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Support schemes

Let A be a Hopf algebra over a field k, char(k) = p > 0.

Then H•(A, k) is a graded-commutative algebra.

Cohomological spectrum and support varieties
The cohomological spectrum of A is the affine scheme

|A| = Spec
(
H•(A, k)

)
.

Given an A-module M, let IA(M) be the kernel of the (k-algebra) map

H•(A, k) = Ext•A(k, k)
−⊗M−→ Ext•A(M,M).

The cohomological support scheme associated to M is

|A|M = Spec
(
H•(A, k)/IA(M)

)
.



Properties of support schemes

Let A be a finite-dimensional Hopf algebra such that H•(A, k) is a
finitely-generated k-algebra, and such that H•(A,M) is finite over
H•(A, k) for each finite-dimensional A-module M.

Then one has the following good properties for cohomological
support schemes of finite-dimensional modules:

Some good properties of support schemes

• dim |A|M = cxA(M), the complexity of M as an A-module.
• |A|M = {0} ⇐⇒ M is projective ⇐⇒ M is injective.
• |A|M⊕N = |A|M ∪ |A|N.
• If A is cocommutative, then |A|M⊗N ⊆ |A|M ∩ |A|N.



Finite groups

Case A = kG, group algebra of a finite group G, char(k) = p > 0.

• If E = (Z/pZ)n is elementary abelian, then |kE| is affine n-space.
• In general, Quillen (1971) showed that |kG| is stratified by pieces
coming from the elementary abelian p-subgroups of G.

|kG| =
∪
E≤G

E elem. ab.

res∗G,E(|kE|)

• In the 1980s, Carlson conjectured, and Avrunin and Scott proved,
that |kG|M can also be computed in terms of data coming from
the elementary abelian p-subgroups of G.

|kG|M =
∪
E≤G

E elem. ab.

res∗G,E(|kE|M)



Restricted Lie algebras

Suppose k is a field of characteristic p > 0.

Let g be a finite-dimensional restricted Lie superalgebra over k.

Let V(g) be the restricted enveloping algebra of g.

Friedlander–Parshall (1986); Suslin–Friedlander–Bendel (1997)
There is a homeomorphism

|V(g)| ≃ Np(g) =
{
x ∈ g : x[p] = 0

}
.

For each finite-dimensional V(g)-module M, one has

|V(g)|M ≃
{
x ∈ Np(g) : M|⟨x⟩

}
.

In particular, projectivity of modules is detected by restriction to
subalgebras of V(g) of the form k[x]/(xp).



|V(g)| ≃ Np(g) =
{
x ∈ g : x[p] = 0

}
|V(g)|M ≃

{
x ∈ Np(g) : M|⟨x⟩

}
From these explicit descriptions for |V(g)| and |V(g)|M, we get:

Naturality
If h ⊆ g is a restricted Lie subalgebra, then

|V(h)| ≃ Np(h) ⊆ Np(g) ≃ |V(g)|

and under this identification,

|V(h)|M = |V(g)|M ∩ h.



Infinitesimal group schemes

Equivalences

• finite group scheme G↔ f.d. cocommutative Hopf algebra kG
• infinitesimal group scheme G↔ f.d. cocom. Hopf algebra kG
such that the dual Hopf algebra (kG)∗ = k[G] is local

Examples

• If G is an ordinary finite group, then its usual group algebra is
the group algebra of a finite group scheme.

• If g is a finite-dimensional restricted Lie algebra, then there
exists an infinitesimal group scheme such that kG = V(g).



Suslin–Friedlander–Bendel (1997)
Let G be an infinitesimal group scheme of height ≤ r. Then there
exists a homeomorphism

|kG| ∼= Vr(G) := HomGrp(Ga(r),G).

Call Vr(G) the scheme of one-parameter subgroups in G.

Example
For G = GLn(r), the r-th Frobenius kernel of GLn, one has

Vr(GLn(r)) ∼=
{
(α0, . . . , αr−1) ∈ gl×rn : αpi = 0, [αi, αj] = 0, ∀i, j

}
.



If ν : Ga(r) → G is a one-parameter subgroup, and if M is a rational
G-module, then M pulls back to a rational Ga(r)-module, ν∗(M).

Equivalently, ν∗(M) is a module over the group algebra

kGa(r) =
(
k[T]/(Tp

r
)
)#

= k[u0, . . . ,ur−1]/(up0, . . . ,u
p
r−1).

Suslin–Friedlander–Bendel (1997)
Let G be infinitesimal of height ≤ r. If M is a finite-dimensional
rational G-module, then

|kG|M ∼=
{
ν ∈ Vr(G) : ν∗(M) is not free over k[ur−1]/(upr−1)

}
.

Consequences: Naturality, ⊗-property |kG|M⊗N = |kG|M ∩ |kG|N, …



π-points

Let G be a finite group scheme over the field k. A π-point is a flat
map of K-algebras αK : K[t]/(tp) → KG for some field extension K/k
such that α factors through the group algebra of some unipotent
abelian subgroup scheme UK ⊆ GK.

Say that αK is equivalent to βL if for all finite-dimensional M one has

α∗(MK) is projective ⇐⇒ β∗(ML)is projective

Let Π(G) be the set of equivalence classes of π-points.

Friedlander–Pevtsova (1997)
There is a natural homeomorphism

ΨG : Π(G) ∼→ Proj (H•(G, k))

which restricts to |G|M ≃ {[α] : α∗(MK) is not projective}.



How can we begin to generalize this to supergroups?

Supergroups
A group in stratigraphy is a lithostratigraphic unit, a part of the
geologic record or rock column that consists of defined rock strata.
Groups are generally divided into individual formations. Groups
may sometimes be divided into “subgroups” and are themselves
sometimes grouped into “supergroups.”



Superalgebra

Super ≡ graded by Z2 = Z/2Z =
{
0, 1

}
• Super vector spaces V = V0 ⊕ V1
• V⊗W ∼= W⊗ V via the supertwist v⊗ w 7→ (−1)v·ww⊗ v

Define Hopf superalgebras to be Hopf algebra objects in the (tensor)
category of vector superspaces.

Examples of Hopf superalgebras

• Ordinary Hopf algebras (as purely even superalgebras)
• Z-graded Hopf algebras in the sense of Milnor and Moore
• Enveloping superalgebras of (restricted) Lie superalgebras
• Exterior algebra Λ(V) over a (purely odd) vector space V
(both commutative and cocommutative in the super sense)



Infinitesimal unipotent supergroups
kG is the group algebra of a finite supergroup (scheme) G if:

• kG is a finite-dimensional cocommutative Hopf superalgebra.

Then G is infinitesimal if

• the dual Hopf superalgebra k[G] = kG# is local,

and G is unipotent if

• kG is a local k-algebra.



Some important (for us) Hopf superalgebras
– Pr = k[u0, . . . ,ur−1, v]/(up0, . . . ,u

p
r−2,u

p
r−1 + v2), where

• u0, . . . ,ur−1 are of even superdegree, v is of odd superdegree,
• coproducts for u0, . . . ,ur−1 look like they do in kGa(r),
• upr−1 and v are primitive.

– Pr is a commutative complete intersection.

– In particular, P1 = k[u, v]/(up + v2) is a hypersurface ring.



Support space

Pr = k[u0, . . . ,ur−1, v]/(up0, . . . ,u
p
r−2,u

p
r−1 + v2)

Lemma
Let G be a finite k-supergroup scheme. Then the functor from
commutative k-algebras to sets,

Vr(G) : A 7→ Vr(G)(A) = HomsHopf/A(Pr ⊗k A, kG⊗k A),

admits the structure of an affine scheme of finite type over k.



Support schemes for modules

P1 = k[u, v]/(up + v2)

Superalgebra map ι : P1 ↪→ Pr defined by ι(u) = ur−1 and ι(v) = v.

The support scheme Vr(G)M
Let G be a finite k-supergroup scheme and M a finite-dimensional
kG-supermodule. Set

Vr(G)M =
{
ν ∈ HomsHopf(Pr, kG) : projdimP1(ι

∗ν∗M) = ∞
}
.

Proposition
Then Vr(G)M is a Zariski closed conical subset of Vr(G).

Key ingredient of the proof: Explicit P1-projective resolution of k
constructed via Eisenbud’s theory of matrix factorizations.



Vr(G) = HomsHopf(Pr, kG)
Vr(G)M =

{
ν ∈ Vr(G) : projdimP1(ι

∗ν∗M) = ∞
}

Remarks

• If G is an ordinary finite group scheme, i.e., kG is purely even,
Then Vr(G) = HomGrp(Ga(r),G), as defined by SFB.

• If kG = V(g) for a f.d. restricted Lie superalgebra g, and if p ≥ 5,
then points in V1(G) identify with subalgebras of g generated by
u ∈ g0 and v ∈ g1 such that [u, v] = 0 and u[p] + 1

2 [v, v] = 0.

• Naturality: If H is a closed subsupergroup of G, then Vr(H) is
closed in Vr(G), and Vr(H)M = Vr(G)M ∩ Vr(H).

• Stratification: Vr(G)M =
∪
kE≤kG Vr(E)M

kE ranges over fin. dim. Hopf quotients of Pr (described later).



Main Theorem

Drupieski–Kujawa (arXiv 2018)
Let G be an infinitesimal unipotent supergroup scheme of height
≤ r. Then there is a natural k-algebra map ψ : H(G, k) → k[Vr(G)],
which defines a universal homeomorphism of schemes

|G| ≃ Vr(G) = HomsHopf(Pr, kG).

This restricts for each finite-dimensional kG-supermodule M to a
homeomorphism

|G|M ≃ Vr(G)M =
{
ν ∈ Vr(G) : projdimP1(ι

∗ν∗M) = ∞
}
.

If G is a purely even, theorem reduces to unipotent case of SFB.

Proof ingredients: ‘superization’ of SFB + detection theorem of BIKP.



Example

Let G = Ga(1) ×G−
a .

kG = k[s]/(sp)⊗ k[t]/(t2)

H•(G, k) ∼= k[x, y]⊗ Λ(λ)

Then |kG| ∼= k2 ∼= V1(G) = HomsHopf(P1, kG).

(c,d) ∈ k2 defines ν(c,d) : P1 → kG, ν(c,d)(u) = d · s, ν(c,d)(v) = c · t.

Let L = L(µ,a) be the 2p-dimensional kG-supermodule …

draw on board

Proposition
V1(G)L is the affine line in V1(G) through (µ,a).



Toward the non-unipotent (infinitesimal) case

For arbitrary infinitesimal G, we don’t have a description for |G|.
However, previous calculations show that, up to a finite morphism,∣∣GLm|n(r)

∣∣ seems to identify with Vr(GLm|n(r))(k).

Vr(GLm|n(r)) ∼=
{
(α0, . . . , αr−1, β) ∈ gl(m|n)×r0 × gl(m|n)1 :

[αi, αj] = [αi, β] = 0 for all 0 ≤ i, j ≤ r− 1,

αpi = 0 for all 0 ≤ i ≤ r− 2, and αpr−1 + β2 = 0
}
.

So, betting on the inertia of truth, perhaps Vr(G) is the correct
ambient scheme to consider even for non-unipotent G?

Vr(G)M also makes sense, and is closed in Vr(G), for non-unipotent G.



Let f = Tpt +
∑t−1

i=1 aiTp
i ∈ k[T] be a p-polynomial (no linear term).

Let η ∈ k be a scalar.

The infinitesimal multiparameter supergroupMr;f,η

kMr;f,η = Pr/⟨f(ur−1) + ηu0⟩

Proposition
Every finite-dimensional Hopf quotient of Pr is of the form

• kGa(s) for some 0 ≤ s ≤ r,
• kG−

a = k[v]/⟨v2⟩, or G−
a (A) = (A1,+)

• kMs;f,η for some 1 ≤ s ≤ r and some f, η as above.



Benson–Iyengar–Krause–Pevtsova
For unipotent finite supergroup schemes, projectivity of modules
and nilpotence in cohomology are detected (after field extension)
by restriction to ‘elementary’ subsupergroup schemes.

The infinitesimal elementary k-supergroup schemes are

• Ga(r) for r ≥ 0,
• Ga(r) ×G−

a for r ≥ 0,
• Mr;Tps ,0 for r, s ≥ 1,
• Mr,Tps ,η for r ≥ 2, s ≥ 1, and 0 ̸= η ∈ k.

The group algebras of these each occur as Hopf quotients of Pr.

Roughly: Mr;f,η is unipotent if the polynomial f is a single monomial.



Question
For arbitrary infinitesimal supergroups, is projectivity of modules
and nilpotence in cohomology detected (after field extension) by
restriction to finite-dimensional Hopf superalgebra quotients of Pr?

Seems likely that the hardest part of extending |G|M ≃ Vr(G)M to the
non-unipotent case will be answering this question.

For non-unipotent G, you need more than just the unipotent
elementary subsupergroup schemes to detect nilpotents in
cohomology. For example, the cohomology of

kM1;Tp,−1 = k[u, v]/(up + v2,up − u)

is not detected by restriction to unipotent subgroup schemes.



The end?


