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I. Prerequisites

Wedderburn-Artin Structure Theorem
Definition: Central Simple Algebra
Examples

Technical Lemma



Wedderburn-Artin Structure Theorem

Let R be a left semisimple ring, and let V;,...,V, be a complete
set of mutually nonisomorphic simple left R-modules. Say
R=nVi®---®dn,.V,. Then

RNﬁMn (D?)
1=1

where D; = Endg(V;) is a division ring. If R is simple, then r =1
and R = Endp (V).



Definition

Call S a central simple k-algebra if S is a simple k-algebra and
Z(S) =k.



Examples

e M, (k) is a central simple k-algebra for any field k.

e The Quaternion algebra H is a central simple R-algebra
(Hamilton 1843).

e Any proper field extension K 2 k is not a central simple
k-algebra because Z(K) = K # k.



Technical Lemma

Lemma 1. Let S be a central simple k-algebra and let R be an
arbitrary k-algebra. Then every two-sided ideal J of R ® S has the
form I ® S, where I = J N R is a two-sided ideal of R. In
particular, if R is simple, then R ® S is simple.



Counterexample

The simplicity of R ® S depends on S being central simple.
e C has the structure of a (non-central) R-algebra.
o leteg =1®1, e =1®01.
e Note that (ex +e1)(ex —e1) =0.
e Then 0 # (ez + e1) is a nontrivial ideal.

e C ®p C is not simple.



II. Elementary Consequences of Wedderburn
Structure Theorem

e An isomorphism lemma

e A dimension lemma



Lemma (Isomorphism)

Lemma 2. Let R be a finite dimensional simple k-algebra. If M,
and M5 are finite dimensional R-modules and dimy M; = dim, M,

then M1 = MQ.

10



Proof of Lemma 2

Proof. Let M be the unique simple R-module.
e Say M = niM and My = nyM.

® NN dlmkM = dimk M, = dimk My = no dlmkM = N1 = N9 =
My = M. []
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Lemma (Dimension)

Lemma 3. If D is a finite dimensional division algebra over its

center k, then [D : k] is a square.
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Proof of Lemma 3

Proof. Let K = k, the algebraic closure of k, and let DX = D®;, K.
e [DE:K]|=[D:k] < oo.
e DX is a simple artinian K-algebra by Lemma 1.
e By the WA structure theorem, D¥ = M, (K) for some n € N.
e [D:k]=[D":K|=[M,(K): K]=n? []
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III. Application of Wedderburn-Artin Structure
Theorem

e Skolem-Noether Theorem
e Corollary
e (Centralizer Theorem

e Corollary
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Skolem-Noether Theorem

Theorem 4. [Skolem-Noether| Let S be a finite dimensional
central simple k-algebra, and let R be a simple k-algebra. If
f,g: R — S are homomorphisms (necessarily one-to-one), then

there is an inner automorphism « : S — S such that af = g.
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Proof of Skolem-Noether

S = Endp(V) = M, (D°) for k-division algebra D and

finite-dimensional D-module V.
D central simple since k = Z(S5) = Z(D).
V has two R-module structures induced by f and g.

R-module structure commutes with D-module structure since

V has two R ® D-module structures induced by f and g.
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Proof (cont.)

e R® D is simple by Lemma 1, so the two R ® D module
structures on V' are isomorphic by Lemma 2.

e There exists an isomorphism & : grepV — RegpV such that
forallr € Rand d € D,

(i) h(rv) =rh(v), i.e., h(f(r)v) = g(r)h(v), and
(ii) h(dv) = dh(v)

e Now h € Endp(V) = S by (ii). By (i), hf(r)h~t = g(r), i.e.,
hfh=! =g.
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Corollary

Corollary. If k£ is a field, then any k-automorphism of M, (k) is

inner.
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Centralizer Theorem

Theorem 5. [Centralizer Theorem| Let S be a finite dimensional

central simple algebra over k, and let R be a simple subalgebra of
S. Then

(i) C(R) is simple.
(ii)) [S: k] =[R: K|][C(R) : K]
(iii) C(C(R)) = R.
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Proof of Centralizer Theorem

S = Endp(V) = M,(D°), D a central k-division algebra and
V' a finite dimensional D-module.

Vis an R® D module, and C(R) = Endrsp (V).

R ® D is simple, so R® D = Endg(W), W the simple
R ® D-module and E = Endrgp(W).

Say V =2 W™ as R ® D-modules.
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Proof (cont.)

® C(R) — EndR®D(V) = EndR®D(W”) = Mn(E), which is

simple.

e (ii) follows from C(R) =& M, (F), WA structure theorem, and

mundane degree calculations.

e Apply (ii) to C(R), get |[C(C(R)) : k] = [R : k]. Then
RCC(C(R))= R=C(C(R)).
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Corollary

Corollary 6. Let D be a division algebra with center £ and
[D : k] = n?. If K is a maximal subfield of D, then [K : k] = n.
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Proof of Corollary

Proof.
e By maximality of K, C(K) = K.

e Then by the Centralizer Theorem,
n*=[D:kl=[K:kl?=[K:kl=n
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IV. Classification Theorems

e Finite Division Rings (Wedderburn)
e Group Theoretic Lemma

e Finite Dimensional Division R-algebras (Frobenius)
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Classification of Finite Division Rings

Theorem 7 (Wedderburn, 1905). Every finite division ring is

commutative, i.e., is a field.
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Group Theoretic Lemma

Lemma. If H < G are finite groups with H # G, then
G # UQEG gHg_l‘
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Proof of Wedderburn Theorem

Let k = Z(D), q = |k|, K O k a maximal subfield of D. Assume
K+ D.

e [D: k] =n? for some n by Lemma 3, and [K : k] = n by
Corollary 6. Then K = [Fn.

e Since Fg» is unique up to isomorphism, any two maximal
subfields of D containing k are isomorphic, hence conjugate in
D by the Skolem Nother Theorem.
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Proof (cont.)

e Every element of D is contained in some maximal subfield, so
D=J,epcKz

e Then D* =, .p« 2K *x~1, which is impossible by the group
theoretic lemma above unless K = D. Conclude K = D, i.e., D
is a field.
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Classification of Finite Dimensional Division
R-algebras

Theorem 8 (Frobenius, 1878). If D is a division algebra with R in
its center and [D : R] < oo, then D =R, C or H.
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Proof of Frobenius Theorem

Let K be a maximal subfield of D. Then [K : R] < co. We have
K :R]=1or2.

o If K:R]=1,then K =R and [D: R] =1 by Lemma 3, in
which case D = R.

o If [ K:R| =2 then |[D: K]=1or 2 by Lemma 3.
e If | D: K|]=1, then D = K, in which case D = C.
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Proof (cont.)

e Suppose [D: K| =2. So K 2 C and Z(D) = R.

e Complex conjugation o is an R-isomorphism of K. Hence, by
the Skolem-Nother Theorem there exists x € D such that
©, = 0, Where ¢, denotes conjugation by .

¢ 0,2 =, 00, =0°=1id. Then 2° € C(K) = K. In fact,
0 (2?) = 0(2?) = 2% = 2* € R.
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Proof (cont.)

e If 22 > 0, then = £r for some r € R, (=<). So 22 < 0 and

r? = —y? for some y € R.

o Let i =+—1,j=ux/y, k=1j. Check that the usual quaternion
multiplication table holds.

e Check that {1,4,7, k} forms a basis for D. Then D = H.
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V. Further Classification of Central Division
Algebras

Equivalence Relation
Observations
Definition of Brauer Group

Examples
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Equivalence Relation

Define an equivalence relation on central simple k-algebras by
S~S «— S=M,(D)and S" = M,,(D)

for some central divison algebra D. Denote the equivalence class of
S by [S], and let Br(k) be the set of all such similarity classes.
Each element of Br(k) corresponds to a distinct central division
k-algebra. Can recover information about central division

k-algebras by studying structure of Br(k).
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Observations

o If ST are central simple k-algebras, then so is S ®; T

S|

X

T :=|S ® T is a well-defined product on Br(k).

o
|
A
I
=
x
A
S’
H
Qo
—
2!
M
oy
=
~—~
o~
~—
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Definition of the Brauer Group

Definition. Define the Brauer group of a field k, denoted Br(k),
to be the set Br(k) identified above with group operation ®y.
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Examples

e Br(k) =0 if k is algebraically closed, since there are no

nontrivial k-division algebras.

e Br(F)=0if F is a finite field by Wedderburn’s Theorem on

finite division rings.

e Br(R) = Zs by Frobenius’s Theorem and the fact that
H @p H 2 M,(R).
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