
Calculus, Group Theory, and the Infinitude of Primes

Theorem (Euclid, ca. 300 B.C.E.). There are infinitely many positive prime numbers.

First proof of the infinitude of primes. Let p1, p2, . . . , pk be the first k prime numbers. Consider
the new integer n = p1p2 . . . pk + 1, which is obviously greater than any of p1, p2, . . . , pk. It is either
prime or it is composite. If it is prime, then we have found a prime larger than any of p1, p2, . . . , pk.
If it is composite, then it is divisible by a prime p. But p cannot be any of p1, p2, . . . , pk, because
the remainder of n upon division by any of p1, . . . , pk is 1, not 0. In this case, the prime divisor
p of n must be a prime different from any of p1, p2, . . . , pk. In either case, we have found a prime
that is different from all of p1, . . . , pk. Thus, the collection of primes must be infinite.

Remark. The first value of k for which the integer n above is not prime is k = 6. One can check
that 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

Our second proof will use some ideas from Calculus, namely, limits and infinite series.

Second proof of the infinitude of primes. Given a positive real number x, define π(x) to be the
number of primes that are less than or equal to x. We want to show that limx→∞ π(x) =∞. Recall
that the natural logarithm function ln(x) is defined by the equation ln(x) =

∫ x
1

1
t dt. We are going

to use a left endpoint rectangular approximation for the integral
∫ x
1

1
t dt to come up with a lower

bound estimate for the size of π(x) + 1.
If n ≤ x ≤ n+ 1, then

ln(x) ≤ 1 +
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The prime divisors of 1, 2, 3, . . . , n are all less than or equal to x. Thus, we can say ln(x) ≤
∑ 1

m ,
where we now sum over all m ∈ N such that the prime divisors of m are ≤ x. We want to find a
new way to express this (much larger) new sum.

Example. Suppose 5 ≤ x ≤ 6. Then we are looking at the estimate ln(x) ≤ 1 + 1
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5 ,
and k = π(x) = 3. The new sum we consider is
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which is equal to(
1 +

1

2
+

1

22
+

1

23
+

1

24
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+

1

34
+ · · ·

)(
1 +

1

5
+

1

52
+

1

53
+

1

54
+ · · ·

)
.

Back to the proof. Set k = π(x). So there are k distinct prime numbers ≤ x. (In the above
example, k = 3.) Write them as p1, p2, . . . , pk. Then

ln(x) ≤
∑ 1

m
=

k∏
i=1

( ∞∑
r=0

1

pri

)
.

Applying the summation formula for geometric series,

ln(x) ≤
k∏

i=1

(
1

1− 1
pi

)
=
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(
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)
.
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Now, it’s easy to see that pi ≥ i+ 1. Then pi − 1 ≥ i, and

pi
pi − 1

= 1 +
1

pi − 1
≤ 1 +

1

i
=
i+ 1

i
.

Then

ln(x) ≤
k∏

i=1

i+ 1

i
=

2

1
· 3

2
· 4

3
· · · k + 1

k
= k + 1.

But k = π(x). So ln(x) ≤ π(x) + 1. We know that limx→∞ ln(x) =∞. So then also

lim
x→∞

π(x) =∞.

Perhaps the appearance of the logarithm function in the above proof seems like a coincidence
or a convenience, but in fact the logarithm function is intimately connected to prime numbers.
Indeed, the famous Prime Number Theorem states that π(x) is asymptotic to x/ ln(x), that is

lim
x→∞

π(x)

x/ ln(x)
= 1,

so in some sense the function x/ ln(x) provides an approximation for the number of prime numbers
less than or equal to x. Here are a few values of π(x) and x/ ln(x) for “small” values of x.

x π(x) x/ ln(x) π(x)/(x/ ln(x))

103 168 145 1.159 . . .
106 78498 72382 1.084 . . .
109 50847534 48254942 1.053 . . .

Now we look at a group theoretic proof of the infinitude of prime numbers. Roughly speaking,
a group is a collection of symmetries. More accurately, every (closed) collection of symmetries of
a geometric object forms a group.

Example. Look at the rigid motion symmetries of the square.

1. Describe some of the rigid motion symmetries of the square.
2. How many distinct rigid motion symmetries are there?
3. What are the orders of the various symmetries? Are they divisors of the answer to #2?

Here are some of the important properties of the rigid motion symmetries of the square:

1. There is a symmetry that does nothing (the identity e).
2. If you perform one symmetry, and then another, you get another symmetry.
3. For every symmetry, there is another that undoes it.

The above observations are a very rough approximation for the axioms defining a group. We
can think of composing symmetries as a kind of multiplication. If r stands for the symmetry that
rotates the square by 90◦, then r · r · r · r = r4 = e. If s represents a reflection across a diagonal,
then s · s = s2 = e. What is s · r · s?

Notice that we can deform the shape of the square (say by adding small spikes in the center
of each side) without affecting the group of symmetries. Thus, there are many different ways in
which this group of symmetries can be realized. Group theorists study the structure of collection of
symmetries, without caring about the particular way in which those symmetries are realized. The
group theorist only cares about the abstract properties of the group.
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Example (The integers modulo p). Let p be a prime. Given an integer n, let [n] represent the
remainder when n is divided by p. (For those of you who have taken Math 3200, [n] really stands for
the equivalence class of n under the relation of congruence modulo p.) Set Z∗p = {[1], [2], . . . , [p− 1]},
the set of nonzero remainders for division by p. Define a multiplication on Z∗p by [a] · [b] = [ab].
Then this multiplication makes Z∗p a group. In particular, ([a] · [b]) · [c] = [a] · ([b] · [c]) = [abc].

Example (The case p = 5). Work out the multiplication table for the case p = 5.

* [1] [2] [3] [4]

[1] [1] [2] [3] [4]
[2] [2] [4] [1] [3]
[3] [3] [1] [4] [1]
[4] [4] [3] [2] [1]

The reason why the product of two remainders is another remainder is that p is a prime. If a
and b are integers and if p divides ab, then p must divide one of a or b. In our example, the element
[2] is like the reflection r of the square, in that [2] · [2] · [2] · [2] = [2]4 = [16] = [1].

Theorem (Lagrange’s Theorem). Let G be a finite group. Then the order of each element in G
divides |G|.

Third proof of the infinitude of primes. Suppose to the contrary that there are only finitely many
prime numbers. Let p be the largest prime, and consider the Mersenne number 2p − 1. Let q be a
prime factor of 2p − 1. Then [2p] = [1] in Z∗q . But [2p] = [2]p, so [2]p = [1], i.e., [2] has order p in
Z×q . Then p divides the order of the group Z∗q , which is q − 1. So p | (q − 1), and hence p < q, a
contradiction, because p was assumed to be the largest prime.
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