Cohomology rings for quantized enveloping algebras

Christopher Drupieski

University of Georgia

January 7, 2011

Christopher Drupieski (UGA)

Problem

Let G be a compact connected simple Lie group. Compute the dimensions of the homology groups $H_n(G, \mathbb{C})$, i.e., the Betti numbers of G.

Problem

Let G be a compact connected simple Lie group. Compute the dimensions of the homology groups $H_n(G, \mathbb{C})$, i.e., the Betti numbers of G.

Progress around 1940:

- Results for classical groups by Pontrjagin, Cartan \Rightarrow Brauer.
- Hopf: For all compact connected simple G, H[●](G, C) is an exterior algebra generated by elements in certain odd degrees.

Problem

Let G be a compact connected simple Lie group. Compute the dimensions of the homology groups $H_n(G, \mathbb{C})$, i.e., the Betti numbers of G.

Progress around 1940:

- Results for classical groups by Pontrjagin, Cartan \Rightarrow Brauer.
- Hopf: For all compact connected simple G, H[●](G, C) is an exterior algebra generated by elements in certain odd degrees.

More progress around 1950:

 Koszul obtains Hopf's results by working with the Lie algebra g. Key tool is the Koszul complex Λ[•](g^{*}) for computing H[•](g, C).

Theorem (Koszul)

 $\mathsf{H}^{\bullet}(\mathfrak{g},\mathbb{C})\cong \Lambda^{\bullet}(\mathfrak{g}^{*})^{\mathfrak{g}}$ is an exterior algebra over its primitive subspace.

Example (Type A_n)

Let $\mathfrak{g} = \mathfrak{sl}_{n+1}$. Then $H^{\bullet}(\mathfrak{g}, \mathbb{C})$ is generated in degrees $3, 5, 7, \ldots, 2n + 1$. The degree *r* generator is represented by the function

$$\Phi_r(X_1,\ldots,X_r)=\sum_{\sigma\in S_r}(-1)^{\operatorname{sgn}(\sigma)}\operatorname{tr}(X_{\sigma(1)}\circ\cdots\circ X_{\sigma(r)}).$$

Degrees of generators for $H^{\bullet}(\mathfrak{g}, \mathbb{C})$:

Туре	Degrees
Ar	$3,5,7,\ldots,2r+1$
Br	$3,7,11,\ldots,4r-1$
Cr	$3,7,11,\ldots,4r-1$
$D_r \ (r \ge 4)$	$3, 7, 11, \ldots, 4r - 5, 2r - 1$
E ₆	3, 9, 11, 15, 17, 23
E ₇	3, 11, 15, 19, 23, 27, 35
E_8	3, 15, 23, 27, 35, 39, 47, 59
F ₄	3, 11, 15, 23
G ₂	3,11

The cohomology of \mathfrak{g} is that of its universal enveloping algebra $U(\mathfrak{g})$. We can also consider the associated QEA $U_q(\mathfrak{g})$ over $k = \mathbb{C}(q)$.

Problem

Can the cohomology calculations be generalized to the QEA $U_q = U_q(\mathfrak{g})$, despite the lack of an explicit projective resolution like the Koszul complex?

The cohomology of \mathfrak{g} is that of its universal enveloping algebra $U(\mathfrak{g})$. We can also consider the associated QEA $U_q(\mathfrak{g})$ over $k = \mathbb{C}(q)$.

Problem

Can the cohomology calculations be generalized to the QEA $U_q = U_q(\mathfrak{g})$, despite the lack of an explicit projective resolution like the Koszul complex?

Some evidence:

- There exists a sequence of degenerations U⁽¹⁾_q, U⁽²⁾_q,..., U^(2N)_q of U_q such that H[●](U^(2N)_q, ℂ) is a twisted exterior algebra Λ[●]_q(g^{*}).
- Poincaré duality established for U_q and its specializations by Chemla (2004); also Brown and Zhang (2008), Kowalzig and Krähmer (2010).

Notation:

- A: the localization of $\mathbb{C}[q,q^{-1}]$ at the maximal ideal (q-1)
- U_A : the A-subalgebra of U_q generated by simple root vectors
- U_A is an integral form for U_q : $U_A \otimes_A k = U_q$
- $U_1:=U_{\mathsf{A}}\otimes_{\mathsf{A}}\mathbb{C}_1\cong U_{\mathsf{A}}/(q-1)U_{\mathsf{A}}$, where $\mathbb{C}_1=\mathsf{A}/(q-1)\mathsf{A}$

Notation:

- A: the localization of $\mathbb{C}[q,q^{-1}]$ at the maximal ideal (q-1)
- U_A : the A-subalgebra of U_q generated by simple root vectors
- U_A is an integral form for U_q : $U_A \otimes_A k = U_q$
- $U_1:=U_{\mathsf{A}}\otimes_{\mathsf{A}}\mathbb{C}_1\cong U_{\mathsf{A}}/(q-1)U_{\mathsf{A}}$, where $\mathbb{C}_1=\mathsf{A}/(q-1)\mathsf{A}$

Fact:

 U_1 is a central extension of $U(\mathfrak{g})$ by the semisimple group ring $\mathbb{C}(\mathbb{Z}/2\mathbb{Z})^r$. Consequence: $H^{\bullet}(U_1,\mathbb{C}) \cong H^{\bullet}(U(\mathfrak{g}),\mathbb{C})$.

Strategy:

Connect cohomology of U_q to that of $U(\mathfrak{g})$ via the integral from U_A .

The cohomology ring $H^{\bullet}(U_q(\mathfrak{g}), k)$ is an exterior algebra over a graded subspace concentrated in the same odd degrees as for $U(\mathfrak{g})$.

Follows from showing that

$$\begin{split} &\mathsf{H}^{\bullet}(U_{\mathsf{A}},\mathsf{A}) \text{ is } \mathsf{A}\text{-free} \\ &\mathsf{H}^{\bullet}(U_{1},\mathbb{C}) \cong \mathsf{H}^{\bullet}(U_{\mathsf{A}},\mathsf{A}) \otimes_{\mathsf{A}} \mathbb{C}_{1} \text{ and} \\ &\mathsf{H}^{\bullet}(U_{q}(\mathfrak{g}),k) = \mathsf{H}^{\bullet}(U_{\mathsf{A}},\mathsf{A}) \otimes_{\mathsf{A}} k. \end{split}$$

Short exact sequence from the universal coefficient theorem:

 $0 \to \mathsf{H}^n(U_\mathsf{A},\mathsf{A}) \otimes_\mathsf{A} \mathbb{C}_1 \xrightarrow{i} \mathsf{H}^n(U(\mathfrak{g}),\mathbb{C}) \to \mathsf{Tor}_1^\mathsf{A}(\mathsf{H}^{n+1}(U_\mathsf{A},\mathsf{A}),\mathbb{C}_1) \to 0.$

The following are equivalent:

- The map *i* is surjective.
- The Tor group is zero.
- $H^{n+1}(U_A, A)$ is A-free.

Also:

If Hⁿ(U(g), C) = 0, then Hⁿ(U_A, A) = 0, because Hⁿ(U_A, A) is a finitely-generated A-module and A is a local ring.

$$0 \to \mathsf{H}^{n}(U_{\mathsf{A}},\mathsf{A}) \otimes_{\mathsf{A}} \mathbb{C}_{1} \xrightarrow{i} \mathsf{H}^{n}(U(\mathfrak{g}),\mathbb{C}) \to \mathsf{Tor}_{1}^{\mathsf{A}}(\mathsf{H}^{n+1}(U_{\mathsf{A}},\mathsf{A}),\mathbb{C}_{1}) \to 0$$

Example (Type A_2)

- $H^{\bullet}(\mathfrak{sl}_3, \mathbb{C})$ is generated in degrees 3, 5, nonzero in degrees 0, 3, 5, 8.
- $H^n(\mathfrak{sl}_3,\mathbb{C}) = 0$ for n = 4, 6, so *i* is surjective for n = 3, 5.
- Then $i : H^{\bullet}(U_A, A) \otimes_A \mathbb{C}_1 \to H^{\bullet}(U(\mathfrak{g}), \mathbb{C})$ is an isomorphism and $H^{\bullet}(U_A, A)$ is a free A-module.

This argument also applies for types $A_1, B_2, E_7, E_8, F_4, G_2$.

$$0 \to \mathsf{H}^{n}(U_{\mathsf{A}},\mathsf{A}) \otimes_{\mathsf{A}} \mathbb{C}_{1} \xrightarrow{i} \mathsf{H}^{n}(U(\mathfrak{g}),\mathbb{C}) \to \mathsf{Tor}_{1}^{\mathsf{A}}(\mathsf{H}^{n+1}(U_{\mathsf{A}},\mathsf{A}),\mathbb{C}_{1}) \to 0$$

Example (Type A_3)

 $\mathsf{H}^{\bullet}(\mathfrak{sl}_4,\mathbb{C})$ is generated in degrees 3, 5, 7, nonzero in degrees

 $0, 3, 5, 7, \frac{8}{10}, 12, 15.$

Commutative square induced by the inclusion of Dynkin diagrams:

So res : $H^{8}(U_{A}(\mathfrak{sl}_{4}), A) \rightarrow H^{8}(U_{A}(\mathfrak{sl}_{3}), A)$ is onto by Nakayama's Lemma, and hence $H^{8}(U_{A}(\mathfrak{sl}_{4}), A)$ is A-free of the same rank by dim. comparison.

To handle the higher rank cases and type E_6 , must understand the Lie algebra cohomology restriction map res : $H^{\bullet}(\mathfrak{g}, \mathbb{C}) \to H^{\bullet}(\mathfrak{g}', \mathbb{C})$ when the inclusion $\mathfrak{g}' \subset \mathfrak{g}$ corresponds to an inclusion of Dynkin diagrams.

There exists a natural map $\rho : S^{\bullet}(\mathfrak{g}^*)^{\mathfrak{g}} \to \Lambda^{\bullet-1}(\mathfrak{g}^*)^{\mathfrak{g}}$ with image the space of primitive elements in $\Lambda^{\bullet}(\mathfrak{g}^*)^{\mathfrak{g}}$ and kernel $(S^{\bullet}(\mathfrak{g}^*)^{\mathfrak{g}})^2$.

Use the isomorphism $S^{\bullet}(\mathfrak{g}^*)^{\mathfrak{g}} \cong S^{\bullet}(\mathfrak{h}^*)^W$ to turn the cohomological restriction map into a problem about the restriction of polynomial invariants for the Weyl group. (Polynomial restriction maps from E_7 to E_6 and E_6 to D_5 computed by Toda and Watanabe in mid 1970s.)

 $H^{\bullet}(U_q, k)$ is an exterior algebra and dim $H^{\bullet}(U_q, k) = \dim H^{\bullet}(U(\mathfrak{g}), \mathbb{C})$.

- dim $H^{3}(U_{q}(\mathfrak{g}), k) = 1$ (Alternate proof à la the Killing form?)
- For ε ∈ C[×] not a small root of unity, dim H[•](U_ε, C) ≥ dim H[•](U_q, k), with equality for almost all ε ∈ C[×]. In particular, equality holds for all ε ∈ C that are transcendental over Q.
- Conjecture: Equality holds if ε is not a root of unity, or if ε is a root of unity of sufficiently large order (say, ε^ℓ = 1 with ℓ > h).

Let $\varepsilon \in \mathbb{C}$ be a primitive p-th root of unity with p prime and p > 3(h-1). Then $H^{\bullet}(U_{\varepsilon}, \mathbb{C})$ is an exterior algebra generated in odd degrees.

Let $\varepsilon \in \mathbb{C}$ be a primitive p-th root of unity with p prime and p > 3(h-1). Then $H^{\bullet}(U_{\varepsilon}, \mathbb{C})$ is an exterior algebra generated in odd degrees.

Proof sketch.

For p > 3(h-1), the mod-p Lie algebra cohomology ring $H^{\bullet}(\mathfrak{g}_{\mathbb{F}_p}, \mathbb{F}_p)$ is an exterior algebra (Friedlander and Parshall, 1986).

Let \mathcal{Z} be the localization of $\mathbb{Z}[\varepsilon]$ at the kernel of the map $\mathbb{Z}[\varepsilon] \to \mathbb{F}_p$ sending $\varepsilon \mapsto 1$. Then \mathcal{Z} is a local ring with quotient field $\mathbb{Q}(\varepsilon)$ and residue field \mathbb{F}_p . Now use $U_{\mathcal{Z}}$ to compare cohomology for $U(\mathfrak{g}_{\mathbb{F}_p})$ and U_{ε} .