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Motivating Question

Let g be a finite-dimensional Lie algebra over a field k (e.g., the Lie
algebra of a linear algebraic group).

What does the cohomology ring H•(g, k) = Ext•g(k, k) look like?

What does its maximal ideal spectrum Max(H•(g, k)) look like?

Classical Theorem
Let g be a finite-dimensional simple complex Lie algebra. Then
H•(g,C) is an exterior algebra generated in odd degrees.

More generally:

Elementary result
Let g be a finite-dimensional Lie algebra over a field k. Then
H•(g, k) is finite-dimensional, and Hi(g, k) = 0 for i > dimk(g).

So Max(H•(g, k)) is not very interesting in this situation.



Different Source of Motivation

Let k = k of characteristic p > 0.

Let g be a finite-dimensional restricted Lie algebra over k. So g is
equipped with a semilinear map x 7→ x[p] such that ad(x)p = ad(x[p]).

Let V(g) be the restricted enveloping algebra of g (a f.d. Hopf algebra).

Friedlander–Parshall (1980s), Suslin–Friedlander–Bendel (1997)
Let g be a finite-dimensional restricted Lie algebra over k. Then

Max (H•(V(g),C)) ' Np(g) =
{
x ∈ g : x[p] = 0

}
.

Np(g) is the restricted nullcone of g.

If g = gln(k), then x[p] = xp, and Np(g) is the variety of p-nilpotent
matrices. If p > n, then Np(g) is all nilpotent matrices in g.



Support varieties

Let A be a Hopf algebra over k. Then H•(A, k) is graded-commutative.
Suppose H•(A, k) is finitely-generated as a k-algebra.

Cohomological spectrum and support varieties
The cohomological spectrum of A is the affine algebraic variety

|A| = Max
(
H•(A, k)

)
.

Given an A-module M, let IA(M) be the kernel of the (k-algebra) map

H•(A, k) = Ext•A(k, k)
−⊗M−→ Ext•A(M,M).

The cohomological support variety associated to M is

|A|M = Max
(
H•(A, k)/IA(M)

)
,

which is a closed conical subvariety of |A|.



Friedlander–Parshall, Suslin–Friedlander–Bendel
Let g be a finite-dimensional restricted Lie algebra over k, and let M
be a finite-dimensional restricted g-module. Then

|V(g)| ' Np(g) =
{
x ∈ g : x[p] = 0

}
,

|V(g)|M '
{
x ∈ Np(g) : M|⟨x⟩ is not free

}
∪ {0} .

Moreover, |V(g)|M = {0} if and only if M is projective for V(g).

For x ∈ Np(g), M|⟨x⟩ is restriction to subalgebra of the form k[x]/(xp).

General result
Let A be a finite-dimensional Hopf algebra over k. Suppose H•(A, k)
is a finitely-generated k-algebra, and suppose for all f.d. A-modules
M that Ext•A(M,M) is a finite H•(A, k)-module. Then

|A|M = {0} ⇐⇒ M is projective.



Lie superalgebras

A Lie superalgebra (for simplicity, over a field of characteristic 6= 2) is
a vector superspace g = g0 ⊕ g1 equipped with an even bilinear map
[·, ·] : g⊗ g → g such that for all homogeneous elements x, y, z ∈ g,

1. [x, y] = −(−1)x·y[y, x]
2. [x, [y, z]] = [[x, y], z] + (−1)x·y[y, [x, z]]
3. [x, x] = 0 if x ∈ g0

4. [[y, y], y] = 0 if y ∈ g1

So in particular, g0 is a Lie algebra and g1 is a g0-module.

g is a restricted Lie superalgebra if additionally g0 is a restricted Lie
algebra and g1 is a restricted g0-module.



Superized Motivating Question

Let g be a finite-dimensional Lie superalgebra over a field k.

What does its maximal ideal spectrum Max(H•(g, k)) look like?

One extreme
Suppose g = g1 is a purely odd abelian Lie superalgebra. Then
U(g) = Λ(g), and H•(g, k) = H•(Λ(g), k) ∼= S(g∗).

Another extreme in characteristic 0
Let g = gl(m|n), so that g0 = glm ⊕ gln. If m ≥ n, then the inclusion
glm ⊆ g induces H•(g,C) ∼= H•(glm,C). In particular, H•(g,C) is a
finite-dimensional exterior algebra.

So in characteristic 0, the cohomology ring H•(g, k) may not lead to
an interesting support variety theory.



Two alternate approaches in characteristic 0

1. Boe, Kujawa, & Nakano (2009–2017): Developed extensive variety
theory based on the relative cohomology ring H•(g, g0;C) when
g is a classical Lie superalgebra.

2. Duflo & Serganova (2005): For a (f.d.) g-supermodule M, defined
(without reference to cohomology) the associated variety

Xg(M) =
{
x ∈ g1 : [x, x] = 0 and M|⟨x⟩ is not free

}
∪ {0} ,

a subvariety of the odd nullcone

Xg(k) = {x ∈ g1 : [x, x] = 0} .

These variety theories capture (complementary) aspects of module
theory in the category F of finite-dimensional g-supermodules that
are completely reducible over g0.



Things change in characteristic p ≥ 3

The superexterior algebra Λs(g
∗) is the free anti-(super)commutative

algebra generated by g∗. As a superspace,

Λs(g
∗) ∼= Λ(g∗0)⊗ S(g∗1 ).

As an algebra, the generators in Λ(g∗0) and S(g
∗
1 ) anti-commute.

The Lie bracket on g is a map Λ2s(g) → g. Its transpose defines a map
g∗ → Λ2s(g

∗), which extends to a derivation ∂ : Λs(g
∗) → Λs(g

∗). Then

H•(g, k) = H•(Λs(g
∗), ∂).

Characteristic p ≥ 3
The p-th powers in S(g∗1 ) are cocycles for ∂. Get an algebra map

ϕ : S(g∗1 )
(1) → H•(g, k).



Let k = k of characteristic p ≥ 3.

|U(g)| = Max(H•(g, k))

Xg(k) = {x ∈ g1 : [x, x] = 0} odd nullcone

Xg(M) =
{
x ∈ g1 : [x, x] = 0 and M|⟨x⟩ is not free

}
∪ {0}

For x ∈ Xg(k), M|⟨x⟩ is restriction to subalgebra of the form k[x]/(x2).

Drupieski–Kujawa (J. Algebra 2019)
The map ϕ : S(g∗1 )

(1) → H•(g, k) induces a homeomorphism

Xg(k) ' |U(g)| .

By naturality, get for each finite-dimensional g-module M

Xg(M) ⊆ |U(g)|M .

Is the inclusion Xg(M) ⊆ |U(g)|M an equality?



Main Theorem [Alg. Number Th. 15 (2021), 1157–1180]
Let M be a finite-dimensional g-supermodule. Then

|U(g)|M ' Xg(M) =
{
x ∈ g1 : [x, x] = 0 and M|⟨x⟩ is not free

}
∪ {0} .

Main ideas of the proof:

• Clifford filtration to pass to a simpler graded Lie superalgebra g̃

and an associated graded module M̃.
• Action of U(g̃) on M̃ factors through a p-nilpotent restricted Lie
superalgebra, or equivalently, a height-1 unipotent supergroup
scheme. Support varieties for finite unipotent supergroups are
understood by work of Benson–Iyengar–Krause–Pevtsova and
Drupieski–Kujawa.



Clifford filtration

Let g = g0 ⊕ g1 be a Lie superalgebra.

The Clifford filtration on g is the Lie superalgebra filtration

0 = F0g ⊆ F1g ⊆ F2g = g

defined by F1g = g1. The associated graded algebra g̃ satisfies:

• g̃ = g̃1 ⊕ g̃2

• g̃1 ∼= g1 and g̃2 ∼= g0 as superspaces
• g̃2 is central in g̃

• The Lie bracket [·, ·] : g̃1 ⊗ g̃1 → g̃2 identifies with the original Lie
bracket [·, ·] : g1 ⊗ g1 → g0. In particular, Xg(k) ∼= Xg̃(k).

So g̃ is simpler in structure, but it still retains information relevant to
the varieties Xg(k) and Xg(M).



Relating g and g̃

Clifford filtration spectral sequence
Let M be a finite-dimensional g-supermodule, and let N be a
finitely-generated g-supermodule, equipped with ‘standard’
filtrations. Then there exists a spectral sequence

Ei,j1 (M,N) = Exti+j
g̃

(M̃, Ñ)−i ⇒ Exti+jg (M,N),

where M̃ and Ñ are the associated graded g̃-supermodules.

Studying this spectral sequence, we deduce

Xg(M) ⊆ |U(g)|M ⊆ |U(g̃)|M̃
?
= Xg̃(M̃)

Also show Ext•g(M,N) is finite over H•(g, k) (for f.g. N, not just f.d.).



Relating support varieties for g and g̃

First show that Xg̃(M̃) = |U(g̃)|M̃. Know the inclusion

{x ∈ g̃1 : [x, x] = 0 and M̃|⟨x⟩ is not free} ∪ {0} ⊆ |U(g̃)|M̃ .

Elements of g̃2 act nilpotently on M̃ because M̃ is finite-dimensional
graded module concentrated in non-negative degrees. Replace g̃

with a related p-nilpotent restricted Lie superalgebra ĝ acting on M̃.

Then U(ĝ) ↠ V(ĝ) induces |U(ĝ)| → |V(ĝ)|.

Drupieski–Kujawa (Adv. Math. 2019)
For any f.d. p-nilpotent res. Lie superalgebra ĝ, and ĝ-module M̃,

|V(ĝ)|M̃ '
{
(α, β) ∈ ĝ0 ⊕ ĝ1 : α

[p] = 1
2 [β, β], projdimP(ν

∗M̃) = ∞
}
,

where P = k[u, v]/(up + v2) and ν(u) = α, ν(v) = β.

Use |U(ĝ)|M̃ ↪→ |V(ĝ)|M̃ has image in ĝ1 to show Xĝ(M̃) = |U(ĝ)|M̃.



Relating support varieties for g and g̃

Now in general one gets

Xg(M) ⊆ |U(g)|M ⊆ |U(g̃)|M̃ = Xg̃(M̃).

To prove that Xg(M) = |U(g)|M for all g and M, suffices to prove it for
g = gl(m|n) and M = km|n. But even then Xg(M) ⊊ Xg̃(M̃).

For g = gl(m|n), the GLm × GLn-orbit structure of Xg(k) = |U(g)| is
easy, and we just have to rule out the maximal orbits from |U(g)|M.
For each maximal orbit, consider a different standard filtration on M,
and show that a particular orbit representative is not in Xg̃(M̃).



Applications

Tensor Product Property
Let M and N be finite-dimensional g-supermodules. Then

|U(g)|M⊗N = |U(g)|M ∩ |U(g)|N .

Theorem
Let M be a finite-dimensional g-supermodule. Then

Xg(M) = {0} ⇐⇒ projdimU(g)(M) < ∞.

Proof: If Xg(M) = 0, then for all finitely-generated N, one gets Extig(M,N) for i ≫ 0.
Now apply results of Avramov and Iyengar for Noether algebras.

Corollary (cf. Bøgvad 1984, Musson 2012)
Xg(k) = {0} if and only if gldim(U(g)) < ∞.


