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I. Prerequisites

• Wedderburn-Artin Structure Theorem

• Definition: Central Simple Algebra

• Examples

• Technical Lemma
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Wedderburn-Artin Structure Theorem

Let R be a left semisimple ring, and let V1, . . . , Vr be a complete
set of mutually nonisomorphic simple left R-modules. Say
R ∼= n1V1 ⊕ · · · ⊕ nrVr. Then

R ∼=
r∏

i=1

Mni
(D◦

i )

where Di = EndR(Vi) is a division ring. If R is simple, then r = 1
and R ∼= EndD(V ).
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Definition

Call S a central simple k-algebra if S is a simple k-algebra and
Z(S) = k.
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Examples

• Mn(k) is a central simple k-algebra for any field k.

• The Quaternion algebra H is a central simple R-algebra
(Hamilton 1843).

• Any proper field extension K ) k is not a central simple
k-algebra because Z(K) = K 6= k.
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Technical Lemma

Lemma 1. Let S be a central simple k-algebra and let R be an
arbitrary k-algebra. Then every two-sided ideal J of R⊗ S has the
form I ⊗ S, where I = J ∩R is a two-sided ideal of R. In
particular, if R is simple, then R⊗ S is simple.
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Counterexample

The simplicity of R⊗ S depends on S being central simple.

• C has the structure of a (non-central) R-algebra.

• Let e1 = 1⊗ 1, e2 = i⊗ i.

• Note that (e2 + e1)(e2 − e1) = 0.

• Then 0 6= (e2 + e1) is a nontrivial ideal.

• C⊗R C is not simple.
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II. Elementary Consequences of Wedderburn

Structure Theorem

• An isomorphism lemma

• A dimension lemma
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Lemma (Isomorphism)

Lemma 2. Let R be a finite dimensional simple k-algebra. If M1

and M2 are finite dimensional R-modules and dimk M1 = dimk M2,
then M1

∼= M2.
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Proof of Lemma 2

Proof. Let M be the unique simple R-module.

• Say M1
∼= n1M and M2

∼= n2M .

• n1 dimk M = dimk M1 = dimk M2 = n2 dimk M ⇒ n1 = n2 ⇒
M1

∼= M2.
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Lemma (Dimension)

Lemma 3. If D is a finite dimensional division algebra over its
center k, then [D : k] is a square.
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Proof of Lemma 3

Proof. Let K = k̄, the algebraic closure of k, and let DK = D⊗k K.

• [DK : K] = [D : k] < ∞.

• DK is a simple artinian K-algebra by Lemma 1.

• By the WA structure theorem, DK ∼= Mn(K) for some n ∈ N.

• [D : k] = [DK : K] = [Mn(K) : K] = n2.
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III. Application of Wedderburn-Artin Structure

Theorem

• Skolem-Noether Theorem

• Corollary

• Centralizer Theorem

• Corollary
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Skolem-Noether Theorem

Theorem 4. [Skolem-Noether] Let S be a finite dimensional
central simple k-algebra, and let R be a simple k-algebra. If
f, g : R → S are homomorphisms (necessarily one-to-one), then
there is an inner automorphism α : S → S such that αf = g.

15



Proof of Skolem-Noether

• S ∼= EndD(V ) ∼= Mn(D◦) for k-division algebra D and
finite-dimensional D-module V .

• D central simple since k = Z(S) = Z(D).

• V has two R-module structures induced by f and g.

• R-module structure commutes with D-module structure since
S ∼= EndD(V ).

• V has two R⊗D-module structures induced by f and g.
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Proof (cont.)

• R⊗D is simple by Lemma 1, so the two R⊗D module
structures on V are isomorphic by Lemma 2.

• There exists an isomorphism h : Rf⊗DV → Rg⊗DV such that
for all r ∈ R and d ∈ D,

(i) h(rv) = rh(v), i.e., h(f(r)v) = g(r)h(v), and

(ii) h(dv) = dh(v)

• Now h ∈ EndD(V ) ∼= S by (ii). By (i), hf(r)h−1 = g(r), i.e.,
hfh−1 = g.
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Corollary

Corollary. If k is a field, then any k-automorphism of Mn(k) is
inner.
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Centralizer Theorem

Theorem 5. [Centralizer Theorem] Let S be a finite dimensional
central simple algebra over k, and let R be a simple subalgebra of
S. Then

(i) C(R) is simple.

(ii) [S : k] = [R : k][C(R) : k].

(iii) C(C(R)) = R.
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Proof of Centralizer Theorem

• S ∼= EndD(V ) ∼= Mn(D◦), D a central k-division algebra and
V a finite dimensional D-module.

• V is an R⊗D module, and C(R) = EndR⊗D(V ).

• R⊗D is simple, so R⊗D ∼= EndE(W ), W the simple
R⊗D-module and E = EndR⊗D(W ).

• Say V ∼= Wn as R⊗D-modules.
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Proof (cont.)

• C(R) = EndR⊗D(V ) ∼= EndR⊗D(Wn) ∼= Mn(E), which is
simple.

• (ii) follows from C(R) ∼= Mn(E), WA structure theorem, and
mundane degree calculations.

• Apply (ii) to C(R), get [C(C(R)) : k] = [R : k]. Then
R ⊆ C(C(R)) ⇒ R = C(C(R)).
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Corollary

Corollary 6. Let D be a division algebra with center k and
[D : k] = n2. If K is a maximal subfield of D, then [K : k] = n.
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Proof of Corollary

Proof.

• By maximality of K, C(K) = K.

• Then by the Centralizer Theorem,
n2 = [D : k] = [K : k]2 ⇒ [K : k] = n
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IV. Classification Theorems

• Finite Division Rings (Wedderburn)

• Group Theoretic Lemma

• Finite Dimensional Division R-algebras (Frobenius)
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Classification of Finite Division Rings

Theorem 7 (Wedderburn, 1905). Every finite division ring is
commutative, i.e., is a field.
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Group Theoretic Lemma

Lemma. If H ≤ G are finite groups with H 6= G, then
G 6=

⋃
g∈G gHg−1.
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Proof of Wedderburn Theorem

Let k = Z(D), q = |k|, K ⊇ k a maximal subfield of D. Assume
K 6= D.

• [D : k] = n2 for some n by Lemma 3, and [K : k] = n by
Corollary 6. Then K ∼= Fqn .

• Since Fqn is unique up to isomorphism, any two maximal
subfields of D containing k are isomorphic, hence conjugate in
D by the Skolem Nother Theorem.
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Proof (cont.)

• Every element of D is contained in some maximal subfield, so
D =

⋃
x∈D xKx−1.

• Then D∗ =
⋃

x∈D∗ xK∗x−1, which is impossible by the group
theoretic lemma above unless K = D. Conclude K = D, i.e., D

is a field.
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Classification of Finite Dimensional Division

R-algebras

Theorem 8 (Frobenius, 1878). If D is a division algebra with R in
its center and [D : R] < ∞, then D = R, C or H.
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Proof of Frobenius Theorem

Let K be a maximal subfield of D. Then [K : R] < ∞. We have
[K : R] = 1 or 2.

• If [K : R] = 1, then K = R and [D : R] = 1 by Lemma 3, in
which case D = R.

• If [K : R] = 2, then [D : K] = 1 or 2 by Lemma 3.

• If [D : K] = 1, then D = K, in which case D = C.
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Proof (cont.)

• Suppose [D : K] = 2. So K ∼= C and Z(D) = R.

• Complex conjugation σ is an R-isomorphism of K. Hence, by
the Skolem-Nother Theorem there exists x ∈ D such that
ϕx = σ, where ϕx denotes conjugation by x.

• ϕx2 = ϕx ◦ ϕx = σ2 = id. Then x2 ∈ C(K) = K. In fact,
ϕx(x2) = σ(x2) = x2 ⇒ x2 ∈ R.
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Proof (cont.)

• If x2 > 0, then x = ±r for some r ∈ R, (⇒⇐). So x2 < 0 and
x2 = −y2 for some y ∈ R.

• Let i =
√
−1, j = x/y, k = ij. Check that the usual quaternion

multiplication table holds.

• Check that {1, i, j, k} forms a basis for D. Then D ∼= H.
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V. Further Classification of Central Division

Algebras

• Equivalence Relation

• Observations

• Definition of Brauer Group

• Examples
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Equivalence Relation

Define an equivalence relation on central simple k-algebras by

S ∼ S′ ⇐⇒ S ∼= Mn(D) and S′ ∼= Mm(D)

for some central divison algebra D. Denote the equivalence class of
S by [S], and let Br(k) be the set of all such similarity classes.
Each element of Br(k) corresponds to a distinct central division
k-algebra. Can recover information about central division
k-algebras by studying structure of Br(k).
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Observations

• If S, T are central simple k-algebras, then so is S ⊗k T .

• [S] ∗ [T ] := [S ⊗k T ] is a well-defined product on Br(k).

• [S] ∗ [T ] = [T ] ∗ [S] for all [S], [T ] ∈ Br(k).

• [S] ∗ [k] = [S] = [k] ∗ [S] for all [S] ∈ Br(k).

• [S] ∗ [S◦] = [k] = [S◦] ∗ [S] for all [S] ∈ Br(k). (Follows from
S ⊗ S◦ ∼= Mn(k).)

35



Definition of the Brauer Group

Definition. Define the Brauer group of a field k, denoted Br(k),
to be the set Br(k) identified above with group operation ⊗k.
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Examples

• Br(k) = 0 if k is algebraically closed, since there are no
nontrivial k-division algebras.

• Br(F ) = 0 if F is a finite field by Wedderburn’s Theorem on
finite division rings.

• Br(R) = Z2 by Frobenius’s Theorem and the fact that
H⊗R H ∼= M4(R).
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