Some quantum analogues of results from Lie algebra cohomology

Christopher M. Drupieski University of Georgia

2011 Fall Central Section AMS Meeting Special Session on Quantum Groups & Representation Theory

October 15, 2011

Christopher M. Drupieski (UGA)

Motivating Problem

Let \mathfrak{g} be a finite-dimensional simple complex Lie algebra.

- Compute the Lie algebra cohomology ring H[●](𝔅, 𝔅) = Ext[●]_{U(𝔅)}(𝔅, 𝔅).
- Given f.d. irreducible g-modules V and W, compute $\operatorname{Ext}^{\bullet}_{U(\mathfrak{a})}(V, W)$.

- Lie group analogue solved using topological methods by 1940.
- Purely algebraic proofs appear by 1950, make critical use of the Koszul complex Λ[•](g^{*}) for Lie algebra cohomology.

 $\Lambda^n(\mathfrak{g}^*) \cong$ space of *n*-multilinear alternating maps on \mathfrak{g}

Theorem (Chevalley–Eilenberg 1946, Koszul 1950)

Let $V \ncong W$ be finite-dimensional irreducible g-modules.

•
$$\operatorname{Ext}_{U(\mathfrak{g})}^{\bullet}(V,W) = 0.$$

• $\operatorname{Ext}^{\bullet}_{U(\mathfrak{g})}(\mathbb{C},\mathbb{C}) = \operatorname{H}^{\bullet}(\mathfrak{g},\mathbb{C}) \cong \Lambda^{\bullet}(\mathfrak{g}^{*})^{\mathfrak{g}}$ is an exterior algebra.

Example (Type A_n , $\mathfrak{g} = \mathfrak{sl}_{n+1}$)

 $\Lambda^{\bullet}(\mathfrak{g}^*)^{\mathfrak{g}} \cong \operatorname{Hom}_{\mathfrak{g}}(\Lambda^{\bullet}(\mathfrak{g}), \mathbb{C})$ is generated in degrees $3, 5, 7, \ldots, 2n + 1$. The degree *r* generator is represented by the function

$$\Phi_r(X_1,\ldots,X_r)=\sum_{\sigma\in S_r}(-1)^{\operatorname{sgn}(\sigma)}\operatorname{tr}(X_{\sigma(1)}\circ\cdots\circ X_{\sigma(r)}).$$

Degrees of generators for $H^{\bullet}(\mathfrak{g}, \mathbb{C})$:

Туре	Degrees
A _r	$3,5,7,\ldots,2r+1$
Br	$3,7,11,\ldots,4r-1$
Cr	$3,7,11,\ldots,4r-1$
$D_r \ (r \geq 4)$	$3, 7, 11, \ldots, 4r - 5, 2r - 1$
E_6	3, 9, 11, 15, 17, 23
E ₇	3, 11, 15, 19, 23, 27, 35
E ₈	3, 15, 23, 27, 35, 39, 47, 59
F ₄	3, 11, 15, 23
G ₂	3,11

Problem

Consider the quantized enveloping algebra $U_q = U_q(\mathfrak{g})$ associated to \mathfrak{g} .

- If $V \ncong W$ are irreducible U_q -modules, is $\operatorname{Ext}_{U_q}^{\bullet}(V, W) = 0$?
- Is $\operatorname{Ext}_{U_q}^{\bullet}(\mathbb{C}(q),\mathbb{C}(q)) = \operatorname{H}^{\bullet}(U_q,\mathbb{C}(q))$ an exterior algebra?

Complete reducibility of finite-dimensional representations still holds, but we have no quantum version of the Koszul complex $\Lambda^{\bullet}(\mathfrak{g}^*)$, so no hope of ripping off the classical arguments.

Theorem

Let $V \ncong W$ be f.d. irreducible U_q -modules. Then $\operatorname{Ext}_{U_q}^{\bullet}(V, W) = 0$.

Strategy (borrowed from Kumar's work on Kac-Moody Lie algebras):

- Turn Ext-vanishing condition into a Tor-vanishing condition.
- Reduce to vanishing of Tor between certain Verma modules.

• Involution $\omega : U_q \to U_q$ that interchanges positive and negative roots and acts like the antipode S on U_q^0 . Then for V, W f.d. irreducible,

$$\mathsf{Ext}^{\bullet}_{U_q}(V,W) \cong \mathsf{Ext}^{\bullet}_{U_q}(V,{}^{\omega}(W^*)) \cong \mathsf{Tor}^{U_q}_{\bullet}(({}^{\omega}V)^{\mathcal{S}^{-1}},W)^*$$

 Since V ≇ W, they're in different blocks of the BGG category O^q. Now show: If M and N are modules in different blocks of O^q, then

$$\operatorname{Tor}_{ullet}^{U_q}(({}^{\omega}M)^{S^{-1}},N)=0.$$

 Use long exact sequences for Tor to reduce to the case when M and N are Verma modules in different blocks of O^q.

Let $M(\lambda)$, $M(\mu)$ be Verma modules in different blocks of \mathcal{O}^q . So $\lambda \neq \mu$. As a $U_q(\mathfrak{b}^+)$ -module, ${}^{\omega}M(\lambda) \cong U_q(\mathfrak{b}^+) \otimes_{U_q^0} k_{-\lambda}$. Then

$$\operatorname{Tor}_{\bullet}^{U_q}(({}^{\omega}M(\lambda))^{S^{-1}}, M(\mu)) = \operatorname{Tor}_{\bullet}^{U_q}(({}^{\omega}M(\lambda))^{S^{-1}}, U_q \otimes_{U_q(\mathfrak{b}^+)} k_{\mu})$$
$$\cong \operatorname{Tor}_{\bullet}^{U_q(\mathfrak{b}^+)}(({}^{\omega}M(\lambda))^{S^{-1}}, k_{\mu})$$
$$\cong \operatorname{Tor}_{\bullet}^{U_q(\mathfrak{b}^+)}(k, {}^{\omega}M(\lambda) \otimes k_{\mu})$$
$$\cong \operatorname{Tor}_{\bullet}^{U_q(\mathfrak{b}^+)}(k, U_q(\mathfrak{b}^+) \otimes_{U_q^0} k_{\mu-\lambda})$$
$$\cong \operatorname{Tor}_{\bullet}^{U_q^0}(k, k_{\mu-\lambda})$$

$$\mathsf{Exercise:} \ \mathsf{Tor}_{\bullet}^{U^0_q}(k,k_{\mu-\lambda})^* = \mathsf{Ext}_{U^0_q}^{\bullet}(k,k_{\lambda-\mu}) = 0. \ (\mathsf{Use} \ U^0_q \cong k\mathbb{Z}^n.)$$

. .0

Theorem

The cohomology ring $H^{\bullet}(U_q(\mathfrak{g}), \mathbb{C}(q))$ is an exterior algebra over a graded subspace concentrated in the same odd degrees as for $U(\mathfrak{g})$.

Notation

- A: the localization of $\mathbb{C}[q,q^{-1}]$ at the maximal ideal (q-1)
- U_A : the A-subalgebra of U_q generated by simple root vectors
- U_A is an integral form for U_q : $U_A \otimes_A \mathbb{C}(q) = U_q$
- $U_1:=U_{\mathsf{A}}\otimes_{\mathsf{A}}\mathbb{C}_1\cong U_{\mathsf{A}}/(q-1)U_{\mathsf{A}}$, where $\mathbb{C}_1=\mathsf{A}/(q-1)\mathsf{A}$
- Fact: U_1 is a central extension of $U(\mathfrak{g})$ by $\mathbb{C}(\mathbb{Z}/2\mathbb{Z})^r$.
- Consequence: $H^{\bullet}(U_1, \mathbb{C}) \cong H^{\bullet}(U(\mathfrak{g}), \mathbb{C}).$

- Split exact sequence from the universal coefficient theorem:
- $0 \to \mathsf{H}^n(U_\mathsf{A},\mathsf{A}) \otimes_\mathsf{A} \mathbb{C}_1 \xrightarrow{i} \mathsf{H}^n(U(\mathfrak{g}),\mathbb{C}) \to \mathsf{Tor}_1^\mathsf{A}(\mathsf{H}^{n+1}(U_\mathsf{A},\mathsf{A}),\mathbb{C}_1) \to 0.$

•
$$H^{\bullet}(U_q, \mathbb{C}(q)) \cong H^{\bullet}(U_A, A) \otimes_A \mathbb{C}(q)$$
, so
dim $H^{\bullet}(U_q, \mathbb{C}(q)) \leq \dim H^{\bullet}(U_q, A) \otimes_A \mathbb{C}_1 \leq \dim H^{\bullet}(U(\mathfrak{g}), \mathbb{C})$.

• Key step in the argument is to show that the latter two dimensions are equal, that is, that *i* is an isomorphism. Since A is a local PID, this is equivalent to showing that $H^{\bullet}(U_A, A)$ is A-free. From this it quickly follows that $H^{\bullet}(U_A, A)$ and $H^{\bullet}(U_q, \mathbb{C}(q))$ are exterior algebras.

$$0 \to \mathsf{H}^{n}(U_{\mathsf{A}},\mathsf{A}) \otimes_{\mathsf{A}} \mathbb{C}_{1} \stackrel{i}{\to} \mathsf{H}^{n}(U(\mathfrak{g}),\mathbb{C}) \to \mathsf{Tor}_{1}^{\mathsf{A}}(\mathsf{H}^{n+1}(U_{\mathsf{A}},\mathsf{A}),\mathbb{C}_{1}) \to 0$$

Example (Type A_2)

 $H^{\bullet}(\mathfrak{sl}_3,\mathbb{C})$ is generated in degrees 3, 5, nonzero in degrees

0, 3, 5, 8.

 $H^n(U(\mathfrak{g}),\mathbb{C}) = 0$ for n = 4, 6, so *i* is surjective for n = 3, 5. Then *i* is surjective for all *n*, so we get that $H^{\bullet}(U_A, A)$ is A-free.

This argument also applies for types $A_1, B_2, E_7, E_8, F_4, G_2$.

$$0 \to \mathsf{H}^{n}(U_{\mathsf{A}},\mathsf{A}) \otimes_{\mathsf{A}} \mathbb{C}_{1} \xrightarrow{i} \mathsf{H}^{n}(U(\mathfrak{g}),\mathbb{C}) \to \mathsf{Tor}_{1}^{\mathsf{A}}(\mathsf{H}^{n+1}(U_{\mathsf{A}},\mathsf{A}),\mathbb{C}_{1}) \to 0$$

Example (Type A_3)

 $H^{\bullet}(\mathfrak{sl}_4,\mathbb{C})$ is generated in degrees 3, 5, 7, nonzero in degrees

0, 3, 5, 7, <mark>8</mark>, 10, 12, 15.

Commutative square induced by the inclusion of Dynkin diagrams:

$$\begin{array}{c} \mathsf{H}^{8}(U_{\mathsf{A}}(\mathfrak{sl}_{4}),\mathsf{A})\otimes_{\mathsf{A}}\mathbb{C}_{1} \xrightarrow{\sim} \mathsf{H}^{8}(U(\mathfrak{sl}_{4}),\mathbb{C}) \\ & \downarrow^{\mathsf{res}}\otimes_{\mathsf{A}^{1}} & \downarrow^{\mathsf{res}} \\ \mathsf{H}^{8}(U_{\mathsf{A}}(\mathfrak{sl}_{3}),\mathsf{A})\otimes_{\mathsf{A}}\mathbb{C}_{1} \xrightarrow{\sim} \mathsf{H}^{8}(U(\mathfrak{sl}_{3}),\mathbb{C}). \end{array}$$

So res : $H^{8}(U_{A}(\mathfrak{sl}_{4}), A) \to H^{8}(U_{A}(\mathfrak{sl}_{3}), A)$ is onto by Nakayama's Lemma, and hence $H^{8}(U_{A}(\mathfrak{sl}_{4}), A)$ is A-free of the same rank by dim. comparison.

Theorem

Let $U_q = U_q(\mathfrak{g})$ be the quantized enveloping algebra associated to \mathfrak{g} .

- If $V \ncong W$ are irreducible U_q -modules, then $\operatorname{Ext}_{U_q}^{\bullet}(V, W) = 0$.
- Ext[●]_{Uq}(ℂ(q), ℂ(q)) = H[●](U_q, ℂ(q)) is an exterior algebra, generated in the same odd degrees as H[●](𝔅, ℂ).

Further directions:

- Specialize parameter q to ε ∈ C and compute H[•](U_ε, C)? Have dim H[•](U_ε, C) = dim H[•](U_q, k) for almost all ε ∈ C[×]. Can show true for some large roots of 1. For what ε ∈ C does it fail?
- Consider parabolic and Levi subalgebras U_q(𝔅_J) and U_q(𝔅_J) of U_q(𝔅). Problem: 𝔅_J = [𝔅_J, 𝔅_J] ⊕ 𝔅_J, but no similar decomposition of U_q(𝔅_J). Also: H[•](𝔅_J, ℂ) is generated by elements in adjacent degrees.