

- What is symmetry?
- What is a symmetry?

▶ How do you *multiply* two symmetries?

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]						
[1]						
[2]						
[3]						
[4]						
[5]						

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	$\left \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right $	$\left \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right $	$\left \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right $	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
$\begin{array}{c c} \hline \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
$ \begin{array}{c c} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} $					
$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$					
$\begin{array}{c c} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$					
$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \mid \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$					
$\begin{array}{c c} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$					

A group is a collection of things that can be "multiplied" together. The "multiplication" must satisfy the following properties:

► For each three things a, b, and c in the collection,

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

- ▶ There is a thing e in the collection so that, for any other thing a in the collection, $e \cdot a = a$ and $a \cdot e = a$.
- For each thing a in the collection, there is another thing a' in the collection so that $a \cdot a' = e$ and $a' \cdot a = e$.

The greatest mathematical achievement of the 20th century

great (grāt), adj. 1. of an extent, amount, or intensity considerably above the normal or average; very large and imposing.

First-generation proof of CFSG:

- ▶ 10,000–15,000 journal pages
 - ▶ spread across some 500 separate articles, written by more than 100 mathematicians from around the world
- ▶ most work done between 1950 and early 1980s
- Second-generation proof of CFSG (currently underway):
- ▶ shorter, more direct proof of 3,000–4,000 pages
 - ▶ volume 1 published in 1994
 - volume 6 published in 2005 (most recent volume)
 - ▶ 12 volumes anticipated

 \blacktriangleright Is \mathbb{Z}_6 made from a group of order 2 and a group of order 3?

The Periodic Table Of Finite Simple Groups

The Monster, a.k.a., the Friendly Giant

which is approximately $8 \cdot 10^{53}$.

The largest of all the sporadic finite simple groups, it has order $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ or 808017424794512875886459904961710757005754368000000000