Cohomology rings of infinitesimal unipotent algebraic and quantum groups

Christopher Drupieski

Department of Mathematics
University of Georgia
April 11, 2010

Joint work with Daniel Nakano and Nham Ngo.

MAGMA support provided by Jon Carlson.

Standard notation:

- k an algebraically closed field of characteristic p,
- G a simple, simply-connected algebraic group (e.g., $\left.G=S L_{n}\left(\overline{\mathbb{F}}_{p}\right)\right)$
- $T \subset G$ a maximal torus,
- Φ the root system of T in G,
- h the Coxeter number of Φ,
- $B \subset G$ a Borel subgroup corresponding to Φ^{+},
- $U \subset B$ the unipotent radical of B,
- $U_{1} \subset B_{1}$ the first Frobenius kernels of U and B.
- $\mathfrak{n}=\operatorname{Lie}(U)$, the nilradical of $\mathfrak{b}=\operatorname{Lie}(B)$.

Problem

What is the ring structure of the cohomology ring $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$?

Problem

What is the ring structure of the cohomology ring $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$?

Equivalently: What is the ring structure of $\mathrm{H}^{\bullet}(u(\mathfrak{n}), k)$? $u(\mathfrak{n})=$ restricted enveloping algebra of \mathfrak{n}.

Theorem (Friedlander-Parshall, 1986)

Suppose $p>h$. Then there exists a filtration on $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$ such that

$$
\operatorname{gr}^{\bullet} \mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)
$$

$H^{\bullet}(\mathfrak{n}, k)=$ ordinary Lie algebra cohomology.
$S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)}=$ polynomial ring generated in degree two.
Filtration is by polynomials of higher degree.

Theorem (Friedlander-Parshall, 1986)

Suppose $p>h$. Then there exists a filtration on $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$ such that

$$
\operatorname{gr}^{\bullet} \mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)
$$

$\mathrm{H}^{\bullet}(\mathfrak{n}, k)=$ ordinary Lie algebra cohomology.
$S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)}=$ polynomial ring generated in degree two.
Filtration is by polynomials of higher degree.
In $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$:
$(a \otimes b)(c \otimes d)=(a c \otimes b d)+$ terms with higher degree polynomial part.

Main tools used to prove the ring isomorphism:

Main tools used to prove the ring isomorphism:
(1) F-P Spectral sequence:

$$
E_{2}^{2 i, j}=S^{i}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes H^{j}(\mathfrak{n}, k) \Rightarrow H^{2 i+j}\left(U_{1}, k\right)
$$

Main tools used to prove the ring isomorphism:
(1) F-P Spectral sequence:

$$
E_{2}^{2 i, j}=S^{i}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes H^{j}(\mathfrak{n}, k) \Rightarrow H^{2 i+j}\left(U_{1}, k\right)
$$

(2) Explicit computation of $\mathrm{H}^{\bullet}(\mathfrak{n}, k)$ as a B-module: If $p>h$, then

$$
\mathrm{H}^{\bullet}(\mathfrak{n}, k)=\bigoplus_{w \in W} w \cdot 0 . \quad \text { (Kostant's Theorem) }
$$

Problem

Can we "ungrade" the ring isomorphism, i.e., is the vector space isomorphism $\mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)$ also a ring isomorphism?

Problem

Can we "ungrade" the ring isomorphism, i.e., is the vector space isomorphism $\mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)$ also a ring isomorphism?
$\mathrm{H}^{\bullet}\left(B_{1}, k\right)=\mathrm{H}^{\bullet}\left(U_{1}, k\right)^{T_{1}} \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)}$ is already a polynomial subalgebra.

Problem

Can we "ungrade" the ring isomorphism, i.e., is the vector space isomorphism $\mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)$ also a ring isomorphism?
$\mathrm{H}^{\bullet}\left(B_{1}, k\right)=\mathrm{H}^{\bullet}\left(U_{1}, k\right)^{T_{1}} \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)}$ is already a polynomial subalgebra.

Theorem (Crane, UVA Ph.D. thesis, 1983)

Suppose $G=S L_{n}$ and $p>h=n+1$. Then, as a ring,

$$
\mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)
$$

Theorem (DNN)

Suppose $p>2(h-1)$. Then, as a ring,

$$
\mathrm{H}^{\bullet}\left(U_{1}, k\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{n}, k)
$$

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

- Either $x_{1} x_{2}=0$ in $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$, or $x_{1} x_{2}$ has T-weight

$$
w_{1} \cdot 0+w_{2} \cdot 0=w_{3} \cdot 0+p \sigma
$$

for some $w_{3} \in W$ and $\sigma \in \mathbb{N} \Phi^{-}$.

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

- Either $x_{1} x_{2}=0$ in $H^{\bullet}\left(U_{1}, k\right)$, or $x_{1} x_{2}$ has T-weight

$$
w_{1} \cdot 0+w_{2} \cdot 0=w_{3} \cdot 0+p \sigma
$$

for some $w_{3} \in W$ and $\sigma \in \mathbb{N} \Phi^{-}$.

- If $\sigma=0$, then $x_{1} x_{2} \in H^{\bullet}\left(U_{1}, k\right)_{w_{3} \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

- Either $x_{1} x_{2}=0$ in $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$, or $x_{1} x_{2}$ has T-weight

$$
w_{1} \cdot 0+w_{2} \cdot 0=w_{3} \cdot 0+p \sigma
$$

for some $w_{3} \in W$ and $\sigma \in \mathbb{N} \Phi^{-}$.

- If $\sigma=0$, then $x_{1} x_{2} \in H^{\bullet}\left(U_{1}, k\right)_{w_{3} \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y^{\prime}, w_{1}^{\prime}, w_{2}^{\prime} \in W$,

$$
\begin{equation*}
y\left(w_{1}^{\prime} \cdot 0\right)+y^{\prime}\left(w_{2}^{\prime} \cdot 0\right)=p \tilde{\sigma} \in X(T)_{+} \cap \mathbb{Z} \Phi . \tag{1}
\end{equation*}
$$

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

- Either $x_{1} x_{2}=0$ in $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$, or $x_{1} x_{2}$ has T-weight

$$
w_{1} \cdot 0+w_{2} \cdot 0=w_{3} \cdot 0+p \sigma
$$

for some $w_{3} \in W$ and $\sigma \in \mathbb{N} \Phi^{-}$.

- If $\sigma=0$, then $x_{1} x_{2} \in H^{\bullet}\left(U_{1}, k\right)_{w_{3} \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y^{\prime}, w_{1}^{\prime}, w_{2}^{\prime} \in W$,

$$
\begin{equation*}
y\left(w_{1}^{\prime} \cdot 0\right)+y^{\prime}\left(w_{2}^{\prime} \cdot 0\right)=p \widetilde{\sigma} \in X(T)_{+} \cap \mathbb{Z} \Phi . \tag{1}
\end{equation*}
$$

- Now $p \widetilde{\sigma} \leq 2 \rho+2 \rho$.

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

- Either $x_{1} x_{2}=0$ in $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$, or $x_{1} x_{2}$ has T-weight

$$
w_{1} \cdot 0+w_{2} \cdot 0=w_{3} \cdot 0+p \sigma
$$

for some $w_{3} \in W$ and $\sigma \in \mathbb{N} \Phi^{-}$.

- If $\sigma=0$, then $x_{1} x_{2} \in H^{\bullet}\left(U_{1}, k\right)_{w_{3} \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y^{\prime}, w_{1}^{\prime}, w_{2}^{\prime} \in W$,

$$
\begin{equation*}
y\left(w_{1}^{\prime} \cdot 0\right)+y^{\prime}\left(w_{2}^{\prime} \cdot 0\right)=p \widetilde{\sigma} \in X(T)_{+} \cap \mathbb{Z} \Phi . \tag{1}
\end{equation*}
$$

- Now $\boldsymbol{p} \widetilde{\sigma} \leq 2 \rho+2 \rho$.
- Then $2 p \leq p\left(\widetilde{\sigma}, \alpha_{0}^{\vee}\right) \leq 4\left(\rho, \alpha_{0}^{\vee}\right)=4(h-1)$.

Proof.

Look at the weight of $x_{1} x_{2}$, for $x_{i} \in \mathrm{H}^{\bullet}\left(U_{1}, k\right)_{w_{i} \cdot 0} \cong \mathrm{H}^{\bullet}(\mathfrak{n}, k)_{w_{i} \cdot 0}$.

- Either $x_{1} x_{2}=0$ in $\mathrm{H}^{\bullet}\left(U_{1}, k\right)$, or $x_{1} x_{2}$ has T-weight

$$
w_{1} \cdot 0+w_{2} \cdot 0=w_{3} \cdot 0+p \sigma
$$

for some $w_{3} \in W$ and $\sigma \in \mathbb{N} \Phi^{-}$.

- If $\sigma=0$, then $x_{1} x_{2} \in H^{\bullet}\left(U_{1}, k\right)_{w_{3} \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y^{\prime}, w_{1}^{\prime}, w_{2}^{\prime} \in W$,

$$
\begin{equation*}
y\left(w_{1}^{\prime} \cdot 0\right)+y^{\prime}\left(w_{2}^{\prime} \cdot 0\right)=p \widetilde{\sigma} \in X(T)_{+} \cap \mathbb{Z} \Phi . \tag{1}
\end{equation*}
$$

- Now $\boldsymbol{p} \widetilde{\sigma} \leq 2 \rho+2 \rho$.
- Then $2 p \leq p\left(\widetilde{\sigma}, \alpha_{0}^{\vee}\right) \leq 4\left(\rho, \alpha_{0}^{\vee}\right)=4(h-1)$.
- So $p>2(h-1)$ implies $\sigma=0$.

Problem

What happens for $h<p<2(h-1)$?

Problem

What happens for $h<p<2(h-1)$?

Example (Type $B_{2}, p=5$)

Let α, β be simple with α long. Note that $h=4<p<6=2(h-1)$.

$$
s_{\beta} s_{\alpha} \cdot 0+s_{\beta} s_{\alpha} \cdot 0=s_{\alpha} s_{\beta} \cdot 0+5(-\beta)
$$

Corresponds to squaring an element in $\mathrm{H}^{2}\left(\mathfrak{n}, \mathbb{F}_{5}\right)$ of weight $s_{\beta} s_{\alpha} \cdot 0$.

Problem

What happens for $h<p<2(h-1)$?

Example (Type $B_{2}, p=5$)

Let α, β be simple with α long. Note that $h=4<p<6=2(h-1)$.

$$
s_{\beta} s_{\alpha} \cdot 0+s_{\beta} s_{\alpha} \cdot 0=s_{\alpha} s_{\beta} \cdot 0+5(-\beta)
$$

Corresponds to squaring an element in $H^{2}\left(\mathfrak{n}, \mathbb{F}_{5}\right)$ of weight $s_{\beta} s_{\alpha} \cdot 0$.
Though all elements of $\mathrm{H}^{\bullet}\left(\mathfrak{n}, \mathbb{F}_{5}\right)$ square to zero, we have verified using MAGMA that this vector does NOT square to zero in $\mathrm{H}^{\bullet}\left(U_{1}, \mathbb{F}_{5}\right)$. So the ring isomorphism need not hold for $h<p<2(h-1)$.

Problem

Can we generalize the cohomology ring calculation to quantum groups (i.e., quantized enveloping algebras) at a root of unity?

Problem

Can we generalize the cohomology ring calculation to quantum groups (i.e., quantized enveloping algebras) at a root of unity?

Can we also generalize to quantum groups another calculation of F-P:

Theorem (Friedlander-Parshall, 1986)

Suppose $\lambda \in C_{\mathbb{Z}}$. Then, as a graded T-module and as a $\mathrm{H}^{\bullet}\left(B_{1}, k\right)$-module,

$$
\mathrm{H}^{\bullet}\left(U_{1}, L(\lambda)\right) \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}(\mathfrak{u}, L(\lambda))
$$

Let q be an indeterminate. Set $\mathfrak{g}=\operatorname{Lie}(G)$.

Definition

The quantized enveloping algebra $\mathcal{U}_{q}(\mathfrak{g})$ is a $\mathbb{C}(q)$-algebra defined by generators and relations similar to those defining the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$.

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum			
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$		Classical
:---				

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $\mathrm{A}=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of \mathfrak{g}
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z}-span of PBW basis

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $\mathrm{A}=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of \mathfrak{g}
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z}-span of PBW basis
$\mathcal{U}_{\zeta}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $\mathrm{A}=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of \mathfrak{g}
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z}-span of PBW basis
$\mathcal{U}_{\zeta}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$u_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of \mathfrak{g}
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z}-span of PBW basis
$\mathcal{U}_{\zeta}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$\boldsymbol{u}_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg
$L^{\zeta}(\lambda)$	simple $u_{\zeta}(\mathfrak{g})$-module	$L(\lambda)$	simple $u(\mathfrak{g})$-module

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of \mathfrak{g}
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z}-span of PBW basis
$\mathcal{U}_{\zeta}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$u_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg
$L^{\zeta}(\lambda)$	simple $u_{\zeta}(\mathfrak{g})$-module	$L(\lambda)$	simple $u(\mathfrak{g})$-module

- If $p>h, u(\mathfrak{n}) \cong \mathcal{U}(\mathfrak{n}) / / Z$, where Z is generated by $\left\{E_{\alpha}^{p}: \alpha \in \Phi^{+}\right\}$.

Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A=\mathbb{Z}\left[q, q^{-1}\right]$.

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of \mathfrak{g}
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z}-span of PBW basis
$\mathcal{U}_{\zeta}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$u_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg
$L^{\zeta}(\lambda)$	simple $u_{\zeta}(\mathfrak{g})$-module	$L(\lambda)$	simple $u(\mathfrak{g})$-module

- If $p>h, u(\mathfrak{n}) \cong \mathcal{U}(\mathfrak{n}) / / Z$, where Z is generated by $\left\{E_{\alpha}^{p}: \alpha \in \Phi^{+}\right\}$.
- $u_{\zeta}(\mathfrak{n}) \cong \mathcal{U}_{\zeta}(\mathfrak{n}) / / Z$, where Z is generated by $\left\{E_{\alpha}^{\ell}: \alpha \in \Phi^{+}\right\}$.
(1) No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

$$
E_{2}^{i, j}\left(L^{\zeta}(\lambda)\right)=\mathrm{H}^{i}\left(u_{\zeta}(\mathfrak{n}), \mathrm{H}^{j}\left(Z, L^{\zeta}(\lambda)\right)\right) \Rightarrow \mathrm{H}^{i+j}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)
$$

(1) No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

$$
E_{2}^{i, j}\left(L^{\zeta}(\lambda)\right)=H^{i}\left(u_{\zeta}(\mathfrak{n}), H^{j}\left(Z, L^{\zeta}(\lambda)\right)\right) \Rightarrow H^{i+j}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)
$$

(2) Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose $\ell>h$ and $\lambda \in C_{\mathbb{Z}}$. Then $\mathrm{H}^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right) \cong \bigoplus_{w \in W} w \cdot \lambda$.
(1) No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

$$
E_{2}^{i, j}\left(L^{\zeta}(\lambda)\right)=H^{i}\left(u_{\zeta}(\mathfrak{n}), H^{j}\left(Z, L^{\zeta}(\lambda)\right)\right) \Rightarrow H^{i+j}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)
$$

(2) Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose $\ell>h$ and $\lambda \in C_{\mathbb{Z}}$. Then $H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right) \cong \bigoplus_{w \in W} w \cdot \lambda$.
(3) $\mathcal{U}_{\zeta}(\mathfrak{n})$ and $u_{\zeta}(\mathfrak{n})$ are not Hopf algebras, so we don't automatically have nice product structures on the LHS spectral sequence.
(1) No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

$$
E_{2}^{i, j}\left(L^{\zeta}(\lambda)\right)=H^{i}\left(u_{\zeta}(\mathfrak{n}), H^{j}\left(Z, L^{\zeta}(\lambda)\right)\right) \Rightarrow H^{i+j}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)
$$

(2) Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose $\ell>h$ and $\lambda \in C_{\mathbb{Z}}$. Then $H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right) \cong \bigoplus_{w \in W} w \cdot \lambda$.
(3) $\mathcal{U}_{\zeta}(\mathfrak{n})$ and $u_{\zeta}(\mathfrak{n})$ are not Hopf algebras, so we don't automatically have nice product structures on the LHS spectral sequence.
(9. The Borel subalgebras $u_{\zeta}(\mathfrak{b}) \cong u_{\zeta}^{0} \otimes u_{\zeta}(\mathfrak{n})$ and $\mathcal{U}_{\zeta}(\mathfrak{b}) \cong u_{\zeta}^{0} \otimes \mathcal{U}_{\zeta}(\mathfrak{n})$ are Hopf algebras, as is $Z \subset \mathcal{U}_{\zeta}(\mathfrak{b})$.

Work one u_{ζ}^{0}-weight space at a time.

$$
\begin{aligned}
& \bigoplus_{\mu \in X} H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)_{w \cdot \lambda+\ell \mu} \cong H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes-w \cdot \lambda\right) \\
& \bigoplus_{\bigoplus} H^{\bullet}\left(u_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)_{w \cdot \lambda+\ell \mu} \cong H^{\bullet}\left(u_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes-w \cdot \lambda\right)
\end{aligned}
$$

Work one u_{ζ}^{0}-weight space at a time.

$$
\begin{aligned}
& \bigoplus_{\mu \in X} H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)_{w \cdot \lambda+\ell \mu} \cong H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes-w \cdot \lambda\right) \\
& \bigoplus_{u \in X} H^{\bullet}\left(u_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)_{w \cdot \lambda+\ell \mu} \cong H^{\bullet}\left(u_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes-w \cdot \lambda\right)
\end{aligned}
$$

LHS Spectral sequence for the Borel subalgebras:

$$
E_{2}^{i, j}=\mathrm{H}^{i}\left(u_{\zeta}(\mathfrak{b}), \mathrm{H}^{j}\left(Z, L^{\zeta}(\lambda) \otimes-w \cdot \lambda\right) \Rightarrow \mathrm{H}^{i+j}\left(\mathcal{U}_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes-w \cdot \lambda\right)\right.
$$

This LHS spectral sequence is compatible with cup products.

Theorem (DNN)

Suppose ℓ is odd, coprime to 3 if Φ has type G_{2}, and $\ell>2(h-1)$. Then there exists a ring isomorphism

$$
\begin{aligned}
H^{\bullet}\left(u_{\zeta}(\mathfrak{n}), \mathbb{C}\right) & \cong H^{\bullet}\left(u_{\zeta}(\mathfrak{b}), \mathbb{C}\right) \otimes H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), \mathbb{C}\right) \\
& \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), \mathbb{C}\right)
\end{aligned}
$$

Theorem (DNN)

Suppose ℓ is odd, coprime to 3 if Φ has type G_{2}, and $\ell>2(h-1)$. Then there exists a ring isomorphism

$$
\begin{aligned}
H^{\bullet}\left(u_{\zeta}(\mathfrak{n}), \mathbb{C}\right) & \cong H^{\bullet}\left(u_{\zeta}(\mathfrak{b}), \mathbb{C}\right) \otimes H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), \mathbb{C}\right) \\
& \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), \mathbb{C}\right)
\end{aligned}
$$

Theorem (DNN)

Suppose ℓ is odd, coprime to 3 if Φ has type G_{2}. Suppose $\lambda \in C_{\mathbb{Z}}$. Then

$$
\begin{aligned}
H^{\bullet}\left(u_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right) & \cong H^{\bullet}\left(u_{\zeta}(\mathfrak{b}), \mathbb{C}\right) \otimes H^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right) \\
& \cong S^{\bullet}\left(\mathfrak{n}^{*}\right)^{(1)} \otimes \mathrm{H}^{\bullet}\left(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)\right)
\end{aligned}
$$

as a weight module and as a module for $\mathrm{H}^{\bullet}\left(u_{\zeta}(\mathfrak{b}), \mathbb{C}\right)$.

