Some quantum analogues of results from Lie algebra cohomology

Christopher M. Drupieski
University of Georgia

2011 Fall Central Section AMS Meeting Special Session on Quantum Groups \&
Representation Theory

October 15, 2011

Motivating Problem

Let \mathfrak{g} be a finite-dimensional simple complex Lie algebra.

- Compute the Lie algebra cohomology ring $\mathrm{H}^{\bullet}(\mathfrak{g}, \mathbb{C})=\operatorname{Ext}_{\mathcal{U}_{(\mathfrak{g})}^{\bullet}}(\mathbb{C}, \mathbb{C})$.
- Given f.d. irreducible \mathfrak{g}-modules V and W, compute $\operatorname{Ext}_{U_{(\mathfrak{g})}^{\bullet}}^{\bullet}(V, W)$.
- Lie group analogue solved using topological methods by 1940.
- Purely algebraic proofs appear by 1950, make critical use of the Koszul complex $\Lambda^{\bullet}\left(\mathfrak{g}^{*}\right)$ for Lie algebra cohomology.
$\Lambda^{n}\left(\mathfrak{g}^{*}\right) \cong$ space of n-multilinear alternating maps on \mathfrak{g}

Theorem (Chevalley-Eilenberg 1946, Koszul 1950)

Let $V \not \equiv W$ be finite-dimensional irreducible \mathfrak{g}-modules.

- $\operatorname{Ext}_{U(\mathfrak{g})}^{\bullet}(V, W)=0$.
- $\operatorname{Ext}_{U_{(\mathfrak{g})}^{\bullet}}(\mathbb{C}, \mathbb{C})=\mathrm{H}^{\bullet}(\mathfrak{g}, \mathbb{C}) \cong \Lambda^{\bullet}\left(\mathfrak{g}^{*}\right)^{\mathfrak{g}}$ is an exterior algebra.

Example (Type $A_{n}, \mathfrak{g}=\mathfrak{s l}_{n+1}$)

$\Lambda^{\bullet}\left(\mathfrak{g}^{*}\right)^{\mathfrak{g}} \cong \operatorname{Hom}_{\mathfrak{g}}\left(\Lambda^{\bullet}(\mathfrak{g}), \mathbb{C}\right)$ is generated in degrees $3,5,7, \ldots, 2 n+1$. The degree r generator is represented by the function

$$
\Phi_{r}\left(X_{1}, \ldots, X_{r}\right)=\sum_{\sigma \in S_{r}}(-1)^{\operatorname{sgn}(\sigma)} \operatorname{tr}\left(X_{\sigma(1)} \circ \cdots \circ X_{\sigma(r)}\right)
$$

Degrees of generators for $\mathrm{H}^{\bullet}(\mathfrak{g}, \mathbb{C})$:

Type	Degrees
A_{r}	$3,5,7, \ldots, 2 r+1$
B_{r}	$3,7,11, \ldots, 4 r-1$
C_{r}	$3,7,11, \ldots, 4 r-1$
$D_{r}(r \geq 4)$	$3,7,11, \ldots, 4 r-5,2 r-1$
E_{6}	$3,9,11,15,17,23$
E_{7}	$3,11,15,19,23,27,35$
E_{8}	$3,15,23,27,35,39,47,59$
F_{4}	$3,11,15,23$
G_{2}	3,11

Problem

Consider the quantized enveloping algebra $U_{q}=U_{q}(\mathfrak{g})$ associated to \mathfrak{g}.

- If $V \nsubseteq W$ are irreducible U_{q}-modules, is $\operatorname{Ext}_{U_{q}}(V, W)=0$?
- Is Ext ${ }_{U_{q}}(\mathbb{C}(q), \mathbb{C}(q))=\mathrm{H}^{\bullet}\left(U_{q}, \mathbb{C}(q)\right)$ an exterior algebra?

Complete reducibility of finite-dimensional representations still holds, but we have no quantum version of the Koszul complex $\Lambda^{\bullet}\left(\mathfrak{g}^{*}\right)$, so no hope of ripping off the classical arguments.

Theorem

Let $V \not \equiv W$ be f.d. irreducible U_{q}-modules. Then $\operatorname{Ext}_{U_{q}}^{\bullet}(V, W)=0$.

Strategy (borrowed from Kumar's work on Kac-Moody Lie algebras):

- Turn Ext-vanishing condition into a Tor-vanishing condition.
- Reduce to vanishing of Tor between certain Verma modules.
- Involution $\omega: U_{q} \rightarrow U_{q}$ that interchanges positive and negative roots and acts like the antipode S on U_{q}^{0}. Then for V, W f.d. irreducible,

$$
\operatorname{Ext}_{U_{q}}^{\bullet}(V, W) \cong \operatorname{Ext}_{U_{q}}\left(V,{ }^{\omega}\left(W^{*}\right)\right) \cong \operatorname{Tor}_{\bullet}^{U_{q}}\left(\left({ }^{\omega} V\right)^{S^{-1}}, W\right)^{*}
$$

- Since $V \nsubseteq W$, they're in different blocks of the BGG category \mathcal{O}^{q}. Now show: If M and N are modules in different blocks of \mathcal{O}^{q}, then

$$
\operatorname{Tor}_{\bullet} U_{q}\left(\left({ }^{\omega} M\right)^{S^{-1}}, N\right)=0
$$

- Use long exact sequences for Tor to reduce to the case when M and N are Verma modules in different blocks of \mathcal{O}^{q}.

Let $M(\lambda), M(\mu)$ be Verma modules in different blocks of \mathcal{O}^{q}. So $\lambda \neq \mu$.
As a $U_{q}\left(\mathfrak{b}^{+}\right)$-module, ${ }^{\omega} M(\lambda) \cong U_{q}\left(\mathfrak{b}^{+}\right) \otimes U_{q}^{0} k_{-\lambda}$. Then

$$
\begin{aligned}
\operatorname{Tor}_{\bullet}{ }^{U_{q}}\left(\left({ }^{\omega} M(\lambda)\right)^{S^{-1}}, M(\mu)\right) & =\operatorname{Tor}_{\bullet}^{U_{q}}\left(\left({ }^{\omega} M(\lambda)\right)^{S^{-1}}, U_{q} \otimes U_{q}\left(\mathfrak{b}^{+}\right) k_{\mu}\right) \\
& \cong \operatorname{Tor}_{\bullet} U_{q}\left(\mathfrak{b}^{+}\right) \\
& \cong{\left.\left({ }^{\omega} M(\lambda)\right)^{S^{-1}}, k_{\mu}\right)}_{U_{\bullet}\left(\mathfrak{b}^{+}\right)}\left(k,{ }^{\omega} M(\lambda) \otimes k_{\mu}\right) \\
& \cong \operatorname{Tor}_{\bullet}{ }^{U_{q}\left(\mathfrak{b}^{+}\right)}\left(k, U_{q}\left(\mathfrak{b}^{+}\right) \otimes U_{q}^{0} k_{\mu-\lambda}\right) \\
& \cong \operatorname{Tor}_{\bullet}{ }^{U_{q}^{0}}\left(k, k_{\mu-\lambda}\right)
\end{aligned}
$$

Exercise: $\operatorname{Tor}_{\bullet}{ }_{\bullet}^{0}\left(k, k_{\mu-\lambda}\right)^{*}=\operatorname{Ext}_{U_{q}^{0}}^{\bullet}\left(k, k_{\lambda-\mu}\right)=0 .\left(\right.$ Use $\left.U_{q}^{0} \cong k \mathbb{Z}^{n}.\right)$

Theorem

The cohomology ring $\mathrm{H}^{\bullet}\left(U_{q}(\mathfrak{g}), \mathbb{C}(q)\right)$ is an exterior algebra over a graded subspace concentrated in the same odd degrees as for $U(\mathfrak{g})$.

Notation

- A: the localization of $\mathbb{C}\left[q, q^{-1}\right]$ at the maximal ideal $(q-1)$
- U_{A} : the A-subalgebra of U_{q} generated by simple root vectors
- U_{A} is an integral form for $U_{q}: U_{\mathrm{A}} \otimes_{\mathrm{A}} \mathbb{C}(q)=U_{q}$
- $U_{1}:=U_{\mathrm{A}} \otimes_{\mathrm{A}} \mathbb{C}_{1} \cong U_{\mathrm{A}} /(q-1) U_{\mathrm{A}}$, where $\mathbb{C}_{1}=\mathrm{A} /(q-1) \mathrm{A}$
- Fact: U_{1} is a central extension of $U(\mathfrak{g})$ by $\mathbb{C}(\mathbb{Z} / 2 \mathbb{Z})^{r}$.
- Consequence: $\mathrm{H}^{\bullet}\left(U_{1}, \mathbb{C}\right) \cong \mathrm{H}^{\bullet}(U(\mathfrak{g}), \mathbb{C})$.
- Split exact sequence from the universal coefficient theorem:
$0 \rightarrow \mathrm{H}^{n}\left(U_{\mathrm{A}}, \mathrm{A}\right) \otimes_{\mathrm{A}} \mathbb{C}_{1} \xrightarrow{i} \mathrm{H}^{n}(U(\mathfrak{g}), \mathbb{C}) \rightarrow \operatorname{Tor}_{1}^{\mathrm{A}}\left(\mathrm{H}^{n+1}\left(U_{\mathrm{A}}, \mathrm{A}\right), \mathbb{C}_{1}\right) \rightarrow 0$.
- $\mathrm{H}^{\bullet}\left(U_{q}, \mathbb{C}(q)\right) \cong \mathrm{H}^{\bullet}\left(U_{\mathrm{A}}, \mathrm{A}\right) \otimes_{\mathrm{A}} \mathbb{C}(q)$, so $\operatorname{dim} \mathrm{H}^{\bullet}\left(U_{q}, \mathbb{C}(q)\right) \leq \operatorname{dim} \mathrm{H}^{\bullet}\left(U_{q}, \mathrm{~A}\right) \otimes_{\mathrm{A}} \mathbb{C}_{1} \leq \operatorname{dim} \mathrm{H}^{\bullet}(U(\mathfrak{g}), \mathbb{C})$.
- Key step in the argument is to show that the latter two dimensions are equal, that is, that i is an isomorphism. Since A is a local PID, this is equivalent to showing that $\mathrm{H}^{\bullet}\left(U_{A}, A\right)$ is A-free. From this it quickly follows that $\mathrm{H}^{\bullet}\left(U_{\mathrm{A}}, \mathrm{A}\right)$ and $\mathrm{H}^{\bullet}\left(U_{q}, \mathbb{C}(q)\right)$ are exterior algebras.

$$
0 \rightarrow \mathrm{H}^{n}\left(U_{\mathrm{A}}, \mathrm{~A}\right) \otimes_{\mathrm{A}} \mathbb{C}_{1} \xrightarrow{i} \mathrm{H}^{n}(U(\mathfrak{g}), \mathbb{C}) \rightarrow \operatorname{Tor}_{1}^{\mathrm{A}}\left(\mathrm{H}^{n+1}\left(U_{\mathrm{A}}, \mathrm{~A}\right), \mathbb{C}_{1}\right) \rightarrow 0
$$

Example (Type A_{2})

$\mathrm{H}^{\bullet}\left(\mathfrak{s l}_{3}, \mathbb{C}\right)$ is generated in degrees 3,5 , nonzero in degrees

$$
0,3,5,8
$$

$\mathrm{H}^{n}(U(\mathfrak{g}), \mathbb{C})=0$ for $n=4,6$, so i is surjective for $n=3,5$.
Then i is surjective for all n, so we get that $\mathrm{H}^{\bullet}\left(U_{A}, A\right)$ is A-free.
This argument also applies for types $A_{1}, B_{2}, E_{7}, E_{8}, F_{4}, G_{2}$.

$$
0 \rightarrow \mathrm{H}^{n}\left(U_{\mathrm{A}}, \mathrm{~A}\right) \otimes_{\mathrm{A}} \mathbb{C}_{1} \xrightarrow{i} \mathrm{H}^{n}(U(\mathfrak{g}), \mathbb{C}) \rightarrow \operatorname{Tor}_{1}^{\mathrm{A}}\left(\mathrm{H}^{n+1}\left(U_{\mathrm{A}}, \mathrm{~A}\right), \mathbb{C}_{1}\right) \rightarrow 0
$$

Example (Type A_{3})

$\mathrm{H}^{\bullet}\left(\mathfrak{s l}_{4}, \mathbb{C}\right)$ is generated in degrees $3,5,7$, nonzero in degrees

$$
0,3,5,7,8,10,12,15
$$

Commutative square induced by the inclusion of Dynkin diagrams:

$$
\begin{aligned}
& \mathrm{H}^{8}\left(U_{\mathrm{A}}\left(\mathfrak{s l}_{4}\right), \mathrm{A}\right) \otimes_{\mathrm{A}} \mathbb{C}_{1} \xrightarrow{\sim} \mathrm{H}^{8}\left(U\left(\mathfrak{s l}_{4}\right), \mathbb{C}\right) \\
& \downarrow \text { res } \otimes_{A} 1 \\
& \mathrm{H}^{8}\left(U_{\mathrm{A}}\left(\mathfrak{s l}_{3}\right), \mathrm{A}\right) \otimes_{\mathrm{A}} \mathbb{C}_{1} \xrightarrow{\sim} \mathrm{H}^{8}\left(U\left(\mathfrak{s l}_{3}\right), \mathbb{C}\right) .
\end{aligned}
$$

So res: $\mathrm{H}^{8}\left(U_{\mathrm{A}}\left(\mathfrak{s l}_{4}\right), \mathrm{A}\right) \rightarrow \mathrm{H}^{8}\left(U_{\mathrm{A}}\left(\mathfrak{s l}_{3}\right), \mathrm{A}\right)$ is onto by Nakayama's Lemma, and hence $\mathrm{H}^{8}\left(U_{\mathrm{A}}\left(\mathfrak{s l}_{4}\right), \mathrm{A}\right)$ is A -free of the same rank by dim. comparison.

Theorem

Let $U_{q}=U_{q}(\mathfrak{g})$ be the quantized enveloping algebra associated to \mathfrak{g}.

- If $V \nsubseteq W$ are irreducible U_{q}-modules, then $\operatorname{Ext}_{U_{q}}^{\bullet}(V, W)=0$.
- Ext ${ }_{U_{q}}(\mathbb{C}(q), \mathbb{C}(q))=\mathrm{H}^{\bullet}\left(U_{q}, \mathbb{C}(q)\right)$ is an exterior algebra, generated in the same odd degrees as $\mathrm{H}^{\bullet}(\mathfrak{g}, \mathbb{C})$.

Further directions:

- Specialize parameter q to $\varepsilon \in \mathbb{C}$ and compute $H^{\bullet}\left(U_{\varepsilon}, \mathbb{C}\right)$? Have $\operatorname{dim} \mathrm{H}^{\bullet}\left(U_{\varepsilon}, \mathbb{C}\right)=\operatorname{dim} \mathrm{H}^{\bullet}\left(U_{q}, k\right)$ for almost all $\varepsilon \in \mathbb{C}^{\times}$.
Can show true for some large roots of 1 . For what $\varepsilon \in \mathbb{C}$ does it fail?
- Consider parabolic and Levi subalgebras $U_{q}\left(\mathfrak{p}_{J}\right)$ and $U_{q}\left(\mathfrak{l}_{J}\right)$ of $U_{q}(\mathfrak{g})$. Problem: $\mathfrak{l}_{J}=\left[\mathfrak{l}_{J}, \mathfrak{l}_{J}\right] \oplus \mathfrak{z}_{J}$, but no similar decomposition of $U_{q}\left(\mathfrak{l}_{J}\right)$. Also: $\mathrm{H}^{\bullet}\left(\mathfrak{l}_{J}, \mathbb{C}\right)$ is generated by elements in adjacent degrees.

