Superized Troesch complexes and cohomology for strict polynomial superfunctors

Christopher Drupieski (DePaul University)
Jonathan Kujawa (University of Oklahoma)
J. Pure Appl. Algebra 226 (2022), no. 12, Paper No. 107136

AMS Spring Western Sectional Meeting, May 6-7, 2023
Special Session on Methods in Non-Semisimple Representation Theory

Strict polynomial functors

Category of vector spaces

Let k be a field (later, characteristic $p>0$, then $p \geq 3$).
Let \mathcal{V} be the category of finite-dimensional k-vector spaces.
The symmetric group Σ_{d} acts on $V^{\otimes d}$ by place permutation. Set

$$
\Gamma^{d}(V)=\left(V^{\otimes d}\right)^{\Sigma_{d}} .
$$

The category $\Gamma^{d} \mathcal{V}$

Let $\Gamma^{d} \mathcal{V}$ be the category whose objects are the same as those in \mathcal{V}, but in which spaces of morphisms are defined by

$$
\operatorname{Hom}_{\Gamma^{d} \mathcal{V}}(V, W)=\Gamma^{d} \operatorname{Hom}_{k}(V, W) \cong \operatorname{Hom}_{k \Sigma_{d}}\left(V^{\otimes d}, W^{\otimes d}\right)
$$

and composition is that of $k \Sigma_{d}$-module homomorphisms.

Strict polynomial functors, after Pirashvili

The category \mathcal{P}_{d}

The category \mathcal{P}_{d} of homogeneous degree- d strict polynomial functors is the category of linear functors

$$
F: \Gamma^{d} \mathcal{V} \rightarrow \mathcal{V}
$$

i.e., functors such that for all $V, W \in \mathcal{V}$, the function

$$
F_{V, W}: \operatorname{Hom}_{k \Sigma_{d}}\left(V^{\otimes d}, W^{\otimes d}\right) \rightarrow \operatorname{Hom}_{k}(F(V), F(W))
$$

is a linear map.

Examples of homogeneous strict polynomial functors

- $\otimes^{d}: V \mapsto V^{\otimes d}$
- $\Gamma^{d}: V \mapsto \Gamma^{d}(V)=\left(V^{\otimes d}\right)^{\Sigma_{d}}$
- $\Lambda^{d}: V \mapsto \Lambda^{d}(V)$
- $S^{d}: V \mapsto S^{d}(V)=\left(V^{\otimes d}\right)_{\Sigma_{d}}$
- $\Gamma^{d, W}: V \mapsto \Gamma^{d}\left(\operatorname{Hom}_{k}(W, V)\right)$
- $S_{W}^{d}: W \mapsto S^{d}(W \otimes V)$
d-th tensor power
d-th divided power
d-th exterior power
d-th symmetric power
projective object in \mathcal{P}_{d} injective object in \mathcal{P}_{d}

Suppose k is a field of characteristic $p>0$. Let $r \geq 1$.

- $\prime^{(r)}: V \mapsto V^{(r)}$
r-th Frobenius twist, $\left.\right|^{(r)} \in \mathcal{P}_{p^{r}}$
The p^{r}-power map induces an embedding $I^{(r)} \hookrightarrow S^{p^{r}}$.

Why (else) do we care about strict polynomial functors?

Theorem (Friedlander-Suslin)

Let $V \in \mathcal{V}$. If $\operatorname{dim}_{k}(V)=n \geq d$, then evaluation on V

$$
F \mapsto F(V)
$$

defines an equivalence of categories $\mathcal{P}_{d} \simeq S(n, d)$-mod.
Theorem (Friedlander-Suslin)
Extension classes in Ext $\boldsymbol{\mathcal { P }}^{\bullet}\left(I^{(r)},\left.\right|^{(r)}\right)$ restrict nontrivially to $G L_{n}$ and its Frobenius kernel $G L_{n(r)}$, and provide generators for the cohomology of finite subgroup schemes of $G L_{n(r)}$.

Other extension classes in for strict polynomial functors play a role in more general cohomological finite-generation results by Touzé and van ker Kallen.

Troesch complexes, after Touzé

Goal

Given $m, r \geq 1$, describe an injective resolution in $\mathcal{P}_{p^{r} m}$ of $S^{m(r)}$.
It's only a 20 minute talk, so let's stick to the case $r=1$.

Let $Ш$ be the graded k-space with basis $\Pi_{0}, \ldots, \Pi_{p-1}, \operatorname{deg}\left(\Pi_{i}\right)=i$.
Consider the functor $S(\amalg \otimes-): U \mapsto S(\amalg \otimes U)$.

$$
S(\amalg \otimes U) \cong S\left(\Pi_{0} \otimes U\right) \otimes S\left(\Pi_{1} \otimes U\right) \otimes \cdots \otimes S\left(\Pi_{p-1} \otimes U\right)
$$

$S(\amalg \otimes U)$ inherits an \mathbb{N}-grading from that on \amalg :

$$
S^{n}(\amalg \otimes U)^{\ell} \cong \bigoplus_{\substack{i_{0}+i_{1}+\cdots+i_{p}=n \\ i_{0} \cdot 0+i_{1} \cdot 1+\cdots+i_{p-1} \cdot(p-1)=\ell}} S^{i_{0}}(U) \otimes S^{i_{1}}(U) \otimes \cdots \otimes S^{i_{p-1}}(U)
$$

Troesch complexes, after Touzé

Define $\rho: Ш \rightarrow Ш$ by $\quad \rho\left(\Pi_{i}\right)= \begin{cases}\Pi_{i+1} & \text { if } 0 \leq i \leq p-2, \\ 0 & \text { if } i=p-1 .\end{cases}$

Define $d: S^{n}(\amalg \otimes U)^{\ell} \rightarrow S^{n}(\amalg \otimes U)^{\ell+1}$ to be the composite

$$
\begin{aligned}
S^{n}(\amalg \otimes U) & \xrightarrow{\Delta} S^{n-1}(\amalg \otimes U) \otimes S^{1}(\amalg \otimes U) \\
& \xrightarrow{\text { id } \otimes S(\rho \otimes i d u)} S^{n-1}(\amalg \otimes U) \otimes S^{1}(\amalg \otimes U) \xrightarrow{m} S^{n}(\amalg \otimes U) .
\end{aligned}
$$

Remark

For $r=1$, the map d is simply the algebra derivation on $S(\amalg \otimes U)$ induced by the vector space map $\rho \otimes \mathrm{id} \mathrm{:}: \amalg \otimes U \rightarrow \amalg \otimes U$.

Troesch complexes, after Touzé

Now $d: S^{n}(\amalg \otimes-)^{\ell} \rightarrow S^{n}(\amalg \otimes-)^{\ell+1}$ is a p-differential, i.e., $d^{p}=0$.
Then the contraction

$$
\begin{aligned}
B_{n}^{\bullet}: S^{n}(\amalg \otimes-)^{0} \xrightarrow{d} & S^{n}(\amalg \otimes-)^{1} \xrightarrow{d^{p-1}} S^{n}(\amalg \otimes-)^{p} \\
& \xrightarrow{d} S^{n}(\amalg \otimes-)^{p+1} \xrightarrow{d^{p-1}} S^{n}(\amalg \otimes-)^{2 p} \xrightarrow{d} \cdots
\end{aligned}
$$

is an ordinary cochain complex with

$$
B_{n}^{2 i}=S^{n}(\amalg \otimes-)^{p i} \quad \text { and } \quad B_{n}^{2 i+1}=S^{n}(\amalg \otimes-)^{p i+1} .
$$

Theorem (Troesch)

B_{n}^{\bullet} is acyclic if $p \nmid n$, and is an injective resolution of $S^{m(1)}$ if $n=p m$. More generally, he constructs an injective resolution of $S^{m(r)}, r \geq 1$.

Note: For fixed n, one has $B_{n}^{i}=0$ for $i \gg 0$.

Why are Troesch complexes the bee's knees?

Yoneda isomorphism, compatible with \mathbb{Z}-gradings
Let $F \in \mathcal{P}_{m}$. Let $F^{(1)}=F \circ I^{(1)}$. Then

$$
\operatorname{Hom}_{\mathcal{P}}\left(F^{(1)}, S^{p m}(\amalg \otimes-)\right) \cong F^{\#}\left(\amalg^{(1)}\right)
$$

is concentrated in \mathbb{Z}-degrees divisible by p.
Then $\operatorname{Hom}_{\mathcal{P}}\left(F^{(1)}, B_{p n}^{\bullet}\right)$ is concentrated in even degrees.

Corollary

$$
\operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(I^{(1)}, I^{(1)}\right) \cong \operatorname{Hom}_{\mathcal{P}}\left(I^{(1)}, B_{p}^{\bullet}\right) \cong E_{1},
$$

where E_{1} the space \amalg regraded so that $\operatorname{deg}\left(\Pi_{i}\right)=2 i(0 \leq i<p)$.
More generally, Touzé applies Troesch's complexes to give short proofs of Ext-calculations between many twisted functors.

Strict polynomial superfunctors

Category of vector superspaces

Let \mathcal{V} be the category of finite-dimensional k-vector superspaces.

$$
V=V_{\overline{0}} \oplus V_{\bar{T}}
$$

The symmetric group Σ_{d} acts on $V^{\otimes d}$ by signed place permutations.

$$
V \otimes W \cong W \otimes V, \quad V \otimes W \mapsto(-1)^{\bar{v} \cdot \bar{W}} w \otimes v
$$

The category $\boldsymbol{\Gamma}^{d} \mathcal{V}$

Let $\boldsymbol{\Gamma}^{d} \mathcal{V}$ be the category whose objects are the same as those in \mathcal{V}, but in which spaces of morphisms are defined by

$$
\operatorname{Hom}_{\Gamma^{d}} \mathcal{V}(V, W)=\boldsymbol{\Gamma}^{d} \operatorname{Hom}_{k}(V, W) \cong \operatorname{Hom}_{k \Sigma_{d}}\left(V^{\otimes d}, W^{\otimes d}\right)
$$

and composition is that of $k \Sigma_{d}$-module homomorphisms.

Strict polynomial superfunctors, after Axtell

The category \mathcal{P}_{d}

The category $\boldsymbol{\mathcal { P }}_{d}$ of homogeneous degree-d strict polynomial
superfunctors is the category of even linear functors

$$
F: \Gamma^{d} \mathcal{V} \rightarrow \mathcal{V}
$$

i.e., functors such that for all $V, W \in \mathcal{V}$, the function

$$
F_{V, W}: \operatorname{Hom}_{k \Sigma_{d}}\left(V^{\otimes d}, W^{\otimes d}\right) \rightarrow \operatorname{Hom}_{k}(F(V), F(W))
$$

is an even (i.e., \mathbb{Z}_{2}-degree preserving) linear map.

Examples of homogeneous strict polynomial superfunctors

- $\boldsymbol{\Pi} \in \mathcal{P}_{1}$
- $\boldsymbol{\Gamma}^{d}: V \mapsto \boldsymbol{\Gamma}^{d}(V)=\left(V^{\otimes d}\right)^{\Sigma_{d}}$
- $A^{d}: V \mapsto\left[\operatorname{sgn} \otimes\left(V^{\otimes d}\right)\right]^{\Sigma_{d}}$
- $\boldsymbol{\Lambda}^{d}: V \mapsto \boldsymbol{\Lambda}^{d}(V)$
- $S^{d}: V \mapsto S^{d}(V)=\left(V^{\otimes d}\right) \Sigma_{d}$
- $\Gamma^{d}\left(\operatorname{Hom}_{k}(W,-)\right), A^{d}\left(\operatorname{Hom}_{k}(W,-)\right)$
- $S^{d}(W \otimes-), \Lambda^{d}(W \otimes-)$
parity change functor

$$
\begin{aligned}
& \boldsymbol{\Gamma}(V) \cong \Gamma\left(V_{\overline{0}}\right) \otimes \Lambda\left(V_{\overline{1}}\right) \\
& A(V) \cong \Lambda\left(V_{\overline{0}}\right) \otimes \Gamma\left(V_{\overline{1}}\right) \\
& \Lambda(V) \cong \Lambda\left(V_{\overline{0}}\right) \otimes S\left(V_{\overline{1}}\right) \\
& S(V) \cong S\left(V_{\overline{0}}\right) \otimes \Lambda\left(V_{\overline{1}}\right)
\end{aligned}
$$

projective objects injective objects

For $r \geq 1$,

- $I^{(r)}=I_{0}^{(r)} \oplus I_{1}^{(r)} \quad$ where $\quad I_{0}^{(r)}(V)=V_{\overline{0}}^{(r)} \quad$ and $\quad I_{1}^{(r)}(V)=V_{\overline{1}}^{(r)}$

Power maps induce embeddings $I_{0}^{(r)} \hookrightarrow S^{p^{r}}$ and $I_{1}^{(r)} \hookrightarrow \boldsymbol{\Lambda}^{p^{r}}$.

Why (else) do we care about strict polynomial superfunctors?

Theorem (Axtell)

Let $V \in \mathcal{V}$. If $V \cong k^{m \mid n}$ and $m, n \geq d$, then evaluation on V

$$
F \mapsto F(V)
$$

defines an equivalence of categories $\mathcal{P}_{d} \simeq S(m \mid n, d)$-smod.

Theorem (Drupieski)

Extension classes in Ext ${ }_{\mathcal{P}}^{\bullet}\left(I^{(r)}, I^{(r)}\right)$ restrict nontrivially to the affine supergroup scheme $G L_{m \mid n}$ and its Frobenius kernel $G L_{m \mid n(r)}$, and together with the generators exhibited by Friedlander and Suslin, give generators for the cohomology of finite supergroup schemes.

Would like to better understand other extension groups in \mathcal{P}, e.g., between Frobenius twists of classical exponential functors.

Naive generalization of Troesch's construction

Consider $Ш$ as a \mathbb{Z}-graded superspace of purely even superdegree.
For $U=U_{\overline{0}} \oplus U_{\overline{1}}$, consider

$$
S(\amalg \otimes U) \cong S\left(\Pi_{0} \otimes U\right) \otimes S\left(\Pi_{1} \otimes U\right) \otimes \cdots \otimes S\left(\Pi_{p-1} \otimes U\right) .
$$

Define $d: S(\amalg \otimes U)^{\ell} \rightarrow S(\amalg \otimes U)^{\ell+1}$ exactly as before.
Cocycles (by virtue of d being a derivation when $r=1$)
For $u \in U_{\overline{0}}$, get

$$
\left(\varpi_{0} \otimes u\right)^{p} \in S^{p}(\amalg \otimes U)^{0} .
$$

New for super: If $u \in U_{\overline{1}}$, get

$$
u^{(1)}:=\left(\Pi_{0} \otimes u\right) \otimes\left(\varpi_{1} \otimes u\right) \otimes \cdots \otimes\left(\varpi_{p-1} \otimes u\right) \in S^{p}(\amalg \otimes U)^{p(p-1) / 2}
$$

in the exterior algebra part of $S(\amalg \otimes U) \cong S\left(\amalg \otimes U_{\overline{0}}\right) \otimes \Lambda\left(\amalg \otimes U_{\overline{1}}\right)$

Naive generalization of Troesch's construction

Let $\boldsymbol{B}_{n}^{\bullet}$ be the contracted complex of strict polynomial superfunctors

$$
\begin{aligned}
B_{n}^{\bullet}: S^{n}(\amalg \otimes-)^{0} \xrightarrow{d} & S^{n}(\amalg \otimes-)^{1} \xrightarrow{d^{p-1}} S^{n}(\amalg \otimes-)^{p} \\
& \xrightarrow{d} S^{n}(\amalg \otimes-)^{p+1} \xrightarrow{d^{p-1}} S^{n}(\amalg \otimes-)^{2 p} \xrightarrow{d} \cdots
\end{aligned}
$$

Theorem (Drupieski-Kujawa)

$$
H^{\bullet}\left(B_{n}\right) \cong \begin{cases}0 & \text { if } p \nmid n, \\ S^{m(1)} & \text { if } n=p m .\end{cases}
$$

In the latter case, for $0 \leq \ell \leq m$, the summand

$$
\left(S^{m-\ell} \circ I_{0}^{(1)}\right) \otimes\left(\Lambda^{\ell} \circ I_{1}^{(1)}\right)
$$

of $S^{m(1)}$ is in cohomological degree $\ell \cdot(p-1)$.

Resolutions of injectives

In the case $n=p$, get a complex of injective objects

$$
B_{p}^{0} \rightarrow B_{p}^{1} \rightarrow \cdots \rightarrow B_{p}^{p-1} \rightarrow \cdots \rightarrow B_{p}^{2(p-1)}
$$

with $\quad H^{0}\left(B_{p}\right) \cong I_{0}^{(1)}, \quad H^{p-1}\left(B_{p}\right) \cong I_{1}^{(1)}, \quad$ and $\quad H^{i}\left(B_{p}\right)=0$ otherwise.
These complexes can be spliced together:

Splice at beginning:

Continue splicing:

Calculations

End result of splicing

For all $r \geq 1$, construct periodic injective resolutions

$$
I_{0}^{(r)} \rightarrow J(r) \quad \text { and } \quad I_{1}^{(r)} \rightarrow \bar{J}(r) .
$$

Corollary ("quick" recalculation)

$$
\begin{aligned}
& \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(l_{0}^{(r)}, l_{0}^{(r)}\right) \cong \operatorname{Hom}_{\mathcal{P}}\left(l_{0}^{(r)}, J(r)\right) \cong \bigoplus_{n \geq 0} E_{r}\left\langle 2 n p^{r}\right\rangle \\
& \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(l_{1}^{(r)}, l_{0}^{(r)}\right) \cong \operatorname{Hom}_{\mathcal{P}}\left(l_{1}^{(r)}, J(r)\right) \cong \bigoplus_{n \geq 0} E_{r}\left\langle(2 n+1) p^{r}\right\rangle
\end{aligned}
$$

where $E_{r}=\bigoplus_{0 \leq i<p^{r}} k\langle 2 i\rangle$.

More calculations (after Franjou, Friedlander, Scorichenko, and Suslin)

For $1 \leq j \leq r$ and $\ell \in\{0,1\}$, set

$$
\left.\begin{array}{ll}
V_{j, \ell}=\operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(I_{\ell}^{(r)}, S_{0}^{p^{r-j}(j)}\right), & W_{j, \ell}=\operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(I_{\ell}^{(r)}, \Lambda_{0}^{p^{r-j}(j)}\right), \\
\bar{V}_{j, \ell}=\operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(I_{\ell}^{(r)}, S_{1}^{p^{r-j}(j)}\right), & \bar{W}_{j, \ell}=\operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(I_{\ell}^{(r)}, \Lambda_{1}^{p^{r-j}}(j)\right.
\end{array}\right) .
$$

Using the superized Troesch complexes in lieu of the de Rham and Koszul complexes:

Theorem

Let $\ell \in\{0,1\}$. For all $d \geq 1$ and all $1 \leq j \leq r$, the cup product maps

$$
\begin{array}{ll}
\left(V_{j, \ell}\right)^{\otimes d} \rightarrow \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, S_{0}^{d p^{r-j}(j)}\right), & \left(W_{j, \ell}\right)^{\otimes d} \rightarrow \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, \Lambda_{0}^{d p^{r-j}(j)}\right), \\
\left(\bar{V}_{j, \ell}\right)^{\otimes d} \rightarrow \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, S_{1}^{d p^{r-j}(j)}\right), & \left(\bar{W}_{j, \ell}\right)^{\otimes d} \rightarrow \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, \Lambda_{1}^{d p^{r-j}(j)}\right)
\end{array}
$$

factor to induce isomorphisms of graded vector spaces

$$
\begin{array}{ll}
S^{d}\left(V_{j, \ell}\right) \cong \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, S_{0}^{d p^{r-j}(j)}\right), & \Lambda^{d}\left(W_{j, \ell}\right) \cong \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, \Lambda_{0}^{d p^{r-j}(j)}\right), \\
S^{d}\left(\bar{V}_{j, \ell}\right) \cong \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, S_{1}^{d p^{r-j}(j)}\right), & \Lambda^{d}\left(\bar{W}_{j, \ell}\right) \cong \operatorname{Ext}_{\mathcal{P}}^{\bullet}\left(\Gamma_{\ell}^{d(r)}, \Lambda_{1}^{d p^{r-j}(j)}\right)
\end{array}
$$

