic variety. Given an A-module M, have a map

 $\mathrm{H}^{\bullet}(A, k) \to \mathrm{Ext}^{\bullet}_{A}(M, M)$

with annihilator ideal $I_A(M)$.

Support varieties

The cohomological support variety associated to M is

$$|A|_{M} = \operatorname{Max}\Big(\operatorname{H}^{\bullet}(A, k)/I_{A}(M)\Big),$$

a closed subvariety of the **cohomological spectrum** |A|.

Given a finite-dimensional restricted Lie algebra \mathfrak{g} , let $V(\mathfrak{g})$ be its restricted enveloping algebra. There exists a map

$$\Phi^*: S(\mathfrak{g}^*)^{(1)} \to H^{\bullet}(V(\mathfrak{g}), k).$$

and from this one gets a finite morphism $\Phi : |V(\mathfrak{g})| \to \mathfrak{g}$.

Friedlander-Parshall (ca. 1986)

Given a finite-dimensional V(g)-module M,

$$\Phi\Big(\left|V(\mathfrak{g})\right|_{M}\Big) = \Big\{X \in \mathfrak{g}: X^{[\rho]} = 0 \text{ and } M|_{\langle X \rangle} \text{ is not free}\Big\} \cup \{0\}$$

Jantzen: First did cases p = 2 with M arbitrary, and $p \ge 3$ with M = k.

Suslin-Friedlander-Bendel (ca. 1997)

Always have a homeomorphism

$$|V(\mathfrak{g})|_M \simeq \left\{ X \in \mathfrak{g} : X^{[p]} = 0 \text{ and } M|_{\langle X \rangle} \text{ is not free}
ight\} \cup \{0\} \,.$$

More generally, they describe $|G|_M$ for infinitesimal group scheme G in terms of the variety of 1-parameter subgroups $\nu : \mathbb{G}_{a(r)} \to G$ (first investigated by **Brian's PhD student David Gross!**).

Friedlander-Pevtsova (2000s)

Describe $|G|_M$ for G a finite group scheme in terms of Π -points.

How much of this generalizes to \mathbb{Z} - or $\mathbb{Z}/2\mathbb{Z}$ -graded settings?

Super linear algebra

What does it mean to be "super"?

Something is "super" if it has a compatible $\mathbb{Z}/2\mathbb{Z}$ -grading.

- Superspaces $V = V_{\overline{0}} \oplus V_{\overline{1}}$, $W = W_{\overline{0}} \oplus W_{\overline{1}}$
- · Induced gradings on tensor products, linear maps, etc.

$$(V \otimes W)_{\ell} = \bigoplus_{i+j=\ell} V_i \otimes W_j$$
$$\operatorname{Hom}_k(V, W)_{\ell} = \{f \in \operatorname{Hom}_k(V, W) : f(V_i) \subseteq W_{i+\ell}$$

• $V \otimes W \cong W \otimes V$ via the supertwist $v \otimes w \mapsto (-1)^{\overline{v} \cdot \overline{w}} w \otimes v$

Define (Hopf) superalgebras and 'super' (co)commutativity in terms of the "usual diagrams," but use the supertwist when objects pass.

Simplest possible example

Exterior algebra of a finite-dimensional vector space V

The exterior algebra $\Lambda(V)$ is a (super)commutative superalgebra:

$$ab = (-1)^{\overline{a} \cdot \overline{b}} ba$$

It is also a (super)cocommutative Hopf superalgebra:

 $\Delta(uv)$

 $= \Delta(u)\Delta(v)$

$$= (u \otimes 1 + 1 \otimes u)(v \otimes 1 + 1 \otimes v)$$

- $=(u\otimes 1)(v\otimes 1)+(u\otimes 1)(1\otimes v)+(1\otimes u)(v\otimes 1)+(1\otimes u)(1\otimes v)$
- $=(uv\otimes 1)+(u\otimes v)-(v\otimes u)+(1\otimes uv)$
- $= (uv \otimes 1) + (1 \otimes uv)$

Hopf superalgebras

Examples of Hopf superalgebras

- Ordinary Hopf algebras (as purely even superalgebras).
- $\mathbb{Z}\text{-}\mathsf{graded}$ Hopf algebras in the sense of Milnor and Moore
- Enveloping superalgebras of (restricted) Lie superalgebras

Recall that a Lie superalgebra is a superspace $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ equipped with an even map $[\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ such that for homogeneous *x*, *y*, *z*,

- $[x, y] = -(-1)^{\overline{x} \cdot \overline{y}}[y, x]$
- $[x, [y, z]] = [[x, y], z] + (-1)^{\overline{x} \cdot \overline{y}} [y, [x, z]]$
- [x,x] = 0 if $x \in \mathfrak{g}_{\overline{0}}$ and p = 2
- [x, [x, x]] = 0 if $x \in \mathfrak{g}_{\overline{1}}$ and p = 3

Say that \mathfrak{g} is **restricted** if $\mathfrak{g}_{\overline{0}}$ is an ordinary restricted Lie algebra and $\mathfrak{g}_{\overline{1}}$ is a restricted $\mathfrak{g}_{\overline{0}}$ -module under the adjoint action.

Supergroup schemes

Classical correspondences

affine group schemes \leftrightarrow cocommutative Hopf algebras finite group schemes \leftrightarrow f.d. cocommutative Hopf algebras height-one group schemes \leftrightarrow f.d. restricted Lie algebras

Super correspondences

affine supergroup schemes ↔ cocommutative Hopf superalgebras
finite supergroup schemes ↔ f.d. cocommut. Hopf superalgebras
height-one supergroup schemes ↔ f.d. res. Lie superalgebras

Finite supergroup schemes, p = 0

Simplest example

Theorem

Let V be a finite-dimensional space. Then $H^{\bullet}(\Lambda(V), k) \cong S^{\bullet}(V^*)$.

The cohomology ring is graded-(super)commutative in the sense

 $ab = (-1)^{\deg(a) \cdot \deg(b) + \overline{a} \cdot \overline{b}} ba.$

Aramova-Avramov-Herzog (2000)

Let *M* be a finite-dimensional $\Lambda(V)$ -supermodule. Then

$$|\Lambda(V)|_M \cong \{v \in V : M|_{\langle v \rangle} \text{ is not free} \}.$$

In the theorem, $\langle v \rangle$ refers to an algebra isomorphic to $\Lambda(v) \cong k[v]/\langle v^2 \rangle$.

In characteristic 0, this is most of the complete picture!

Classification in characteristic zero

Suppose k is an algebraically closed field of characteristic 0.

Kostant

Let A be a cocommutative Hopf superalgebra over k. Then

 $A \cong U(\mathfrak{g}) \# kG$

for some Lie superalgebra \mathfrak{g} over k and some subgroup $G \leq \operatorname{Aut}(\mathfrak{g})$.

Corollary

Let A be a finite-dimensional cocommutative Hopf superalgebra over k. Then $A \cong \Lambda(V) \# kG$ for some finite group G and some f.d. purely odd kG-module V.

Given $\Lambda(V) # kG$ as in the Corollary, denote the corresponding finite supergroup scheme by $V \rtimes G$.

Cohomology and support varieties

Theorem

Let $V \rtimes G$ be a finite *k*-supergroup scheme. Let *M* and *N* be $V \rtimes G$ -supermodules. Then $\operatorname{Ext}_{V \rtimes G}^{\bullet}(M, N) \cong \operatorname{Ext}_{\Lambda(V)}^{\bullet}(M, N)^{G}$. In particular,

$$\mathsf{H}^{\bullet}(V \rtimes G, k) \cong \mathsf{H}^{\bullet}(\Lambda(V), k)^{G} \cong S^{\bullet}(V^{*})^{G}.$$

Corollary

Let $V \rtimes G$ be a finite *k*-supergroup scheme, and let *M* be a finitedimensional $V \rtimes G$ -supermodule. Then

> $|V \rtimes G| \cong V/G$, the quotient of V by G, and $|V \rtimes G|_M \cong \{ [v] \in V/G : M|_{\langle v \rangle} \text{ is not free} \} \cup \{ 0 \}.$

Finite-dim'l Lie superalgebras

Cohomology of Lie superalgebras

 $H^{\bullet}(\mathfrak{g}, k)$ is the cohomology ring of enveloping superalgebra $U(\mathfrak{g})$ $H^{\bullet}(\mathfrak{g}, k)$ can be computed via the super Koszul resolution ($\Lambda(\mathfrak{g}^*), \partial$) As a superalgebra, $\Lambda(\mathfrak{g}^*) \cong \Lambda(\mathfrak{g}^*_{\overline{0}}) \stackrel{g}{\otimes} S(\mathfrak{g}^*_{\overline{1}}).$

Results in characteristic zero

 $H^{\bullet}(\mathfrak{g}, k)$ can be either finite-dimensional or infinite-dimensional

If $\mathfrak{g} = \mathfrak{g}_{\overline{1}}$, then $U(\mathfrak{g}) = \Lambda(\mathfrak{g})$ and $H^{\bullet}(\mathfrak{g}, k) \cong S(\mathfrak{g}^*)$.

If $\mathfrak{g} = \mathfrak{gl}(m|n)$, then $H^{\bullet}(\mathfrak{g}, k)$ is a f.d. exterior algebra [Fuks-Leites]

Competing variety theories in characteristic zero

Duflo-Serganova (arXiv 2005)

Given a \mathfrak{g} -supermodule M, defined the associated variety

 $X_{M} = \{x \in \mathfrak{g}_{\overline{1}} : [x, x] = 0 \text{ and } M|_{\langle x \rangle} \text{ is not free} \}$

Relatively simple $GL_m \times GL_n$ orbit structure when $\mathfrak{g} = \mathfrak{gl}(m|n)$. Detect projectivity in category \mathcal{F} of f.d. \mathfrak{g} -supermodules s.s. over $\mathfrak{g}_{\overline{0}}$. Not defined via cohomology.

Boe-Kujawa-Nakano (2009, 2010, 2011, 2012)

Support varieties in terms of relative cohomology $H^{\bullet}(\mathfrak{g}, \mathfrak{g}_{\overline{0}}; k)$. Work in category \mathcal{F} of f.d. \mathfrak{g} -supermodules that are s.s. over $\mathfrak{g}_{\overline{0}}$. Variety theory can measure *defect* of \mathfrak{g} and *atypicality* of modules. For the rest of this talk, assume that k is of characteristic $p \ge 3$.

Positive characteristic (k algebraically closed, $p \ge 3$)

Super Koszul complex $\Lambda(\mathfrak{g}^*) \cong \Lambda(\mathfrak{g}_{\overline{0}}^*) \overset{g}{\otimes} S(\mathfrak{g}_{\overline{1}}^*)$

p-th powers in $S(\mathfrak{g}_1^*)\subset \pmb{\Lambda}(\mathfrak{g}^*)$ consist of cocycles, so get a map

 $\varphi: S(\mathfrak{g}_{\overline{1}}^*[p])^{(1)} \to H^{\bullet}(\mathfrak{g}, k).$

Study $|\mathfrak{g}| := Max(H^{\bullet}(\mathfrak{g}, k))$ via this map.

Theorem

Let ${\mathfrak g}$ be a finite-dimensional Lie superalgebra. Let ${\it M}$ be a finite-dimensional ${\mathfrak g}\text{-supermodule}.$ Then there are homeomorphisms

$$\begin{split} |\mathfrak{g}| &\cong \{x \in \mathfrak{g}_{\overline{1}} : [x, x] = 0\} \\ |\mathfrak{g}|_{M} &\cong \{x \in \mathfrak{g}_{\overline{1}} : [x, x] = 0 \text{ and } M|_{\langle x \rangle} \text{ is not free} \} \cup \{0\} \,. \end{split}$$

Since [x, x] = 0, have isomorphism of algebras $\langle x \rangle \cong k[x]/\langle x^2 \rangle$.

Identical in definition to the Duflo-Serganova varieties!

Cohomology of finite supergroup schemes

First step toward support varieties: cohomological finite generation

Drupieski (Adv. Math. 2016)

Let G be a finite supergroup scheme over k and let M be a finitedimensional G-supermodule. Then $H^{\bullet}(G, k)$ is a finitely-generated k-superalgebra and $H^{\bullet}(G, M)$ is finite over $H^{\bullet}(G, k)$.

Proved by way of cohomology calculations in the category of **strict polynomial superfunctors**, analogous to the argument for ordinary finite group schemes by Friedlander and Suslin.

Remark

If A is a Hopf superalgebra, then the smash product $A\#(\mathbb{Z}/2\mathbb{Z})$ is an ordinary Hopf algebra, and $H^{\bullet}(A\#(\mathbb{Z}/2\mathbb{Z}), k) \cong H^{\bullet}(A, k)_{\overline{0}}$.

Example of an ordinary strict polynomial functor

Suppose V has basis $\{u, v\}$ and W has basis $\{x, y\}$.

Then $S^2(V)$ has basis $\{u^2, uv, v^2\}$ and $S^2(W)$ has basis $\{x^2, xy, y^2\}$.

Let $\phi: V \to W$ be the linear map with associated matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

The linear map $S^2(\phi) : S^2(V) \to S^2(W)$ is defined for $f \in S^2(V)$ by

 $S^2(\phi)(f(u,v)) = f(\phi(u),\phi(v)).$

The associated matrix for $S^2(\phi)$ is then

$$\begin{pmatrix} a^2 & ab & b^2 \\ 2ac & (ad+cb) & 2bd \\ c^2 & cd & d^2 \end{pmatrix}$$

Strict polynomial superfunctors

Examples of strict polynomial superfunctors

 Π parity flip functor

- $\mathbf{\Gamma}^{d}(V) = (V^{\otimes d})^{\Sigma_{d}}$ super-symmetric tensors
- $S^{d}(V) = (V^{\otimes d})_{\Sigma_{d}}$ super-symmetric power

 $\Lambda^{d}(V)$ super-exterior power

 $A^{d}(V)$ super-alternating tensors

 $I^{(r)}(V) = V^{(r)}$ r-th Frobenius twist $(r \ge 1)$

 $(\Pi V)_{\overline{0}} = V_{\overline{1}}, \ (\Pi V)_{\overline{1}} = V_{\overline{0}}$

$$\boldsymbol{\Gamma}(V) = \boldsymbol{\Gamma}(V_{\overline{0}}) \otimes \boldsymbol{\Lambda}(V_{\overline{1}})$$

 $S(V) = S(V_{\overline{0}}) \otimes \Lambda(V_{\overline{1}})$

$$\boldsymbol{\Lambda}(V) = \boldsymbol{\Lambda}(V_{\overline{0}}) \ ^{g} \otimes \ \boldsymbol{S}(V_{\overline{1}})$$

$$\mathsf{A}(V) = \Lambda(V_{\overline{0}}) \ ^g \otimes \Gamma(V_{\overline{1}})$$

 $I^{(r)} = I_0^{(r)} \oplus I_1^{(r)}$

Non-example: $V \mapsto V_{\overline{0}}$ (incompatible with composing odd maps)

- SPSFs can restrict to ordinary SPFs in two different ways
- Ordinary SPFs in general don't seem lift to SPSFs
- Frobenius twists of SPFs lift to SPSFs in several different ways

Main calculation: structure of the extension algebra

$$\mathsf{Ext}_{\mathcal{P}}^{\bullet}(\mathbf{I}^{(r)}, \mathbf{I}^{(r)}) = \begin{pmatrix} \mathsf{Ext}_{\mathcal{P}}^{\bullet}(\mathbf{I}_{0}^{(r)}, \mathbf{I}_{0}^{(r)}) & \mathsf{Ext}_{\mathcal{P}}^{\bullet}(\mathbf{I}_{1}^{(r)}, \mathbf{I}_{0}^{(r)}) \\ \mathsf{Ext}_{\mathcal{P}}^{\bullet}(\mathbf{I}_{0}^{(r)}, \mathbf{I}_{1}^{(r)}) & \mathsf{Ext}_{\mathcal{P}}^{\bullet}(\mathbf{I}_{1}^{(r)}, \mathbf{I}_{1}^{(r)}) \end{pmatrix}$$

Cohomology of strict polynomial superfunctors

Drupieski (2016)

 $\operatorname{Ext}_{\mathcal{P}}^{\bullet}(\boldsymbol{I}^{(r)},\boldsymbol{I}^{(r)})$ is generated as an algebra by extension classes

- $e'_i \in \operatorname{Ext}_{\mathcal{P}}^{2p^{i-1}}(I_0^{(r)}, I_0^{(r)}) \text{ and } e''_i \in \operatorname{Ext}_{\mathcal{P}}^{2p^{i-1}}(I_1^{(r)}, I_1^{(r)})$ $(1 \le i \le r)$
- $\boldsymbol{c}_r \in \operatorname{Ext}_{\boldsymbol{\mathcal{P}}}^{p^r}(\boldsymbol{I}_1^{(r)}, \boldsymbol{I}_0^{(r)}) \text{ and } \boldsymbol{c}_r^{\Pi} \in \operatorname{Ext}_{\boldsymbol{\mathcal{P}}}^{p^r}(\boldsymbol{I}_0^{(r)}, \boldsymbol{I}_1^{(r)})$

These generators satisfy:

- $(e'_i)^p = 0 = (e''_i)^p$ if $1 \le i \le r 1$.
- $(\boldsymbol{e}_r')^p = \boldsymbol{c}_r \circ \boldsymbol{c}_r^{\Pi}$ and $(\boldsymbol{e}_r'')^p = \boldsymbol{c}_r^{\Pi} \circ \boldsymbol{c}_r$.
- The e'_i, e''_i generate a commutative subalgebra.
- The e'_i restrict to Friedlander and Suslin's extension classes
- Have $e'_i \circ c_r = \pm c_r \circ e''_i$. But is it + or -? (It is + for i = r.)

Support varieties for infinitesimal supergroup schemes

Let $G \subset GL(m|n)$ be infinitesimal of height $\leq r$.

Evaluation and restriction maps

$$\operatorname{Ext}_{\mathcal{P}}^{\bullet}(I^{(r)}, I^{(r)}) \to \operatorname{Ext}_{GL(m|n)}^{\bullet}((k^{m|n})^{(r)}, (k^{m|n})^{(r)})$$
$$\cong \operatorname{Ext}_{GL(m|n)}^{\bullet}(k, \mathfrak{gl}(m|n)^{(r)})$$
$$\to \operatorname{Ext}_{G}^{\bullet}(k, \mathfrak{gl}(m|n)^{(r)})$$
$$\cong \operatorname{Hom}_{k}(\mathfrak{gl}(m|n)^{*(r)}, \operatorname{H}^{\bullet}(G, k))$$

For r = 1, the strict polynomial superfunctor extension classes give rise to a superalgebra homomorphism over which $H^{\bullet}(G, k)$ is finite:

 $\varphi: S(\mathfrak{gl}(m|n)^*_{\overline{0}}[2])^{(1)} \otimes S(\mathfrak{gl}(m|n)^*_{\overline{1}}[p])^{(1)} \to H^{\bullet}(G,k).$

Induced finite map of varieties $|G| \rightarrow \mathfrak{gl}(m|n)$ with image $V_G(k)$.

Restricted Lie superalgebras

Theorem

Let ${\mathfrak g}$ be a finite-dimensional restricted Lie superalgebra. Then

$$V_{\mathfrak{g}}(k) \cong \{x + y \mid x \in \mathfrak{g}_{\overline{0}}, y \in \mathfrak{g}_{\overline{1}}, [x, y] = 0, x^{[p]} = y^2\}$$

where $y^2 := \frac{1}{2}[y, y]$.

- Relations come from the functor cohomology calculations
- Sufficiency comes from explicit calculations for the restricted subalgebra generated by *x* and *y*, using an "explicit" projective resolution constructed by Iwai–Shimada and May.
- Agrees with results of Nakano & Palmieri (1998) for finite-dimensional subalgebras of the Steenrod algebra
- Support variety $V_{\mathfrak{g}}(M)$ of a nontrivial supermodule M?

Arbitrary infinitesimal supergroup schemes

Now let $G \subset GL(m|n)$ be a height-*r* infinitesimal supergroup scheme. The polynomial superfunctor classes give rise to a homomorphism

$$\left[\bigotimes_{i=1}^{r} S(\mathfrak{gl}(m|n)_{\overline{0}}^{*}[2p^{i-1}])^{(r)}\right] \otimes S(\mathfrak{gl}(m|n)_{\overline{1}}^{*}[p^{r}])^{(r)} \to H^{\bullet}(G,k)$$

over whose image $H^{\bullet}(G, k)$ is finite.

Possible description for |G| à la Suslin-Friedlander-Bendel?

Set of all *r*-tuples $(x_0, \ldots, x_{r-1}, y)$ such that

- $x_i \in \mathfrak{g}_{\overline{0}}$ for $0 \leq i \leq r-1$, and $y \in \mathfrak{g}_{\overline{1}}$
- Entries pairwise commute

•
$$x_i^{[p]} = 0$$
 for $0 \le i \le r - 2$

•
$$x_{r-1}^{[p]} = y^2$$

- Completely identify the spectrum of $H^{\bullet}(G, k)$ or $H^{\bullet}(V(\mathfrak{g}), k)$
- Rank variety description for support varieties?
- Super one-parameter subgroups?
- Super П-points?