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Recollections



Support varieties

Suppose H•(A, k) is “commutative” and finitely generated. Then the
maximal ideal spectrum

|A| = Max
(
H•(A, k)

)
is an affine algebraic variety. Given an A-module M, have a map

H•(A, k) → Ext•A(M,M)

with annihilator ideal IA(M).

Support varieties
The cohomological support variety associated to M is

|A|M = Max
(
H•(A, k)/IA(M)

)
,

a closed subvariety of the cohomological spectrum |A|.

Support varieties thus attach geometric invariants to A-modules.
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Classical Results

k a field of positive characteristic

Carlson’s Conjecture (proved by Avrunin–Scott ca. 1982)
Let G be a finite group, and let M be a f.g. kG-module. Then

|kG|M =
∪
E≤G

elem abel

resG,E |kE|M

Friedlander–Parshall (ca. 1986)
Let g be a f.d. restricted Lie algebra (and some other hypotheses).
Then for each f.d. V(g)-module M,

|V(g)|M =
{
X ∈ g : X[p] = 0 and M|⟨X⟩ is not free

}
∪ {0} .
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Later generalizations

Suslin–Friedlander–Bendel (ca. 1997)
Always have a homeomorphism

|V(g)|M ≃
{
X ∈ g : X[p] = 0 and M|⟨X⟩ is not free

}
∪ {0} .

More generally, they describe |G|M for infinitesimal group scheme G
in terms of the variety of 1-parameter subgroups ν : Ga(r) → G.

Friedlander–Pevtsova (2000s)
Describe |G|M for G a finite group scheme in terms of Π-points.

Question
How much generalizes to Z- or Z/2Z-graded (super) settings?
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Super linear algebra

What does it mean to be “super”?
Something is “super” if it has a compatible Z/2Z-grading.

• Superspaces V = V0 ⊕ V1, W = W0 ⊕W1

• Induced gradings on tensor products, linear maps, etc.

(V⊗W)ℓ =
⊕
i+j=ℓ

Vi ⊗Wj

Homk(V,W)ℓ = {f ∈ Homk(V,W) : f(Vi) ⊆ Wi+ℓ}

• V⊗W ∼= W⊗ V via the supertwist v⊗ w 7→ (−1)v·ww⊗ v

Define (Hopf) superalgebras and ‘super’ (co)commutativity in terms
of the “usual diagrams,” but use the supertwist when objects pass.
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Simplest possible example

Exterior algebra of a finite-dimensional vector space V
The exterior algebra Λ(V) is a (super)commutative superalgebra:

ab = (−1)a·bba

It is also a (super)cocommutative Hopf superalgebra:

∆(uv)
= ∆(u)∆(v)
= (u⊗ 1+ 1⊗ u)(v⊗ 1+ 1⊗ v)
= (u⊗ 1)(v⊗ 1) + (u⊗ 1)(1⊗ v) + (1⊗ u)(v⊗ 1) + (1⊗ u)(1⊗ v)
= (uv⊗ 1) + (u⊗ v)− (v⊗ u) + (1⊗ uv)
= (uv⊗ 1) + (1⊗ uv)
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Hopf superalgebras

Examples of Hopf superalgebras
– Ordinary Hopf algebras (as purely even superalgebras).

– Z-graded Hopf algebras in the sense of Milnor and Moore

– Enveloping superalgebras of (restricted) Lie superalgebras

Recall that a Lie superalgebra is a superspace g = g0 ⊕ g1 equipped
with an even map [·, ·] : g⊗ g → g such that for homogeneous x, y, z,

• [x, y] = −(−1)x·y[y, x]
• [x, [y, z]] = [[x, y], z] + (−1)x·y[y, [x, z]]
• [x, x] = 0 if x ∈ g0 and char(k) = p = 2
• [x, [x, x]] = 0 if x ∈ g1 and char(k) = p = 3

Say that g is restricted if g0 is an ordinary restricted Lie algebra and
g1 is a restricted g0-module under the adjoint action.
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Supergroup schemes

Classical correspondences

affine group schemes↔ cocommutative Hopf algebras

finite group schemes↔ f.d. cocommutative Hopf algebras

height-one group schemes↔ f.d. restricted Lie algebras

Super correspondences

affine supergroup schemes↔ cocommutative Hopf superalgebras

finite supergroup schemes↔ f.d. cocommut. Hopf superalgebras

height-one supergroup schemes↔ f.d. res. Lie superalgebras
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Some characteristic zero theory



Simplest example

Theorem
Let V be a finite-dimensional space. Then H•(Λ(V), k) ∼= S•(V∗).

The cohomology ring is graded-(super)commutative in the sense

ab = (−1)deg(a)·deg(b)+a·bba.

Aramova–Avramov–Herzog (2000)
Let M be a finite-dimensional Λ(V)-supermodule. Then

|Λ(V)|M ∼=
{
v ∈ V : M|⟨v⟩ is not free

}
.

In the theorem, ⟨v⟩ refers to an algebra isomorphic to Λ(v) ∼= k[v]/⟨v2⟩.

In characteristic 0, this is most of the complete picture!
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Classification in characteristic zero

Suppose k is an algebraically closed field of characteristic 0.

Kostant
Let A be a cocommutative Hopf superalgebra over k. Then

A ∼= U(g)#kG

for some Lie superalgebra g over k and some subgroup G ≤ Aut(g).

Corollary
Let A be a finite-dimensional cocommutative Hopf superalgebra
over k. Then A ∼= Λ(V)#kG for some finite group G and some f.d.
purely odd kG-module V.

Given Λ(V)#kG as in the Corollary, denote the corresponding finite
supergroup scheme by V⋊ G.
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Cohomology and support varieties

Theorem
Let V⋊ G be a finite k-supergroup scheme. Let M and N be
V⋊ G-supermodules. Then Ext•V⋊G(M,N) ∼= Ext•Λ(V)(M,N)G. In
particular,

H•(V⋊ G, k) ∼= H•(Λ(V), k)G ∼= S•(V∗)G.

Corollary
Let V⋊ G be a finite k-supergroup scheme, and let M be a
finite-dimensional V⋊ G-supermodule. Then

|V⋊ G| ∼= V/G, the quotient of V by G, and
|V⋊ G|M ∼=

{
[v] ∈ V/G : M|⟨v⟩ is not free

}
∪ {0} .
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Lie superalgebras



Background

‘Ordinary’ cohomology of Lie superalgebra
H•(g, k) is the cohomology ring of enveloping superalgebra U(g)

H•(g, k) can be computed via the super Koszul resolution (Λ(g∗), ∂)

As a superalgebra, Λ(g∗) ∼= Λ(g∗0) ⊗g S(g∗1 ).

In char. 0, H•(g, k) can be either f.d. or infinite-dimensional.
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Positive characteristic (k algebraically closed, p ≥ 3)

p-th powers in S(g∗1 ) ⊂ Λ(g∗) consist of cocycles, so get a map

φ : S(g∗1 [p])
(1) → H•(g, k).

Study |g| := Max (H•(g, k)) via this map.

Theorem (DK)
Let g be a f.d. Lie superalgebra. Let M be a finite-dimensional
g-supermodule. Then there are homeomorphisms

|g| ∼= {x ∈ g1 : [x, x] = 0}
|g|M ∼=

{
x ∈ g1 : [x, x] = 0 and M|⟨x⟩ is not free

}
∪ {0} .

Since [x, x] = 0, have isomorphism of algebras ⟨x⟩ ∼= k[x]/⟨x2⟩.

Identical in definition to varieties previously defined by Duflo and
Serganova in characteristic 0 without using cohomology!
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Cohomology of finite supergroup
schemes



CFG for finite supergroup schemes

First step toward support varieties: cohomological finite generation

Drupieski (Adv. Math. 2016)
Let G be a finite supergroup scheme (equiv., a f.d. cocommutative
Hopf superalgebra) over k and let M be a f.d. G-supermodule. Then
H•(G, k) is a f.g. k-superalgebra and H•(G,M) is finite over H•(G, k).

Proved by way of cohomology calculations in the category of strict
polynomial superfunctors, analogous to the argument for ordinary
finite group schemes by Friedlander and Suslin.
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Example of an ordinary strict polynomial functor
Suppose V has basis {u, v} and W has basis {x, y}.

Then S2(V) has basis
{
u2,uv, v2

}
and S2(W) has basis

{
x2, xy, y2

}
.

Let ϕ : V→ W be the linear map with associated matrix ( a bc d ).

The linear map S2(ϕ) : S2(V) → S2(W) is defined for f ∈ S2(V) by

S2(ϕ)(f(u, v)) = f(ϕ(u), ϕ(v)).

The associated matrix for S2(ϕ) is then a2 ab b2
2ac (ad+ cb) 2bd
c2 cd d2


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Strict polynomial superfunctors

Examples of strict polynomial superfunctors
Π parity flip functor (ΠV)0 = V1, (ΠV)1 = V0
Γd(V) = (V⊗d)Σd super-symmetric tensors Γ(V) = Γ(V0)⊗ Λ(V1)

Sd(V) = (V⊗d)Σd super-symmetric power S(V) = S(V0)⊗ Λ(V1)

Λd(V) super-exterior power Λ(V) = Λ(V0) ⊗g S(V1)

Ad(V) super-alternating tensors A(V) = Λ(V0) ⊗g Γ(V1)

I(r)(V) = V(r) r-th Frobenius twist (r ≥ 1) I(r) = I0(r) ⊕ I1(r)

Non-example: V 7→ V0 (incompatible with composing odd maps)
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Main calculation: structure of the extension algebra

Ext•P(I(r), I(r)) =
(
Ext•P(I(r)0 , I(r)0 ) Ext•P(I(r)1 , I(r)0 )

Ext•P(I(r)0 , I(r)1 ) Ext•P(I(r)1 , I(r)1 )

)
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Cohomology of strict polynomial superfunctors

Drupieski (2016)
Ext•P(I(r), I(r)) is generated as an algebra by extension classes

• e′i ∈ Ext
2pi−1

P (I0(r), I0(r)) and e′′i ∈ Ext2p
i−1

P (I1(r), I1(r)) (1 ≤ i ≤ r)

• cr ∈ Extp
r

P(I1(r), I0(r)) and cΠr ∈ Extp
r

P(I0(r), I1(r))

These generators satisfy:

• (e′i)p = 0 = (e′′i )p if 1 ≤ i ≤ r− 1.
• (e′r)p = cr ◦ cΠr and (e′′r )p = cΠr ◦ cr.
• The e′i , e′′i generate a commutative subalgebra.
• The e′i restrict to Friedlander and Suslin’s extension classes
• Have e′i ◦ cr = ±cr ◦ e′′i . But is it + or −? (It is + for i = r.)
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Support varieties for restricted
Lie superalgebras



Restricted Lie superalgebras

Theorem
Let g be a finite-dimensional restricted Lie superalgebra. Then

Vg(k) ∼= {x+ y | x ∈ g0, y ∈ g1, [x, y] = 0, x[p] = y2}

where y2 := 1
2 [y, y].

• Relations come from the functor cohomology calculations
• Sufficiency comes from explicit calculations for the restricted
subalgebra generated by x and y, using an “explicit” projective
resolution constructed by Iwai–Shimada and May.

• Agrees with results of Nakano & Palmieri (1998) for
finite-dimensional subalgebras of the Steenrod algebra

• Support variety Vg(M) of a nontrivial supermodule M?
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Arbitrary infinitesimal supergroup schemes

Now let G ⊂ GL(m|n) be a height-r infinitesimal supergroup scheme.

Possible description for |G| à la Suslin–Friedlander–Bendel?
Set of all r-tuples (x0, . . . , xr−1, y) such that

• xi ∈ g0 for 0 ≤ i ≤ r− 1, and y ∈ g1

• Entries pairwise commute
• x[p]i = 0 for 0 ≤ i ≤ r− 2

• x[p]r−1 = y2
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Open and ongoing topics

• Completely identify the spectrum of H•(G, k) or H•(V(g), k)
• Rank variety description for support varieties?
• Super one-parameter subgroups?

• Restrictions to subalgebras of the form k[u, v]/⟨up + v2,up
s
⟩?

• Super Π-points?
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