Division Algebra Theorems of Frobenius and Wedderburn

Christopher M. Drupieski

Nicholas A. Hamblet

University of Virginia Algebra Seminar

November 9, 2005

Outline

- I. Prerequisites
- II. Elementary Consequences
- III. Application of Wedderburn-Artin Structure Theorem
- IV. Classification Theorems
- V. Further Classification of Central Division Algebras

I. Prerequisites

- Wedderburn-Artin Structure Theorem
- Definition: Central Simple Algebra
- Examples
- Technical Lemma

Wedderburn-Artin Structure Theorem

Let R be a left semisimple ring, and let V_1, \ldots, V_r be a complete set of mutually nonisomorphic simple left R-modules. Say $R \cong n_1 V_1 \oplus \cdots \oplus n_r V_r$. Then

$$R \cong \prod_{i=1}^{r} M_{n_i}(D_i^\circ)$$

where $D_i = End_R(V_i)$ is a division ring. If R is simple, then r = 1and $R \cong End_D(V)$.

Definition

Call S a **central simple** k-algebra if S is a simple k-algebra and Z(S) = k.

Examples

- $M_n(k)$ is a central simple k-algebra for any field k.
- The Quaternion algebra 𝔄 is a central simple 𝔅-algebra (Hamilton 1843).
- Any proper field extension $K \supseteq k$ is not a central simple k-algebra because $Z(K) = K \neq k$.

Technical Lemma

Lemma 1. Let S be a central simple k-algebra and let R be an arbitrary k-algebra. Then every two-sided ideal J of $R \otimes S$ has the form $I \otimes S$, where $I = J \cap R$ is a two-sided ideal of R. In particular, if R is simple, then $R \otimes S$ is simple.

Counterexample

The simplicity of $R \otimes S$ depends on S being central simple.

- \mathbb{C} has the structure of a (non-central) \mathbb{R} -algebra.
- Let $e_1 = 1 \otimes 1$, $e_2 = i \otimes i$.
- Note that $(e_2 + e_1)(e_2 e_1) = 0$.
- Then $0 \neq (e_2 + e_1)$ is a nontrivial ideal.
- $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is not simple.

II. Elementary Consequences of Wedderburn Structure Theorem

- An isomorphism lemma
- A dimension lemma

Lemma (Isomorphism)

Lemma 2. Let R be a finite dimensional simple k-algebra. If M_1 and M_2 are finite dimensional R-modules and $\dim_k M_1 = \dim_k M_2$, then $M_1 \cong M_2$.

Proof of Lemma 2

Proof. Let M be the unique simple R-module.

• Say
$$M_1 \cong n_1 M$$
 and $M_2 \cong n_2 M$.

• $n_1 \dim_k M = \dim_k M_1 = \dim_k M_2 = n_2 \dim_k M \Rightarrow n_1 = n_2 \Rightarrow$ $M_1 \cong M_2.$

Lemma (Dimension)

Lemma 3. If D is a finite dimensional division algebra over its center k, then [D:k] is a square.

Proof of Lemma 3

Proof. Let $K = \overline{k}$, the algebraic closure of k, and let $D^K = D \otimes_k K$.

- $[D^K:K] = [D:k] < \infty.$
- D^K is a simple artinian K-algebra by Lemma 1.
- By the WA structure theorem, $D^K \cong M_n(K)$ for some $n \in \mathbb{N}$.
- $[D:k] = [D^K:K] = [M_n(K):K] = n^2.$

III. Application of Wedderburn-Artin Structure Theorem

- Skolem-Noether Theorem
- Corollary
- Centralizer Theorem
- Corollary

Skolem-Noether Theorem

Theorem 4. [Skolem-Noether] Let S be a finite dimensional central simple k-algebra, and let R be a simple k-algebra. If $f, g: R \to S$ are homomorphisms (necessarily one-to-one), then there is an inner automorphism $\alpha: S \to S$ such that $\alpha f = g$.

Proof of Skolem-Noether

- $S \cong End_D(V) \cong M_n(D^\circ)$ for k-division algebra D and finite-dimensional D-module V.
- D central simple since k = Z(S) = Z(D).
- V has two R-module structures induced by f and g.
- *R*-module structure commutes with *D*-module structure since $S \cong End_D(V)$.
- V has two $R \otimes D$ -module structures induced by f and g.

Proof (cont.)

- $R \otimes D$ is simple by Lemma 1, so the two $R \otimes D$ module structures on V are isomorphic by Lemma 2.
- There exists an isomorphism $h: {}_{R^f \otimes D}V \to {}_{R^g \otimes D}V$ such that for all $r \in R$ and $d \in D$,

(i)
$$h(rv) = rh(v)$$
, i.e., $h(f(r)v) = g(r)h(v)$, and

(ii)
$$h(dv) = dh(v)$$

• Now $h \in End_D(V) \cong S$ by (ii). By (i), $hf(r)h^{-1} = g(r)$, i.e., $hfh^{-1} = g$.

Corollary

Corollary. If k is a field, then any k-automorphism of $M_n(k)$ is inner.

Centralizer Theorem

Theorem 5. [Centralizer Theorem] Let S be a finite dimensional central simple algebra over k, and let R be a simple subalgebra of S. Then

- (i) C(R) is simple.
- (ii) [S:k] = [R:k][C(R):k].

(iii) C(C(R)) = R.

Proof of Centralizer Theorem

- $S \cong End_D(V) \cong M_n(D^\circ)$, *D* a central *k*-division algebra and *V* a finite dimensional *D*-module.
- V is an $R \otimes D$ module, and $C(R) = End_{R \otimes D}(V)$.
- $R \otimes D$ is simple, so $R \otimes D \cong End_E(W)$, W the simple $R \otimes D$ -module and $E = End_{R \otimes D}(W)$.
- Say $V \cong W^n$ as $R \otimes D$ -modules.

Proof (cont.)

- $C(R) = End_{R\otimes D}(V) \cong End_{R\otimes D}(W^n) \cong M_n(E)$, which is simple.
- (ii) follows from $C(R) \cong M_n(E)$, WA structure theorem, and mundane degree calculations.
- Apply (ii) to C(R), get [C(C(R)) : k] = [R : k]. Then $R \subseteq C(C(R)) \Rightarrow R = C(C(R))$.

Corollary

Corollary 6. Let D be a division algebra with center k and $[D:k] = n^2$. If K is a maximal subfield of D, then [K:k] = n.

Proof of Corollary

Proof.

- By maximality of K, C(K) = K.
- Then by the Centralizer Theorem, $n^2 = [D:k] = [K:k]^2 \Rightarrow [K:k] = n$

IV. Classification Theorems

- Finite Division Rings (Wedderburn)
- Group Theoretic Lemma
- Finite Dimensional Division R-algebras (Frobenius)

Classification of Finite Division Rings

Theorem 7 (Wedderburn, 1905). Every finite division ring is commutative, i.e., is a field.

Group Theoretic Lemma

Lemma. If $H \leq G$ are finite groups with $H \neq G$, then $G \neq \bigcup_{g \in G} gHg^{-1}$.

Proof of Wedderburn Theorem

Let $k = Z(D), q = |k|, K \supseteq k$ a maximal subfield of D. Assume $K \neq D$.

- $[D:k] = n^2$ for some n by Lemma 3, and [K:k] = n by Corollary 6. Then $K \cong \mathbb{F}_{q^n}$.
- Since F_{qⁿ} is unique up to isomorphism, any two maximal subfields of D containing k are isomorphic, hence conjugate in D by the Skolem Nother Theorem.

Proof (cont.)

- Every element of D is contained in some maximal subfield, so $D = \bigcup_{x \in D} x K x^{-1}.$
- Then $D^* = \bigcup_{x \in D^*} x K^* x^{-1}$, which is impossible by the group theoretic lemma above unless K = D. Conclude K = D, i.e., D is a field.

Classification of Finite Dimensional Division \mathbb{R} -algebras

Theorem 8 (Frobenius, 1878). If D is a division algebra with \mathbb{R} in its center and $[D:\mathbb{R}] < \infty$, then $D = \mathbb{R}, \mathbb{C}$ or \mathbb{H} .

Proof of Frobenius Theorem

Let K be a maximal subfield of D. Then $[K : \mathbb{R}] < \infty$. We have $[K : \mathbb{R}] = 1$ or 2.

- If $[K : \mathbb{R}] = 1$, then $K = \mathbb{R}$ and $[D : \mathbb{R}] = 1$ by Lemma 3, in which case $D = \mathbb{R}$.
- If $[K : \mathbb{R}] = 2$, then [D : K] = 1 or 2 by Lemma 3.
- If [D:K] = 1, then D = K, in which case $D = \mathbb{C}$.

Proof (cont.)

- Suppose [D:K] = 2. So $K \cong \mathbb{C}$ and $Z(D) = \mathbb{R}$.
- Complex conjugation σ is an \mathbb{R} -isomorphism of K. Hence, by the Skolem-Nother Theorem there exists $x \in D$ such that $\varphi_x = \sigma$, where φ_x denotes conjugation by x.
- $\varphi_{x^2} = \varphi_x \circ \varphi_x = \sigma^2 = id$. Then $x^2 \in C(K) = K$. In fact, $\varphi_x(x^2) = \sigma(x^2) = x^2 \Rightarrow x^2 \in \mathbb{R}$.

Proof (cont.)

- If $x^2 > 0$, then $x = \pm r$ for some $r \in \mathbb{R}$, $(\Rightarrow \Leftarrow)$. So $x^2 < 0$ and $x^2 = -y^2$ for some $y \in \mathbb{R}$.
- Let $i = \sqrt{-1}$, j = x/y, k = ij. Check that the usual quaternion multiplication table holds.
- Check that $\{1, i, j, k\}$ forms a basis for D. Then $D \cong \mathbb{H}$.

V. Further Classification of Central Division Algebras

- Equivalence Relation
- Observations
- Definition of Brauer Group
- Examples

Equivalence Relation

Define an equivalence relation on central simple k-algebras by

$$S \sim S' \iff S \cong M_n(D) \text{ and } S' \cong M_m(D)$$

for some central divison algebra D. Denote the equivalence class of S by [S], and let Br(k) be the set of all such similarity classes. Each element of Br(k) corresponds to a distinct central division k-algebra. Can recover information about central division k-algebras by studying structure of Br(k).

Observations

- If S, T are central simple k-algebras, then so is $S \otimes_k T$.
- $[S] * [T] := [S \otimes_k T]$ is a well-defined product on Br(k).
- [S] * [T] = [T] * [S] for all $[S], [T] \in Br(k)$.
- [S] * [k] = [S] = [k] * [S] for all $[S] \in Br(k)$.
- $[S] * [S^{\circ}] = [k] = [S^{\circ}] * [S]$ for all $[S] \in Br(k)$. (Follows from $S \otimes S^{\circ} \cong M_n(k)$.)

Definition of the Brauer Group

Definition. Define the Brauer group of a field k, denoted Br(k), to be the set Br(k) identified above with group operation \otimes_k .

Examples

- Br(k) = 0 if k is algebraically closed, since there are no nontrivial k-division algebras.
- Br(F) = 0 if F is a finite field by Wedderburn's Theorem on finite division rings.
- $Br(\mathbb{R}) = \mathbb{Z}_2$ by Frobenius's Theorem and the fact that $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \cong M_4(\mathbb{R}).$