Cohomology rings for quantized enveloping algebras

Christopher Drupieski

University of Georgia

January 7, 2011
Problem

Let G be a compact connected simple Lie group. Compute the dimensions of the homology groups $H_n(G, \mathbb{C})$, i.e., the Betti numbers of G.
Problem

Let G be a compact connected simple Lie group. Compute the dimensions of the homology groups $H_n(G, \mathbb{C})$, i.e., the Betti numbers of G.

Progress around 1940:

- Results for classical groups by Pontrjagin, Cartan \Rightarrow Brauer.
- Hopf: For all compact connected simple G, $H^\bullet(G, \mathbb{C})$ is an exterior algebra generated by elements in certain odd degrees.
Let \(G \) be a compact connected simple Lie group. Compute the dimensions of the homology groups \(H_n(G, \mathbb{C}) \), i.e., the Betti numbers of \(G \).

Progress around 1940:

- Results for classical groups by Pontrjagin, Cartan \(\Rightarrow\) Brauer.
- Hopf: For all compact connected simple \(G \), \(H^\bullet(G, \mathbb{C}) \) is an exterior algebra generated by elements in certain odd degrees.

More progress around 1950:

- Koszul obtains Hopf’s results by working with the Lie algebra \(\mathfrak{g} \).

 Key tool is the Koszul complex \(\Lambda^\bullet(\mathfrak{g}^*) \) for computing \(H^\bullet(\mathfrak{g}, \mathbb{C}) \).
Theorem (Koszul)

\[H^\bullet(g, \mathbb{C}) \cong \Lambda^\bullet(g^* \cdot g) \text{ is an exterior algebra over its primitive subspace.} \]

Example (Type A_n)

Let $g = \mathfrak{sl}_{n+1}$. Then $H^\bullet(g, \mathbb{C})$ is generated in degrees $3, 5, 7, \ldots, 2n + 1$. The degree r generator is represented by the function

\[\Phi_r(X_1, \ldots, X_r) = \sum_{\sigma \in S_r} (-1)^{\text{sgn}(\sigma)} \text{tr}(X_{\sigma(1)} \circ \cdots \circ X_{\sigma(r)}). \]
Degrees of generators for $H^\bullet(g, \mathbb{C})$:

<table>
<thead>
<tr>
<th>Type</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_r</td>
<td>$3, 5, 7, \ldots, 2r + 1$</td>
</tr>
<tr>
<td>B_r</td>
<td>$3, 7, 11, \ldots, 4r - 1$</td>
</tr>
<tr>
<td>C_r</td>
<td>$3, 7, 11, \ldots, 4r - 1$</td>
</tr>
<tr>
<td>D_r ($r \geq 4$)</td>
<td>$3, 7, 11, \ldots, 4r - 5, 2r - 1$</td>
</tr>
<tr>
<td>E_6</td>
<td>$3, 9, 11, 15, 17, 23$</td>
</tr>
<tr>
<td>E_7</td>
<td>$3, 11, 15, 19, 23, 27, 35$</td>
</tr>
<tr>
<td>E_8</td>
<td>$3, 15, 23, 27, 35, 39, 47, 59$</td>
</tr>
<tr>
<td>F_4</td>
<td>$3, 11, 15, 23$</td>
</tr>
<tr>
<td>G_2</td>
<td>$3, 11$</td>
</tr>
</tbody>
</table>
The cohomology of \mathfrak{g} is that of its universal enveloping algebra $U(\mathfrak{g})$. We can also consider the associated QEA $U_q(\mathfrak{g})$ over $k = \mathbb{C}(q)$.

Problem

_Can the cohomology calculations be generalized to the QEA $U_q = U_q(\mathfrak{g})$, despite the lack of an explicit projective resolution like the Koszul complex?_
The cohomology of \(\mathfrak{g} \) is that of its universal enveloping algebra \(U(\mathfrak{g}) \). We can also consider the associated QEA \(U_q(\mathfrak{g}) \) over \(k = \mathbb{C}(q) \).

Problem

Can the cohomology calculations be generalized to the QEA \(U_q = U_q(\mathfrak{g}) \), despite the lack of an explicit projective resolution like the Koszul complex?

Some evidence:

- There exists a sequence of degenerations \(U_q^{(1)}, U_q^{(2)}, \ldots, U_q^{(2N)} \) of \(U_q \) such that \(H^\bullet(U_q^{(2N)}, \mathbb{C}) \) is a twisted exterior algebra \(\Lambda_q^\bullet(\mathfrak{g}^*) \).
- Poincaré duality established for \(U_q \) and its specializations by Chemla (2004); also Brown and Zhang (2008), Kowalzig and Krähmer (2010).
Notation:

- A: the localization of $\mathbb{C}[q, q^{-1}]$ at the maximal ideal $(q - 1)$
- U_A: the A-subalgebra of U_q generated by simple root vectors
- U_A is an integral form for U_q: $U_A \otimes_A k = U_q$
- $U_1 := U_A \otimes_A \mathbb{C}_1 \cong U_A/(q - 1)U_A$, where $\mathbb{C}_1 = A/(q - 1)A$
Notation:
- A: the localization of $\mathbb{C}[q, q^{-1}]$ at the maximal ideal $(q - 1)$
- U_A: the A-subalgebra of U_q generated by simple root vectors
- U_A is an integral form for U_q: $U_A \otimes_A k = U_q$
- $U_1 := U_A \otimes_A \mathbb{C}_1 \cong U_A/(q - 1)U_A$, where $\mathbb{C}_1 = A/(q - 1)A$

Fact:
U_1 is a central extension of $U(g)$ by the semisimple group ring $\mathbb{C}(\mathbb{Z}/2\mathbb{Z})^r$.

Consequence: $H^\bullet(U_1, \mathbb{C}) \cong H^\bullet(U(g), \mathbb{C})$.

Strategy:
Connect cohomology of U_q to that of $U(g)$ via the integral from U_A.
The cohomology ring $H^\bullet(U_q(\mathfrak{g}), k)$ is an exterior algebra over a graded subspace concentrated in the same odd degrees as for $U(\mathfrak{g})$.

Follows from showing that

$$H^\bullet(U_A, A) \text{ is } A\text{-free}$$
$$H^\bullet(U_1, \mathbb{C}) \cong H^\bullet(U_A, A) \otimes_A \mathbb{C}_1 \text{ and}$$
$$H^\bullet(U_q(\mathfrak{g}), k) = H^\bullet(U_A, A) \otimes_A k.$$
Short exact sequence from the universal coefficient theorem:

\[0 \to H^n(U_A, A) \otimes_A \mathbb{C}_1 \xrightarrow{i} H^n(U(g), \mathbb{C}) \to \text{Tor}_{1}^{A}(H^{n+1}(U_A, A), \mathbb{C}_1) \to 0. \]

The following are equivalent:

- The map \(i\) is surjective.
- The Tor group is zero.
- \(H^{n+1}(U_A, A)\) is \(A\)-free.

Also:

- If \(H^n(U(g), \mathbb{C}) = 0\), then \(H^n(U_A, A) = 0\), because \(H^n(U_A, A)\) is a finitely-generated \(A\)-module and \(A\) is a local ring.
$0 \to H^n(U_A, A) \otimes_A C_1 \overset{i}{\to} H^n(U(g), \mathbb{C}) \to \text{Tor}^A_1(H^{n+1}(U_A, A), C_1) \to 0$

Example (Type A_2)

- $H^\bullet(\mathfrak{sl}_3, \mathbb{C})$ is generated in degrees $3, 5$, nonzero in degrees $0, 3, 5, 8$.
- $H^n(\mathfrak{sl}_3, \mathbb{C}) = 0$ for $n = 4, 6$, so i is surjective for $n = 3, 5$.
- Then $i : H^\bullet(U_A, A) \otimes_A C_1 \to H^\bullet(U(g), \mathbb{C})$ is an isomorphism and $H^\bullet(U_A, A)$ is a free A-module.

This argument also applies for types $A_1, B_2, E_7, E_8, F_4, G_2$.
0 \rightarrow H^n(U_A, A) \otimes_A C_1 \xrightarrow{i} H^n(U(g), \mathbb{C}) \rightarrow \text{Tor}_1^A(H^{n+1}(U_A, A), C_1) \rightarrow 0

Example (Type A_3)

$H^\bullet(\mathfrak{sl}_4, \mathbb{C})$ is generated in degrees 3, 5, 7, nonzero in degrees 0, 3, 5, 7, 8, 10, 12, 15.

Commutative square induced by the inclusion of Dynkin diagrams:

$H^8(U_A(\mathfrak{sl}_4), A) \otimes_A C_1 \xrightarrow{\sim} H^8(U(\mathfrak{sl}_4), \mathbb{C})$

\[\text{res} \otimes_A 1 \quad \downarrow \text{res}\]

$H^8(U_A(\mathfrak{sl}_3), A) \otimes_A C_1 \xrightarrow{\sim} H^8(U(\mathfrak{sl}_3), \mathbb{C})$.

So res : $H^8(U_A(\mathfrak{sl}_4), A) \rightarrow H^8(U_A(\mathfrak{sl}_3), A)$ is onto by Nakayama’s Lemma, and hence $H^8(U_A(\mathfrak{sl}_4), A)$ is A-free of the same rank by dim. comparison.
To handle the higher rank cases and type E_6, must understand the Lie algebra cohomology restriction map $\text{res} : H^\bullet(g, \mathbb{C}) \to H^\bullet(g', \mathbb{C})$ when the inclusion $g' \subset g$ corresponds to an inclusion of Dynkin diagrams.

There exists a natural map $\rho : S^\bullet(g^*)^g \to \Lambda^{\bullet-1}(g^*)^g$ with image the space of primitive elements in $\Lambda^\bullet(g^*)^g$ and kernel $(S^\bullet(g^*)^g)^2$.

Use the isomorphism $S^\bullet(g^*)^g \cong S^\bullet(\mathfrak{h}^*)^W$ to turn the cohomological restriction map into a problem about the restriction of polynomial invariants for the Weyl group. (Polynomial restriction maps from E_7 to E_6 and E_6 to D_5 computed by Toda and Watanabe in mid 1970s.)
Theorem

\[H^\bullet(U_q, k) \text{ is an exterior algebra and } \dim H^\bullet(U_q, k) = \dim H^\bullet(U(g), \mathbb{C}). \]

- \(\dim H^3(U_q(g), k) = 1 \) (Alternate proof à la the Killing form?)
- For \(\varepsilon \in \mathbb{C}^\times \) not a small root of unity, \(\dim H^\bullet(U_{\varepsilon}, \mathbb{C}) \geq \dim H^\bullet(U_q, k) \), with equality for almost all \(\varepsilon \in \mathbb{C}^\times \). In particular, equality holds for all \(\varepsilon \in \mathbb{C} \) that are transcendental over \(\mathbb{Q} \).
- Conjecture: Equality holds if \(\varepsilon \) is not a root of unity, or if \(\varepsilon \) is a root of unity of sufficiently large order (say, \(\varepsilon^\ell = 1 \) with \(\ell > h \)).
Theorem

Let $\varepsilon \in \mathbb{C}$ be a primitive p-th root of unity with p prime and $p > 3(h - 1)$. Then $H^\bullet(\mathbf{U}_\varepsilon, \mathbb{C})$ is an exterior algebra generated in odd degrees.

Proof sketch.

For $p > 3(h - 1)$, the mod-p Lie algebra cohomology ring $H^\bullet(\mathfrak{g} \mathbb{F}_p, \mathbb{F}_p)$ is an exterior algebra (Friedlander and Parshall, 1986). Let \mathbb{Z} be the localization of $\mathbb{Z}[\varepsilon]$ at the kernel of the map $\mathbb{Z}[\varepsilon] \to \mathbb{F}_p$ sending $\varepsilon \mapsto 1$. Then \mathbb{Z} is a local ring with quotient field $\mathbb{Q}(\varepsilon)$ and residue field \mathbb{F}_p. Now use $\mathbf{U}_\mathbb{Z}$ to compare cohomology for $\mathbf{U}(\mathfrak{g} \mathbb{F}_p)$ and \mathbf{U}_ε.

Christopher Drupieski (UGA)
Theorem

Let $\varepsilon \in \mathbb{C}$ be a primitive p-th root of unity with p prime and $p > 3(h - 1)$. Then $H^\bullet(U_{\varepsilon}, \mathbb{C})$ is an exterior algebra generated in odd degrees.

Proof sketch.

For $p > 3(h - 1)$, the mod-p Lie algebra cohomology ring $H^\bullet(g_{\mathbb{F}_p}, \mathbb{F}_p)$ is an exterior algebra (Friedlander and Parshall, 1986).

Let \mathcal{Z} be the localization of $\mathbb{Z}[\varepsilon]$ at the kernel of the map $\mathbb{Z}[\varepsilon] \to \mathbb{F}_p$ sending $\varepsilon \mapsto 1$. Then \mathcal{Z} is a local ring with quotient field $\mathbb{Q}(\varepsilon)$ and residue field \mathbb{F}_p. Now use $U_{\mathcal{Z}}$ to compare cohomology for $U(g_{\mathbb{F}_p})$ and U_{ε}. □