Cohomology rings of infinitesimal unipotent algebraic and quantum groups

Christopher Drupieski

Department of Mathematics University of Georgia

April 11, 2010

Joint work with Daniel Nakano and Nham Ngo.

MAGMA support provided by Jon Carlson.

Standard notation:

- k an algebraically closed field of characteristic p,
- G a simple, simply–connected algebraic group (e.g., $G = SL_n(\overline{\mathbb{F}}_p)$)
- $T \subset G$ a maximal torus,
- Φ the root system of T in G,
- h the Coxeter number of Φ,
- $B \subset G$ a Borel subgroup corresponding to Φ^+ ,
- $U \subset B$ the unipotent radical of B,
- $U_1 \subset B_1$ the first Frobenius kernels of U and B.
- $\mathfrak{n} = \text{Lie}(U)$, the nilradical of $\mathfrak{b} = \text{Lie}(B)$.

What is the ring structure of the cohomology ring $H^{\bullet}(U_1, k)$?

What is the ring structure of the cohomology ring $H^{\bullet}(U_1, k)$?

Equivalently: What is the ring structure of $H^{\bullet}(u(\mathfrak{n}), k)$? $u(\mathfrak{n}) = \text{restricted enveloping algebra of } \mathfrak{n}$.

Theorem (Friedlander-Parshall, 1986)

Suppose p > h. Then there exists a filtration on $H^{\bullet}(U_1, k)$ such that

$$\operatorname{gr} \operatorname{H}^{\bullet}(U_1,k) \cong S^{\bullet}(\mathfrak{n}^*)^{(1)} \otimes \operatorname{H}^{\bullet}(\mathfrak{n},k).$$

 $H^{\bullet}(\mathfrak{n}, k)$ = ordinary Lie algebra cohomology.

 $S^{\bullet}(\mathfrak{n}^*)^{(1)}$ = polynomial ring generated in degree two.

Filtration is by polynomials of higher degree.

Theorem (Friedlander-Parshall, 1986)

Suppose p > h. Then there exists a filtration on $H^{\bullet}(U_1, k)$ such that

$$\operatorname{gr} \operatorname{H}^{\bullet}(U_1,k) \cong S^{\bullet}(\mathfrak{n}^*)^{(1)} \otimes \operatorname{H}^{\bullet}(\mathfrak{n},k).$$

 $H^{\bullet}(\mathfrak{n}, k)$ = ordinary Lie algebra cohomology.

 $S^{\bullet}(\mathfrak{n}^*)^{(1)}=$ polynomial ring generated in degree two.

Filtration is by polynomials of higher degree.

In $H^{\bullet}(U_1, k)$:

 $(a \otimes b)(c \otimes d) = (ac \otimes bd) + \text{terms with higher degree polynomial part.}$

Main tools used to prove the ring isomorphism:

Main tools used to prove the ring isomorphism:

F-P Spectral sequence:

$$E_2^{2i,j} = S^i(\mathfrak{n}^*)^{(1)} \otimes H^j(\mathfrak{n},k) \Rightarrow H^{2i+j}(U_1,k).$$

Main tools used to prove the ring isomorphism:

F-P Spectral sequence:

$$E_2^{2i,j} = S^i(\mathfrak{n}^*)^{(1)} \otimes H^j(\mathfrak{n},k) \Rightarrow H^{2i+j}(U_1,k).$$

Explicit computation of $H^{\bullet}(\mathfrak{n}, k)$ as a *B*-module: If p > h, then

$$H^{\bullet}(\mathfrak{n}, k) = \bigoplus_{w \in W} w \cdot 0.$$
 (Kostant's Theorem)

Can we "ungrade" the ring isomorphism, i.e., is the vector space isomorphism $H^{\bullet}(U_1, k) \cong S^{\bullet}(\mathfrak{n}^*)^{(1)} \otimes H^{\bullet}(\mathfrak{n}, k)$ also a ring isomorphism?

Can we "ungrade" the ring isomorphism, i.e., is the vector space isomorphism $H^{\bullet}(U_1, k) \cong S^{\bullet}(\mathfrak{n}^*)^{(1)} \otimes H^{\bullet}(\mathfrak{n}, k)$ also a ring isomorphism?

$$\mathsf{H}^ullet(B_1,k)=\mathsf{H}^ullet(U_1,k)^{\mathcal{T}_1}\cong S^ullet(\mathfrak{n}^*)^{(1)}$$
 is already a polynomial subalgebra.

Can we "ungrade" the ring isomorphism, i.e., is the vector space isomorphism $H^{\bullet}(U_1, k) \cong S^{\bullet}(\mathfrak{n}^*)^{(1)} \otimes H^{\bullet}(\mathfrak{n}, k)$ also a ring isomorphism?

 $\mathsf{H}^ullet(B_1,k)=\mathsf{H}^ullet(U_1,k)^{\mathcal{T}_1}\cong S^ullet(\mathfrak{n}^*)^{(1)}$ is already a polynomial subalgebra.

Theorem (Crane, UVA Ph.D. thesis, 1983)

Suppose $G = SL_n$ and p > h = n + 1. Then, as a ring,

$$\mathsf{H}^{ullet}(U_1,k)\cong \mathcal{S}^{ullet}(\mathfrak{n}^*)^{(1)}\otimes \mathsf{H}^{ullet}(\mathfrak{n},k).$$

Theorem (DNN)

Suppose p > 2(h-1). Then, as a ring,

$$\mathsf{H}^{ullet}(U_1,k)\cong \mathcal{S}^{ullet}(\mathfrak{n}^*)^{(1)}\otimes \mathsf{H}^{ullet}(\mathfrak{n},k).$$

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

• Either $x_1x_2 = 0$ in $H^{\bullet}(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

• Either $x_1x_2 = 0$ in $H^{\bullet}(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

• If $\sigma = 0$, then $x_1x_2 \in H^{\bullet}(U_1, k)_{w_3 \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

• Either $x_1x_2 = 0$ in $H^{\bullet}(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1x_2 \in H^{\bullet}(U_1, k)_{w_3 \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y', w_1', w_2' \in W$,

$$y(w_1' \cdot 0) + y'(w_2' \cdot 0) = p\widetilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \tag{1}$$

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

• Either $x_1x_2 = 0$ in $H^{\bullet}(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1x_2 \in H^{\bullet}(U_1, k)_{w_3 \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$,

$$y(w_1' \cdot 0) + y'(w_2' \cdot 0) = p\widetilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \tag{1}$$

• Now $p\widetilde{\sigma} < 2\rho + 2\rho$.

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

• Either $x_1x_2 = 0$ in $H^{\bullet}(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1x_2 \in H^{\bullet}(U_1, k)_{w_3 \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$,

$$y(w_1' \cdot 0) + y'(w_2' \cdot 0) = p\widetilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \tag{1}$$

- Now $p\widetilde{\sigma} \leq 2\rho + 2\rho$.
- Then $2p \leq p(\widetilde{\sigma}, \alpha_0^{\vee}) \leq 4(\rho, \alpha_0^{\vee}) = 4(h-1)$.

Look at the weight of x_1x_2 , for $x_i \in H^{\bullet}(U_1, k)_{w_i \cdot 0} \cong H^{\bullet}(\mathfrak{n}, k)_{w_i \cdot 0}$.

• Either $x_1x_2 = 0$ in $H^{\bullet}(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1x_2 \in H^{\bullet}(U_1, k)_{w_3 \cdot 0} \subset H^{\bullet}(\mathfrak{n}, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$,

$$y(w_1' \cdot 0) + y'(w_2' \cdot 0) = p\widetilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \tag{1}$$

- Now $p\widetilde{\sigma} \leq 2\rho + 2\rho$.
- Then $2p \leq p(\widetilde{\sigma}, \alpha_0^{\vee}) \leq 4(\rho, \alpha_0^{\vee}) = 4(h-1)$.
- So p > 2(h-1) implies $\sigma = 0$.

What happens for h ?

What happens for h ?

Example (Type B_2 , p=5)

Let α, β be simple with α long. Note that h = 4 .

$$s_{\beta}s_{\alpha}\cdot 0 + s_{\beta}s_{\alpha}\cdot 0 = s_{\alpha}s_{\beta}\cdot 0 + 5(-\beta)$$

Corresponds to squaring an element in $H^2(\mathfrak{n}, \mathbb{F}_5)$ of weight $s_{\beta}s_{\alpha} \cdot 0$.

What happens for h ?

Example (Type B_2 , p=5)

Let α, β be simple with α long. Note that h = 4 .

$$s_{\beta}s_{\alpha}\cdot 0 + s_{\beta}s_{\alpha}\cdot 0 = s_{\alpha}s_{\beta}\cdot 0 + 5(-\beta)$$

Corresponds to squaring an element in $H^2(\mathfrak{n}, \mathbb{F}_5)$ of weight $s_{\beta}s_{\alpha} \cdot 0$.

Though all elements of $H^{\bullet}(\mathfrak{n}, \mathbb{F}_5)$ square to zero, we have verified using MAGMA that this vector does NOT square to zero in $H^{\bullet}(U_1, \mathbb{F}_5)$. So the ring isomorphism need not hold for h .

Can we generalize the cohomology ring calculation to quantum groups (i.e., quantized enveloping algebras) at a root of unity?

Can we generalize the cohomology ring calculation to quantum groups (i.e., quantized enveloping algebras) at a root of unity?

Can we also generalize to quantum groups another calculation of F-P:

Theorem (Friedlander-Parshall, 1986)

Suppose $\lambda \in C_{\mathbb{Z}}$. Then, as a graded T-module and as a $H^{\bullet}(B_1, k)$ -module,

$$\mathsf{H}^{\bullet}(U_1, L(\lambda)) \cong S^{\bullet}(\mathfrak{n}^*)^{(1)} \otimes \mathsf{H}^{\bullet}(\mathfrak{u}, L(\lambda)).$$

Let q be an indeterminate. Set $\mathfrak{g} = Lie(G)$.

Definition

The quantized enveloping algebra $\mathcal{U}_q(\mathfrak{g})$ is a $\mathbb{C}(q)$ -algebra defined by generators and relations similar to those defining the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$.

	Quantum		Classical	
$\mathcal{U}_q(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of $\mathfrak g$	

	Quantum		Classical
$\mathcal{U}_q(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of g
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z} -span of PBW basis

	Quantum		Classical
$\mathcal{U}_q(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of g
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z} -span of PBW basis
$\mathcal{U}_{\mathcal{C}}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p

	Quantum		Classical
$\mathcal{U}_{q}(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of g
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z} -span of PBW basis
$\mathcal{U}_{\mathcal{C}}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$u_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg

	Quantum		Classical
$\mathcal{U}_q(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of g
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z} -span of PBW basis
$\mathcal{U}_{\zeta}(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$u_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg
$L^{\zeta}(\lambda)$	simple $u_{\zeta}(\mathfrak{g})$ -module	$L(\lambda)$	simple $u(\mathfrak{g})$ -module

	Quantum		Classical
$\mathcal{U}_q(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of g
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z} -span of PBW basis
$\mathcal{U}_\zeta(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$\mathit{u}_\zeta(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg
$L^{\zeta}(\lambda)$	simple $u_{\zeta}(\mathfrak{g})$ -module	$L(\lambda)$	simple $u(\mathfrak{g})$ -module

• If p > h, $u(\mathfrak{n}) \cong \mathcal{U}(\mathfrak{n})//Z$, where Z is generated by $\{E_{\alpha}^p : \alpha \in \Phi^+\}$.

	Quantum		Classical
$\mathcal{U}_q(\mathfrak{g})$	Quantized env alg	$\mathcal{U}(\mathfrak{g})$	UEA of g
$\mathcal{U}_{\mathcal{A}}(\mathfrak{g})$	DCK integral form	$\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$	\mathbb{Z} -span of PBW basis
$\mathcal{U}_\zeta(\mathfrak{g})$	DCK quantum alg at $\sqrt[\ell]{1}$	$\mathcal{U}(\mathfrak{g})$	UEA in characteristic p
$u_{\zeta}(\mathfrak{g})$	small quantum group	$u(\mathfrak{g})$	restricted enveloping alg
$L^{\zeta}(\lambda)$	simple $u_{\zeta}(\mathfrak{g})$ -module	$L(\lambda)$	simple $u(\mathfrak{g})$ -module

- If p > h, $u(\mathfrak{n}) \cong \mathcal{U}(\mathfrak{n})//Z$, where Z is generated by $\{E_{\alpha}^p : \alpha \in \Phi^+\}$.
- $u_{\zeta}(\mathfrak{n}) \cong \mathcal{U}_{\zeta}(\mathfrak{n})//Z$, where Z is generated by $\{E_{\alpha}^{\ell} : \alpha \in \Phi^{+}\}$.

Cohomology rings

$$E_2^{i,j}(L^{\zeta}(\lambda)) = \mathsf{H}^i(u_{\zeta}(\mathfrak{n}),\mathsf{H}^j(Z,L^{\zeta}(\lambda))) \Rightarrow \mathsf{H}^{i+j}(\mathcal{U}_{\zeta}(\mathfrak{n}),L^{\zeta}(\lambda))$$

$$E_2^{i,j}(L^{\zeta}(\lambda)) = \mathsf{H}^i(u_{\zeta}(\mathfrak{n}), \mathsf{H}^j(Z, L^{\zeta}(\lambda))) \Rightarrow \mathsf{H}^{i+j}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))$$

4 Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose $\ell > h$ and $\lambda \in C_{\mathbb{Z}}$. Then $H^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)) \cong \bigoplus_{w \in W} w \cdot \lambda$.

$$E_2^{i,j}(L^{\zeta}(\lambda)) = \mathsf{H}^i(u_{\zeta}(\mathfrak{n}), \mathsf{H}^j(Z, L^{\zeta}(\lambda))) \Rightarrow \mathsf{H}^{i+j}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))$$

Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose
$$\ell > h$$
 and $\lambda \in C_{\mathbb{Z}}$. Then $H^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)) \cong \bigoplus_{w \in W} w \cdot \lambda$.

3 $\mathcal{U}_{\zeta}(\mathfrak{n})$ and $u_{\zeta}(\mathfrak{n})$ are not Hopf algebras, so we don't automatically have nice product structures on the LHS spectral sequence.

$$E_2^{i,j}(L^{\zeta}(\lambda)) = \mathsf{H}^i(u_{\zeta}(\mathfrak{n}), \mathsf{H}^j(Z, L^{\zeta}(\lambda))) \Rightarrow \mathsf{H}^{i+j}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))$$

Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose
$$\ell > h$$
 and $\lambda \in C_{\mathbb{Z}}$. Then $H^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)) \cong \bigoplus_{w \in W} w \cdot \lambda$.

- **3** $\mathcal{U}_{\zeta}(\mathfrak{n})$ and $u_{\zeta}(\mathfrak{n})$ are not Hopf algebras, so we don't automatically have nice product structures on the LHS spectral sequence.
- **1** The Borel subalgebras $u_{\zeta}(\mathfrak{b}) \cong u_{\zeta}^{0} \otimes u_{\zeta}(\mathfrak{n})$ and $\mathcal{U}_{\zeta}(\mathfrak{b}) \cong u_{\zeta}^{0} \otimes \mathcal{U}_{\zeta}(\mathfrak{n})$ are Hopf algebras, as is $Z \subset \mathcal{U}_{\zeta}(\mathfrak{b})$.

Work one u_{ζ}^0 -weight space at a time.

$$\bigoplus_{\mu \in X} \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))_{w \cdot \lambda + \ell \mu} \cong \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes -w \cdot \lambda)$$

$$\bigoplus_{\mu \in X} \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))_{w \cdot \lambda + \ell \mu} \cong \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes -w \cdot \lambda)$$

Work one u_{ζ}^0 -weight space at a time.

$$\bigoplus_{\mu \in X} \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))_{w \cdot \lambda + \ell \mu} \cong \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes -w \cdot \lambda)$$

$$\bigoplus_{\mu \in X} \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))_{w \cdot \lambda + \ell \mu} \cong \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{b}), L^{\zeta}(\lambda) \otimes -w \cdot \lambda)$$

LHS Spectral sequence for the Borel subalgebras:

$$E_2^{i,j} = \mathsf{H}^i(u_\zeta(\mathfrak{b}),\mathsf{H}^j(Z,L^\zeta(\lambda)\otimes -w\cdot\lambda) \Rightarrow \mathsf{H}^{i+j}(\mathcal{U}_\zeta(\mathfrak{b}),L^\zeta(\lambda)\otimes -w\cdot\lambda).$$

This LHS spectral sequence **is** compatible with cup products.

Theorem (DNN)

Suppose ℓ is odd, coprime to 3 if Φ has type G_2 , and $\ell > 2(h-1)$. Then there exists a ring isomorphism

$$\mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{n}),\mathbb{C}) \cong \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{b}),\mathbb{C}) \otimes \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}),\mathbb{C})$$
$$\cong S^{\bullet}(\mathfrak{n}^{*})^{(1)} \otimes \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}),\mathbb{C}).$$

Theorem (DNN)

Suppose ℓ is odd, coprime to 3 if Φ has type G_2 , and $\ell > 2(h-1)$. Then there exists a ring isomorphism

$$\mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{n}),\mathbb{C}) \cong \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{b}),\mathbb{C}) \otimes \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}),\mathbb{C})$$
$$\cong S^{\bullet}(\mathfrak{n}^{*})^{(1)} \otimes \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}),\mathbb{C}).$$

Theorem (DNN)

Suppose ℓ is odd, coprime to 3 if Φ has type G_2 . Suppose $\lambda \in C_{\mathbb{Z}}$. Then

$$\mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda)) \cong \mathsf{H}^{\bullet}(u_{\zeta}(\mathfrak{b}), \mathbb{C}) \otimes \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))$$
$$\cong S^{\bullet}(\mathfrak{n}^{*})^{(1)} \otimes \mathsf{H}^{\bullet}(\mathcal{U}_{\zeta}(\mathfrak{n}), L^{\zeta}(\lambda))$$

as a weight module and as a module for $H^{\bullet}(u_{\zeta}(\mathfrak{b}), \mathbb{C})$.