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• This is joint work with Jonathan Kujawa (University of Oklahoma).

• Work over a (algebraically closed) field k of characteristic p ≥ 0.

• Denote the cohomological support variety of an A-module M by |A|M .
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Definitions and recollections Super linear algebra

What’s so super about super linear algebra?

Something is “super” if it has a compatible Z/2Z-grading.

• Superspaces V = V0 ⊕ V1, W = W0 ⊕W1

• Induced gradings on tensor products, linear maps, etc.

(V ⊗W )` =
⊕
i+j=`

Vi ⊗Wj

Homk(V ,W )` = {f ∈ Homk(V ,W ) : f (Vi ) ⊆Wi+`}

• V ⊗W ∼= W ⊗ V via the supertwist v ⊗ w 7→ (−1)v ·ww ⊗ v

Define (Hopf) superalgebras and notions of (super)commutativity and
(super)cocommutativity in terms of the “usual diagrams,” but using the
supertwist map whenever graded objects pass one another.
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Definitions and recollections Hopf superalgebras

Examples of Hopf superalgebras

• Ordinary Hopf algebras (considered as purely even superalgebras).

• Z-graded Hopf algebras (as defined, e.g., by Milnor and Moore)

• If g is a (restricted) Lie superalgebra, then its (restricted) enveloping
superalgebra U(g) (resp. u(g)) is a Hopf superalgebra.

Recall that a Lie superalgebra is a superspace g = g0 ⊕ g1 equipped with
an even map [·, ·] : g⊗ g→ g such that for homogeneous x , y , z ∈ g,

• [x , y ] = −(−1)x ·y [y , x ]

• [x , [y , z ]] = [[x , y ], z ] + (−1)x ·y [y , [x , z ]]

• [x , x ] = 0 if x ∈ g0 and p = 2

• [x , [x , x ]] = 0 if x ∈ g1 and p = 3

Say that g is a restricted Lie superalgebra if g0 is an ordinary restricted
Lie algebra and g1 is a restricted g0-module under the adjoint action.
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Definitions and recollections Supergroup schemes

Classical correspondences:

affine group schemes ↔ cocommutative Hopf algebras
finite group schemes ↔ f.d. cocommutative Hopf algebras

height-one infinitesimal group schemes ↔ f.d. restricted Lie algebras

Super correspondences:

affine supergroup schemes ↔ cocommutative Hopf superalgebras
finite supergroup schemes ↔ f.d. cocommutative Hopf superalgebras

height-one infinitesimal supergroup schemes ↔ f.d. res. Lie superalgebras
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Definitions and recollections Supergroup schemes

Problem

Can we study support varieties for finite supergroup schemes?
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Definitions and recollections An example (the simplest possible)

Example: finite-dimensional exterior algebra

An exterior algebra Λ(V ) is a (super)commutative superalgebra.

ab = (−1)a·bba

It is also a (super)cocommutative Hopf superalgebra.

∆(uv)

= ∆(u)∆(v)

= (u ⊗ 1 + 1⊗ u)(v ⊗ 1 + 1⊗ v)

= (u ⊗ 1)(v ⊗ 1) + (u ⊗ 1)(1⊗ v) + (1⊗ u)(v ⊗ 1) + (1⊗ u)(1⊗ v)

= (uv ⊗ 1) + (u ⊗ v)− (v ⊗ u) + (1⊗ uv)
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Definitions and recollections An example (the simplest possible)

Theorem

Let V be a finite-dimensional vector space. Then H•(Λ(V ), k) ∼= S•(V ∗).

The cohomology ring is graded-(super)commutative in the sense that

ab = (−1)deg(a)·deg(b)+a·bba.

Theorem (Aramova–Avramov–Herzog, 2000)

Let M be a finite-dimensional Λ(V )-supermodule. Then

|Λ(V )|M ∼=
{
v ∈ V : M|〈v〉 is not free

}
.

In the theorem, 〈v〉 refers to an algebra isomorphic to Λ(v) ∼= k[v ]/〈v 2〉.

In characteristic 0, this is most of the complete picture!
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Finite supergroup schemes in characteristic 0 Classification

Suppose k is an algebraically closed field of characteristic 0.

Theorem (Kostant)

Let A be a cocommutative Hopf superalgebra over k. Then A ∼= kG#U(g)
for some Lie superalgebra g over k , some group G , and some representation
π : G → Aut(g).

Corollary

Let A be a finite-dimensional cocommutative Hopf superalgebra over k.
Then A ∼= kG#Λ(V ) for some finite group G and some finite-dimensional
purely odd kG -module V .

Given kG#Λ(V ) as in the corollary, we denote the corresponding finite
supergroup scheme by G n V .
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Finite supergroup schemes in characteristic 0 Cohomology and support varieties

Theorem

Let G nV be a finite k-supergroup scheme. Let M and N be G nV -super-
modules. Then Ext•GnV (M,N) ∼= Ext•Λ(V )(M,N)G . In particular,

H•(G n V , k) ∼= H•(Λ(V ), k)G ∼= S•(V ∗)G .

Proof

Apply the LHS spectral sequence for the normal Hopf sub-superalgebra
Λ(V ), and use the fact that kG is a semisimple algebra (characteristic 0).

Corollary

Let GnV be a finite k-supergroup scheme, and let M be a finite-dimensional
G n V -supermodule. Then

|G n V | ∼= V /G , the quotient of V by G

|G n V |M ∼=
{

[v ] ∈ V /G : M|〈v〉 is not free
}
.

Christopher M. Drupieski (DePaul University) Support varieties for finite graded group schemes



Finite supergroup schemes in characteristic 0 Cohomology and support varieties

Theorem

Let G nV be a finite k-supergroup scheme. Let M and N be G nV -super-
modules. Then Ext•GnV (M,N) ∼= Ext•Λ(V )(M,N)G . In particular,

H•(G n V , k) ∼= H•(Λ(V ), k)G ∼= S•(V ∗)G .

Proof

Apply the LHS spectral sequence for the normal Hopf sub-superalgebra
Λ(V ), and use the fact that kG is a semisimple algebra (characteristic 0).

Corollary

Let GnV be a finite k-supergroup scheme, and let M be a finite-dimensional
G n V -supermodule. Then

|G n V | ∼= V /G , the quotient of V by G

|G n V |M ∼=
{

[v ] ∈ V /G : M|〈v〉 is not free
}
.

Christopher M. Drupieski (DePaul University) Support varieties for finite graded group schemes



Interlude: finite-dimensional Lie superalgebras

1 Definitions and recollections

2 Finite supergroup schemes in characteristic 0

3 Interlude: finite-dimensional Lie superalgebras

4 Cohomology of finite supergroup schemes

5 Varieties for infinitesimal supergroup schemes (partial results)

Christopher M. Drupieski (DePaul University) Support varieties for finite graded group schemes



Interlude: finite-dimensional Lie superalgebras Koszul complex and cohomology

Cohomology of Lie superalgebras

H•(g, k) is the cohomology ring of the enveloping superalgebra U(g).

• H•(g, k) can be computed via the super Koszul resolution (Λ(g∗), ∂)

• As a superalgebra, Λ(g∗) ∼= Λ(g∗
0
) ⊗g S(g∗

1
).

• ∂ : Λ1(g∗)→ Λ2(g∗) is dual to the Lie bracket Λ2(g)→ Λ1(g) = g.

• H•(g,M) can be computed as the cohomology of (M ⊗ Λ(g∗), ∂M)

• ∂M : M → M ⊗ Λ1(g∗) is dual to the g-action g⊗M → M.

Results in characteristic zero

• H•(g, k) can be either finite-dimensional or infinite-dimensional

• If g = g1, then U(g) = Λ(g) and H•(g, k) ∼= S(g∗).

• If g = gl(m|n) and m ≥ n, then H•(g, k) ∼= H•(glm, k) [Fuks–Leites]
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Interlude: finite-dimensional Lie superalgebras Characteristic zero theory

Boe–Kujawa–Nakano (2009, 2010, 2011, 2012)

• Support varieties in terms of relative cohomology H•(g, g0; k)

• Work in the category F of f.d. g-supermodules that are s.s. over g0

• Variety theory can measure defect of g and atypicality of modules.
Dimension does not equal complexity.

Duflo–Serganova (arXiv 2005)

• Given a g-supermodule M, defined the associated variety

XM =
{
x ∈ g1 : [x , x ] = 0 and M|〈x〉 is not free

}
• Relatively simple GLm × GLn orbit structure when g = gl(m|n).

• Varieties detect projectivity in F .

• Not defined in terms of cohomology.
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Interlude: finite-dimensional Lie superalgebras Positive characteristic

Assumption

For the rest of this talk, assume that k is of characteristic p ≥ 3.
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Interlude: finite-dimensional Lie superalgebras Positive characteristic

• p-th powers in S(g∗
1
) ⊂ Λ(g∗) consist of cocycles. Induced map

ϕ : S(g∗
1
[p])(1) → H•(g, k).

• Induced map of varieties |g|M → Xg(M) is a homeomorphism.

Theorem

Let g be a finite-dimensional Lie superalgebra. Let M be a finite-dimensional
g-supermodule. Then

Xg(M) ∼=
{
x ∈ g1 : [x , x ] = 0 and M|〈x〉 is not free

}
.

Proof

Modify Jantzen’s arguments for restricted Lie algebras in characteristic 2.
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Cohomology of finite supergroup schemes CFG for finite supergroup schemes

First step toward support varieties: cohomological finite generation (CFG)

Theorem (D 2014)

Let G be a finite k-supergroup scheme (equivalently, a finite-dimensional
cocommutative Hopf superalgebra). Then H•(G , k) is a finitely-generated
k-superalgebra.

Remark

If A is a Hopf superalgebra, then A#(Z/2Z) is an ordinary Hopf algebra,
and H•(A#(Z/2Z), k) ∼= H•(A, k)0.

Can view the theorem as a generalization of the Friedlander–Suslin CFG
result in multiple ways (to a strictly larger class of ordinary Hopf algebras,
or to Hopf algebra objects in another symmetric monoidal category).
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Cohomology of finite supergroup schemes Strict polynomial superfunctors

• V category of finite-dimensional superspaces

• V⊗d is naturally a right Sd -module (signed place permutations)

• Γd(V ) = (V⊗d)Sd

• Γd(V): category with the same objects as V , but with morphisms

HomΓd (V)(V ,W ) = Γd [Homk(V ,W )] ∼= HomkSd
(V⊗d ,W⊗d).

Strict polynomial superfunctors (Axtell 2013)

The category Pd of homogeneous degree-d strict polynomial superfunctors
is the category of functors F : ΓdV → V such that for each V ,W ∈ V ,

FV ,W : HomkSd
(V⊗d ,W⊗d)→ Homk(F (V ),F (W ))

is an even k-linear map.
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Cohomology of finite supergroup schemes Strict polynomial superfunctors

Examples of strict polynomial superfunctors

• Π parity flip functor (ΠV )0 = V1, (ΠV )1 = V0

• T d(V ) = V⊗d tensor power

• Γd(V ) = (V⊗d)Σd super-symmetric tensors Γ(V ) = Γ(V0)⊗ Λ(V1)

• Sd(V ) = (V⊗d)Σd
super-symmetric power S(V ) = S(V0)⊗ Λ(V1)

• Λd(V ) super-exterior power Λ(V ) = Λ(V0) ⊗g S(V1)

• Ad(V ) super-alternating tensors A(V ) = Λ(V0) ⊗g Γ(V1)

• I (r)(V ) = V (r) r -th Frobenius twist (r ≥ 1) I (r) = I 0
(r) ⊕ I 1

(r)

• Non-example: V 7→ V0 (incompatible with composition of odd maps)

• SPSFs can restrict to ordinary SPFs in two different ways

• Ordinary SPFs in general don’t seem lift to SPSFs

• Frobenius twists of SPFs lift to SPSFs in several different ways
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Cohomology of finite supergroup schemes Cohomology of strict polynomial functors

Calculate the structure of the extension algebra

Ext•P(I (r), I (r)) =

(
Ext•P(I (r)

0 , I (r)
0 ) Ext•P(I (r)

1 , I (r)
0 )

Ext•P(I (r)
0 , I (r)

1 ) Ext•P(I (r)
1 , I (r)

1 )

)
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Cohomology of finite supergroup schemes Cohomology of strict polynomial functors

Theorem (D 2015)

Ext•P(I (r), I (r)) is generated as an algebra by extension classes

• e i ∈ Ext2pi−1

P (I 0
(r), I 0

(r)) and eΠ
i ∈ Ext2pi−1

P (I 1
(r), I 1

(r)) (1 ≤ i ≤ r)

• c r ∈ Extp
r

P (I 1
(r), I 0

(r)) and cΠ
r ∈ Extp

r

P (I 0
(r), I 1

(r))

These generators satisfy:

• (e i )
p = 0 = (eΠ

i )p if 1 ≤ i ≤ r − 1.

• (er )p = c r ◦ cΠ
r and (eΠ

r )p = cΠ
r ◦ c r .

• The e i , eΠ
i generate a commutative subalgebra.

• (c r ◦ cΠ
r ) and (cΠ

r ◦ c r ) each generate polynomial subalgebras.

• The e i restrict to Friedlander and Suslin’s universal extension classes

• c r generates Ext•P(I 1
(r), I 0

(r)) over the matrix ring

• cΠ
r generates Ext•P(I 0

(r), I 1
(r)) over the matrix ring

• Have e i ◦ c r = ±(c r ◦ e i
Π). But is it + or −?
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Varieties for infinitesimal supergroup schemes (partial results) Restricted Lie superalgebras (infinitesimal of height one)

Let G ⊂ GL(m|n) be an infinitesimal supergroup scheme of height ≤ r .

Evaluation and restriction maps

Ext•P(I (r), I (r))→ Ext•GL(m|n)((km|n)(r), (km|n)(r))

∼= Ext•GL(m|n)(k , gl(m|n)(r))

→ Ext•G (k , gl(m|n)(r))

∼= Homk(gl(m|n)∗(r),H•(G , k))

For r = 1, the strict polynomial superfunctor extension classes give rise to
a superalgebra homomorphism

ϕ : S(gl(m|n)∗
0
[2])(1) ⊗ S(gl(m|n)∗

1
[p])(1) → H•(G , k).

Induced finite map of varieties |G | → gl(m|n) with image VG (k).
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Varieties for infinitesimal supergroup schemes (partial results) Restricted Lie superalgebras (infinitesimal of height one)

Change to the language of finite-dimensional restricted Lie superalgebras.

Theorem

Let g be a finite-dimensional restricted Lie superalgebra. Then

Vu(g)(k) ∼= {x + y | x ∈ g0, y ∈ g1, [x , y ] = 0, x [p] = y2}

where y2 := 1
2 [y , y ].

Main ideas of the proof

Relations come from the extension classes for polynomial superfunctors.

• Sufficiency of the relations comes from explicit calculations for the
restricted subalgebra generated by x and y , using an “explicit”
projective resolution constructed by Iwai–Shimada and May.

• x [p] = y2 comes from (e1)p = c1 ◦ cΠ
1 and (eΠ

1 )p = cΠ
1 ◦ c1

• [x , y ] = 0 “comes from” e1 ◦ c1 = c1 ◦ eΠ
1 and eΠ

1 ◦ cΠ
1 = cΠ

1 ◦ e1
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Varieties for infinitesimal supergroup schemes (partial results) Rank varieties

Rank varieties

• Given a u(g)-supermodule M, what is Vu(g)(M)?

• If x + y ∈ Vu(g)(M) and x and y are both nonzero, what does this
mean about the restriction M|〈x ,y〉p?
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Varieties for infinitesimal supergroup schemes (partial results) Arbitrary infinitesimal supergroup schemes

Now let G ⊂ GL(m|n) be a height-r infinitesimal supergroup scheme.
The polynomial superfunctor classes give rise to a homomorphism[

r⊗
i=1

S(gl(m|n)∗
0
[2pi−1])(r)

]
⊗ S(gl(m|n)∗

1
[pr ])(r) → H•(G , k)

over whose image H•(G , k) is finite.

Possible description for |G |?
Set of all r -tuples (x1, . . . , xr−1, xr + y) such that

• xi ∈ g0 for 1 ≤ i ≤ r

• y ∈ g1.

• Entries pairwise commute, and [xr , y ] = 0.

• x
[p]
i = 0 for 1 ≤ i ≤ r − 1.

• x
[p]
r = y2.
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