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Background History

Problem

Let G be a compact connected simple Lie group. Compute the dimensions
of the homology groups Hn(G ,C), i.e., the Betti numbers of G.

Progress around 1940:

Results for classical groups by Pontrjagin, Cartan ⇒ Brauer.

Hopf: For all compact connected simple G , H•(G ,C) is an exterior
algebra generated by elements in certain odd degrees.

More progress around 1950:

Koszul obtains Hopf’s results by working with the Lie algebra g.
Key tool is the Koszul complex Λ•(g∗) for computing H•(g,C).
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Background History

Theorem (Koszul)

H•(g,C) ∼= Λ•(g∗)g is an exterior algebra over its primitive subspace.

Example (Type An)

Let g = sln+1. Then H•(g,C) is generated in degrees 3, 5, 7, . . . , 2n + 1.
The degree r generator is represented by the function

Φr (X1, . . . ,Xr ) =
∑
σ∈Sr

(−1)sgn(σ) tr(Xσ(1) ◦ · · · ◦ Xσ(r)).
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Background History

Degrees of generators for H•(g,C):

Type Degrees

Ar 3, 5, 7, . . . , 2r + 1
Br 3, 7, 11, . . . , 4r − 1
Cr 3, 7, 11, . . . , 4r − 1
Dr (r ≥ 4) 3, 7, 11, . . . , 4r − 5, 2r − 1
E6 3, 9, 11, 15, 17, 23
E7 3, 11, 15, 19, 23, 27, 35
E8 3, 15, 23, 27, 35, 39, 47, 59
F4 3, 11, 15, 23
G2 3, 11
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Background Generalizations

The cohomology of g is that of its universal enveloping algebra U(g).
We can also consider the associated QEA Uq(g) over k = C(q).

Problem

Can the cohomology calculations be generalized to the QEA Uq = Uq(g),
despite the lack of an explicit projective resolution like the Koszul complex?

Some evidence:

There exists a sequence of degenerations U
(1)
q ,U

(2)
q , . . . ,U

(2N)
q of Uq

such that H•(U
(2N)
q ,C) is a twisted exterior algebra Λ•q(g∗).

Poincaré duality established for Uq and its specializations by Chemla
(2004); also Brown and Zhang (2008), Kowalzig and Krähmer (2010).
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Background Integral form

Notation:

A: the localization of C[q, q−1] at the maximal ideal (q − 1)

UA: the A-subalgebra of Uq generated by simple root vectors

UA is an integral form for Uq: UA ⊗A k = Uq

U1 := UA ⊗A C1
∼= UA/(q − 1)UA, where C1 = A/(q − 1)A

Fact:
U1 is a central extension of U(g) by the semisimple group ring C(Z/2Z)r .
Consequence: H•(U1,C) ∼= H•(U(g),C).

Strategy:
Connect cohomology of Uq to that of U(g) via the integral from UA.
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Results Main theorem

Theorem

The cohomology ring H•(Uq(g), k) is an exterior algebra over a graded
subspace concentrated in the same odd degrees as for U(g).

Follows from showing that

H•(UA,A) is A-free

H•(U1,C) ∼= H•(UA,A)⊗A C1 and

H•(Uq(g), k) = H•(UA,A)⊗A k .
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Results Sketch of the proof

Short exact sequence from the universal coefficient theorem:

0→ Hn(UA,A)⊗A C1
i→ Hn(U(g),C)→ TorA1 (Hn+1(UA,A),C1)→ 0.

The following are equivalent:

The map i is surjective.

The Tor group is zero.

Hn+1(UA,A) is A-free.

Also:

If Hn(U(g),C) = 0, then Hn(UA,A) = 0, because Hn(UA,A) is a
finitely-generated A-module and A is a local ring.
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Results Sketch of the proof

0→ Hn(UA,A)⊗A C1
i→ Hn(U(g),C)→ TorA1 (Hn+1(UA,A),C1)→ 0

Example (Type A2)

H•(sl3,C) is generated in degrees 3, 5, nonzero in degrees 0, 3, 5, 8.

Hn(sl3,C) = 0 for n = 4, 6, so i is surjective for n = 3, 5.

Then i : H•(UA,A)⊗A C1 → H•(U(g),C) is an isomorphism and
H•(UA,A) is a free A-module.

This argument also applies for types A1,B2,E7,E8,F4,G2.
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Results Sketch of the proof

0→ Hn(UA,A)⊗A C1
i→ Hn(U(g),C)→ TorA1 (Hn+1(UA,A),C1)→ 0

Example (Type A3)

H•(sl4,C) is generated in degrees 3, 5, 7, nonzero in degrees

0, 3, 5, 7, 8, 10, 12, 15.

Commutative square induced by the inclusion of Dynkin diagrams:

H8(UA(sl4),A)⊗A C1

res⊗A1
��

∼ // H8(U(sl4),C)

res
����

H8(UA(sl3),A)⊗A C1
∼ // H8(U(sl3),C).

So res : H8(UA(sl4),A)→ H8(UA(sl3),A) is onto by Nakayama’s Lemma,
and hence H8(UA(sl4),A) is A-free of the same rank by dim. comparison.
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Results Sketch of the proof

To handle the higher rank cases and type E6, must understand the Lie
algebra cohomology restriction map res : H•(g,C)→ H•(g′,C) when the
inclusion g′ ⊂ g corresponds to an inclusion of Dynkin diagrams.

There exists a natural map ρ : S•(g∗)g → Λ•−1(g∗)g with image the space
of primitive elements in Λ•(g∗)g and kernel (S•(g∗)g)2.

Use the isomorphism S•(g∗)g ∼= S•(h∗)W to turn the cohomological
restriction map into a problem about the restriction of polynomial
invariants for the Weyl group. (Polynomial restriction maps from E7 to E6

and E6 to D5 computed by Toda and Watanabe in mid 1970s.)
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Results Odds and ends

Theorem

H•(Uq, k) is an exterior algebra and dim H•(Uq, k) = dim H•(U(g),C).

dim H3(Uq(g), k) = 1 (Alternate proof à la the Killing form?)

For ε ∈ C× not a small root of unity, dim H•(Uε,C) ≥ dim H•(Uq, k),
with equality for almost all ε ∈ C×. In particular, equality holds for all
ε ∈ C that are transcendental over Q.

Conjecture: Equality holds if ε is not a root of unity, or if ε is a root
of unity of sufficiently large order (say, ε` = 1 with ` > h).
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Results Root of unity

Theorem

Let ε ∈ C be a primitive p-th root of unity with p prime and p > 3(h− 1).
Then H•(Uε,C) is an exterior algebra generated in odd degrees.

Proof sketch.

For p > 3(h − 1), the mod-p Lie algebra cohomology ring H•(gFp ,Fp) is
an exterior algebra (Friedlander and Parshall, 1986).

Let Z be the localization of Z[ε] at the kernel of the map Z[ε]→ Fp

sending ε 7→ 1. Then Z is a local ring with quotient field Q(ε) and residue
field Fp. Now use UZ to compare cohomology for U(gFp) and Uε.
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