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Motivating Question

Let g be a finite-dimensional Lie algebra over a field k.
What does the cohomology ring H*(g, k) = Extg (k, k) look like?

What does its maximal ideal spectrum Max(H®(g, R)) look like?

Let g be a finite-dimensional simple complex Lie algebra. Then
H®(g,C) is an exterior algebra generated in odd degrees.

More generally:

Let g be a finite-dimensional Lie algebra over a field k. Then
H®(g, k) is finite-dimensional, and H'(g, k) = 0 for i > dim(g).

So Max(H®(g, R)) is not very interesting in this situation.



Different Source of Motivation

Let k = k of characteristic p > 0.

Let g be a finite-dimensional restricted Lie algebra over k. So g is
equipped with a semilinear map x ~ xIPl such that ad(x)? = ad(x[!).

Let V(g) be the restricted enveloping algebra of g (fd. Hopf algebra).

Let g be a finite-dimensional restricted Lie algebra over k. Then
Max (H*(V(g), C)) ~ N (g) = {x cg:xPl = o} :
N, (g) is the restricted nullcone of g.

Example

If g = gl,,(R), then xIPl = xP, and N(g) is the variety of p-nilpotent
matrices. If p > n, then N,(g) is all nilpotent matrices in g.



Support varieties

Let A be a Hopf algebra over k such that H*(A, k) is a
finitely-generated (graded-commutative) k-algebra.

The cohomological spectrum of A is the affine algebraic variety
IA| = Max (H'(A7 fe)).
Given an A-module M, let I4(M) be the kernel of the (k-algebra) map
H* (A, k) = Ext2(k, k) =25 Ext(M, M).
The cohomological support variety associated to M is
Al = Max (H*(A, R)/1a(M)),

which is a closed conical subvariety of |A|.



Friedlander-Parshall, Suslin—-Friedlander-Bendel

Let g be a finite-dimensional restricted Lie algebra over k, and let
M be a finite-dimensional restricted g-module. Then

V(g)| = Np(g) = {x e g: X1 = 0},
IV(g)|yy = {X € Np(g) : M| is not free} U {0} .
Moreover, |V(g)|,, = {0} if and only if M is projective for V(g).

For x € Np(g), M| is restriction to algebra of the form R[x]/(x").

General result

Let A be a finite-dimensional Hopf algebra over k. Suppose H®(A, k)
is a finitely-generated k-algebra, and suppose for all f.d. A-modules
M that Exts(M, M) is a finite H*(A, R)-module. Then

|Aly = {0} <= M s projective.



Lie superalgebras

A Lie superalgebra is a vector superspace g = gg ® gr equipped with
an even bilinear map [-,-] : g ® g — g such that for all homogeneous
elements x,y,z € g,

X,y = —(=1)]y, x]

X b, 2] = [ ¥, 2 + (=17 ly, [x, 2]]
[x,x] = 0 if x € gy and char(k) =2

[lv,v],¥] = 0 if y € g and char(R) =3

= W M =

So in particular, gz is a Lie algebra and g5 is a gz-module.

g is a restricted Lie superalgebra if additionally gg is a restricted Lie
algebra and gy is a restricted gz-module.



Superized Motivating Question

Let g be a finite-dimensional Lie superalgebra over a field k.

What does its maximal ideal spectrum Max(H®(g, R)) look like?

One extreme
Suppose g = gz is a purely odd abelian Lie superalgebra. Then

U(g) = A(g), and H®(g, k) = H*(A(g), k) = S(g*).

Another extreme in characteristic 0

Let g = gl(m|n), so that g5 = gl,,, ® gl,. If m > n, then the inclusion
gl,, C g induces H*(g,C) = H*(gl,,, C). In particular, H*(g,C) is a
finite-dimensional exterior algebra.

So at least in characteristic 0, the cohomology ring H®(g, k) is not
going to lead to an interesting support variety theory.



Two alternate approaches in characteristic 0

1. Boe, Kujawa, & Nakano (2009-2017): Developed extensive variety
theory based on the relative cohomology ring H*(g, g5: C) when
g is a classical Lie superalgebra.

2. Duflo & Serganova (2005): For a (f.d.) g-supermodule M, defined
(without reference to cohomology) the associated variety

Xg(M) = {x € g7 : [x,X] = 0 and M|, is not free} U {0},
a subvariety of the odd nullcone
Xy(R) ={x€g7: [x,x] =0}.

These variety theories capture (complementary) aspects of module
theory in the category F of finite-dimensional g-supermodules that
are completely reducible over gg.



Things change in characteristic p > 3

The superexterior algebra As(g*) is the free anti-(super)commutative
algebra generated by g*. As a superspace,

Ns(g%) = Ng5) @ S(97)-

As an algebra, the factors A(gz) and S(g7) anti-commute.

The Lie bracket on gisa map [-,-] : A2(g) — g. Its transpose defines a
map g* — A2(g*), which extends to a derivation 9 : As(g*) — As(g*).
Then H®(g, R) = H*(As(g*), D).

Characteristic p > 3
The p-th powers in S(g7) are cocycles for 0. Then we get a map

v :S(g3)!) = H*(g, k).



Let k = k of characteristic p > 3.

U(g)| = Max(H*(g, k))

Xy(R) = {x € g7 : [x,x] = 0} odd nullcone

Xg(M) = {x € g7 : [x,x] = 0 and M| is not free} U {0}

Drupieski-Kujawa (). Algebra, 2019)
The map ¢ : S(gz)(" — H*(g, k) induces a homeomorphism

Under this identification, get for finite-dimensional g-module M

Xg(M) C |U(g)|y -

Question until recently: Is the inclusion X3(M) C |U(g)|, an equality?



Clifford filtration

Let g = g5 @ g7 be a Lie superalgebra.
The Clifford filtration on g is the Lie superalgebra filtration
0=FgCFgCFg=g
defined by F'g = gr. The associated graded algebra g satisfies:
"= 00

- o = g7and g, = gy as superspaces
- gy iscentraling

- The Lie bracket [+, ] : g1 ® g1 — g, identifies with the original Lie
bracket [, -] : g7 ® g7 — gg. In particular, Xy(R) = X5(R).

So g is simpler in structure, but it still retains information relevant to
the varieties Xy(R) and X, (M).



Relating gand g

Clifford filtration spectral sequence

Let M be a finite-dimensional g-supermodule, and let N be a
finitely-generated g-supermodule, equipped with ‘standard’
filtrations. Then there exists a spectral sequence

EY (M, N) = Exte” (M, N)_; = Ext”(M, N),
where M and N are the associated graded g-supermodules.

Studying this spectral sequence, we prove:
Proposition
Let M and N be as above. Then:
- Ext3(M, N) is a finite H*(g, k)-module.
- Extg(M, N) is a finite H®(g, k)-module.



Know X,(M) C |U(g )|M Want to show this is an equality. Prove it first
for g, then relate X3(M) = |U(g)|7 back to [U(g)]y

Implementing the strategy

1. Showing that X ( ) = [U(9)l5-

Replace g with a related p-nilpotent restricted Lie superalgebra.

Then U(g) — V(g) induces |U(g)|5 <= |V(9)|5- By previous work,
\V(9) |3 =~ {(a,,@’) €EGo®a ol = %[ﬁ,ﬁ], projdimp, (v*M) = oo},

where Py = R[u, v]/(uP + v?) and v(u) = a, v(v) = B.

2. Problem: XE(I\N/I) is usually larger than Ay (M).

Get around this by first reducing to the case g = gl(m|n), M = k™",
The GLy x GLp-orbit structure of Xgimin)(R) is easy, and we just
have to rule out certain orbit representatives from Xgy(mjm (k™).
For each orbit, consider a different ‘standard’ filtration on M.



k = k of characteristic p > 3.

Main Theorem
Let M be a finite-dimensional g-supermodule. Then

|U(g)|y =~ Xg(M) = {x € g7: [x,x] = 0 and M| is not free} U {0}.

Main Application (cf. results of Bggvad, 1984)
Let M be a finite-dimensional g-supermodule. Then

Xg(M) = {0} «= projdim4(M) < cc.
In particular, X4(R) = {0} if and only if gldim(U(g)) < cc.

Proof: If X3(M) = 0, then for all f.g. N, one gets Extg(/\/l, N) fori >0,
but a priori the vanishing range may depend on N. However, U(g) is
module finite over a large central subring. Now apply an argument of
Avramov and lyengar to deduce that projdim (M) < cc.
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