Second cohomology for finite groups of Lie type

Christopher M. Drupieski

University of Georgia \Rightarrow DePaul University

August 4, 2012

Christopher M. Drupieski Second cohomology for finite groups of Lie type

References:

University of Georgia VIGRE Algebra Group, *Second cohomology for finite groups of Lie type*, J. Algebra **360** (2012), 21–52.

_____, First cohomology for finite groups of Lie type: Simple modules with small dominant weights, to appear in Trans. Amer. Math. Soc.

Ground rules:

- k algebraically closed field of characteristic p > 0
- G simple, simply-connected algebraic group scheme over k
- T maximal torus of G
- B Borel subgroup of G containing T
- *U* unipotent radical of *B*
- $F: G \rightarrow G$ standard Frobenius morphism on G
- $G(\mathbb{F}_q) = G^{F^r}$ finite subgroup of \mathbb{F}_q -rational points in G, $q = p^r$
- $G_r = \ker(F^r)$ scheme-theoretic *r*-th Frobenius kernel of *G*

Example: The Special Linear Group

- $G = SL_n(k)$
- T diagonal matrices in G
- B lower triangular matrices in G
- U lower triangular unipotent matrices in G
- $F:(a_{ij})\mapsto (a_{ij}^p)$
- $G(\mathbb{F}_q) = SL_n(\mathbb{F}_q)$
- For each commutative k-algebra A,

$$(SL_n)_r(A) = \left\{ (a_{ij}) \in SL_n(A) : (a_{ij}^{p^r}) = \text{ the identity matrix} \right\}.$$

 $(SL_n)_r(A)$ is a nontrivial group if and only if A contains nilpotents.

The Goal

Find $H^1(G(\mathbb{F}_q), V)$ and $H^2(G(\mathbb{F}_q), V)$ for V an irreducible $G(\mathbb{F}_q)$ -module.

Subgoals (i.e., what people have actually managed to do):

- Compute for V in various classes of irreducible $G(\mathbb{F}_q)$ -modules
- Determine sufficient conditions for the cohomology groups to vanish
- Compute under restrictions on p and q (specific small values, or $\gg 0$)

Refined Goal

Relate $H^1(G(\mathbb{F}_q), V)$ and $H^2(G(\mathbb{F}_q), V)$ to rational cohomology for G.

Refined Goal

Relate $H^1(G(\mathbb{F}_q), V)$ and $H^2(G(\mathbb{F}_q), V)$ to rational cohomology for G.

Why this is reasonable and desirable:

- The irreducible $kG(\mathbb{F}_q)$ -modules all lift to rational *G*-modules.
- More machinery available for dealing with rational G-cohomology.
- Rational *G*-modules carry more information: Every rational *G*-module decomposes into simultaneous eigenspaces (weight spaces) for *T*.

Example: Adjoint representation of $SL_3(\mathbb{F}_4)$ on \mathfrak{sl}_3

Adjoint representation \mathfrak{sl}_3 - traceless 3×3 matrices with coefficients in k. Basis of eigenvectors for the conjugation action of T:

$$\{E_{ij}, E_{ii} - E_{i+1,i+1} : 1 \le i, j \le n, i \ne j\}$$

If n = 3, then $T(\mathbb{F}_4)$ can't distinguish the eigenvalues of E_{12} and E_{23} . In fact, all root spaces look the same to $T(\mathbb{F}_4)$ up to twisting by $Gal(\mathbb{F}_4)$.

Important and popular facts:

$$\begin{aligned} \mathsf{H}^{i}(G(\mathbb{F}_{q}), V) & \hookrightarrow & \mathsf{H}^{i}(B(\mathbb{F}_{q}), V) = \mathsf{H}^{i}(U(\mathbb{F}_{q}), V)^{T(\mathbb{F}_{q})} \\ \mathsf{H}^{i}(G, V) & \cong & \mathsf{H}^{i}(B, V) = \mathsf{H}^{i}(U, V)^{T} \\ & \mathsf{H}^{i}(B_{r}, V) = \mathsf{H}^{i}(U_{r}, V)^{T_{r}} \end{aligned}$$

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Computed, for all p and q, the dimension of $H^1(G(\mathbb{F}_q), L(\lambda))$ for λ a nonzero minimal dominant weight, i.e., a minuscule weight or a maximal short root.

- $L(\lambda)$ is the head of the Weyl module $V(\lambda)$.
- Lower bound: dim rad_G $V(\lambda) \leq \dim H^1(G(\mathbb{F}_q), L(\lambda))$
- Upper bound in terms of spaces of cocycles for root subgroups:

$$\sum_{\alpha \in \Delta} \dim Z^1(U_{\alpha}(\mathbb{F}_q), L(\lambda))^{\mathcal{T}(\mathbb{F}_q)} - (\dim L(\lambda)^{\mathcal{T}(\mathbb{F}_q)} - \dim L(\lambda)^{\mathcal{B}(\mathbb{F}_q)})$$

For λ a nonzero minimal dominant weight, dim H¹($G(\mathbb{F}_q), L(\lambda)$) ≤ 1 , except for type D_{2n} with p = 2, where the dimension is sometimes 2.

Avrunin (1978)

Suppose for all weights μ of $T(\mathbb{F}_q)$ in V and for all $\alpha, \beta \in \Phi$ that $\alpha \not\equiv \mu$ and $(\alpha, \beta) \not\equiv \mu \mod \text{Gal}(\mathbb{F}_q)$. Then $H^2(G(\mathbb{F}_q), V) = 0$.

Proof

Look at a central series for $U(\mathbb{F}_q)$ where the factors are products of root subgroups to analyze the weights of $\mathcal{T}(\mathbb{F}_q)$ in $H^2(U(\mathbb{F}_q), V)$. Use this to deduce that $H^2(U(\mathbb{F}_q), V)^{\mathcal{T}(\mathbb{F}_q)} = 0$, and hence $H^2(G(\mathbb{F}_q), V) = 0$. \Box

Corollary (Avrunin)

Suppose q > 4. Let $\lambda \in X(T)_+$ be a nonzero minimal dominant weight. Then $H^2(G(\mathbb{F}_q), L(\lambda)) = 0$, except maybe type A_2 , q = 5, $\lambda \in \{\omega_1, \omega_2\}$.

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G-module, and let $i \in \mathbb{N}$. Then for all sufficiently large e and q, the restriction map is an isomorphism

$$\mathsf{H}^{i}(G, V^{(e)}) \stackrel{\sim}{\longrightarrow} \mathsf{H}^{i}(G(\mathbb{F}_{q}), V^{(e)}).$$

So for H¹ and H², we can get answers for $G(\mathbb{F}_q)$ in terms of G-cohomology if we take q large, and if we sometimes also replace V by $V^{(1)}$ or $V^{(2)}$.

Consider $\operatorname{ind}_{\mathcal{G}(\mathbb{F}_{q})}^{\mathcal{G}}(-)$. There exists a short exact sequence

$$0 \to k \to \operatorname{ind}_{G(\mathbb{F}_q)}^G(k) \to N \to 0.$$

Let M be a rational G-module. Obtain the new short exact sequence

$$0 \to M \to \mathrm{ind}_{G(\mathbb{F}_q)}^G(M) \to M \otimes N \to 0.$$

Now using $\operatorname{Ext}^n_G(k, \operatorname{ind}^G_{G(\mathbb{F}_q)}(M)) \cong \operatorname{Ext}^n_{G(\mathbb{F}_q)}(k, M)$, we get:

Long exact sequence for restriction

Bendel, Nakano, Pillen (2010)

 $\operatorname{ind}_{G(\mathbb{F}_q)}^G(k)$ admits a filtration by G-submodules with sections of the form

$$H^0(\mu)\otimes H^0(\mu^*)^{(r)}$$
 $\mu\in X(T)_+.$

Corollary: $N = \operatorname{coker}(k \to \operatorname{ind}_{G(\mathbb{F}_q)}^G(k))$ admits such a filtration with $\mu \neq 0$.

Then $\operatorname{Ext}_{G}^{i}(k, L(\lambda) \otimes N) = 0$ if it is zero for each section, i.e., if for $\mu \neq 0$,

$$\operatorname{Ext}_{G}^{i}(V(\mu)^{(r)}, L(\lambda) \otimes H^{0}(\mu)) = 0.$$

30,000 ft (9,144 m) view of our strategy

 $H^{i}(G(\mathbb{F}_{a}), L(\lambda))$ 1 Induction $H^{i}(G, \operatorname{ind}_{G(\mathbb{F}_{q})}^{G} L(\lambda))$ ↑ Filtrations $\operatorname{Ext}_{\mathcal{C}}^{i}(V(\mu)^{(r)}, L(\lambda) \otimes H^{0}(\mu))$ ↑ Spectral Sequences $\operatorname{Ext}_{G/G_r}^i(V(\mu)^{(r)},\operatorname{Ext}_{G_r}^j(k,L(\lambda)\otimes H^0(\mu)))$ ↑ Spectral Sequences R^{i} ind $_{B/B_{r}}^{G/G_{r}}$ Ext $_{B_{r}}^{j}(k, L(\lambda) \otimes \mu)$ ↑ Weight combinatorics $\operatorname{Ext}_{II}^{j}(k, L(\lambda))$

Isomorphism theorem for first cohomology

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k, L(\lambda))$ is semisimple as a B/U_r -module, and that $\operatorname{Ext}^1_{U_r}(k, L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^1_{U_r}(k, L(\lambda))^T$. Then

 $\mathrm{H}^{1}(G, L(\lambda)) \cong \mathrm{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)).$

Isomorphism theorem for first cohomology

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k, L(\lambda))$ is semisimple as a B/U_r -module, and that $\operatorname{Ext}^1_{U_r}(k, L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^1_{U_r}(k, L(\lambda))^T$. Then

 $\mathrm{H}^{1}(G, L(\lambda)) \cong \mathrm{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)).$

Isomorphism theorem for second cohomology

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k, L(\lambda))$ is semisimple as a B/U_r -module, that $\operatorname{Ext}^i_{U_r}(k, L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^i_{U_r}(k, L(\lambda))^T$ for $i \in \{1, 2\}$, and that

$$p^r > \max\left\{-(
u, \gamma^ee) : \gamma \in \Delta, \; \operatorname{Ext}^1_{U_r}(k, L(\lambda))_
u
eq 0
ight\}.$$

Then $\mathrm{H}^{2}(G, L(\lambda)) \cong \mathrm{H}^{2}(G(\mathbb{F}_{q}), L(\lambda)).$

Theorem 3.2.4. Suppose $\lambda \in X(T)_+$ is a dominant root or is less than or equal to a fundamental weight. Assume that p > 5 if Φ is of type E_8 or G_2 , and p > 3 otherwise. Then as a B/U_r -module, $\operatorname{Ext}^1_{U_r}(L(\lambda), k) = \operatorname{soc}_{B/U_r} \operatorname{Ext}^1_{U_r}(L(\lambda), k)$, that is,

$$\operatorname{Ext}^{1}_{U_{r}}(L(\lambda),k) \cong \bigoplus_{\alpha \in \Delta} -s_{\alpha} \cdot \lambda \oplus \bigoplus_{\substack{\alpha \in \Delta \\ 0 < n < r}} -(\lambda - p^{n}\alpha) \oplus \bigoplus_{\substack{\sigma \in X(T)_{+} \\ \sigma < \lambda}} (-\sigma)^{\oplus m_{\sigma}}$$

where $m_{\sigma} = \dim \operatorname{Ext}_{G}^{1}(L(\lambda), H^{0}(\sigma)).$

- Determine the socle using Andersen's results on $\text{Ext}^1_B(L(\lambda), \mu)$.
- Get an injection Ext¹_{U_r}(L(λ), k) → Q into the injective hull of the socle. Then show that soc_{B/U_r} Ext¹_{U_r}(L(λ), k) = Ext¹_{U_r}(L(λ), k) by showing that no weight from the second socle layer of Q can be a weight of Ext¹_{U_r}(L(λ), k).

First Cohomology Main Theorem

Let $\lambda \in X(\mathcal{T})_+$ be a fundamental dominant weight. Assume q>3 and

$$\begin{array}{ll} p>2 & \text{if } \Phi \text{ has type } A_n, \ D_n; \\ p>3 & \text{if } \Phi \text{ has type } B_n, \ C_n, \ E_6, \ E_7, \ F_4, \ G_2; \\ p>5 & \text{if } \Phi \text{ has type } E_8. \end{array}$$

Then dim H¹($G(\mathbb{F}_q), L(\lambda)$) = dim H¹($G, L(\lambda)$) ≤ 1 .

The spaces are nonzero (and one-dimensional) in the following cases:

- Φ has type E_7 , p = 7, and $\lambda = \omega_6$; and
- Φ has type C_n , $n \ge 3$, and $\lambda = \omega_j$ with $\frac{j}{2}$ a nonzero term in the *p*-adic expansion of n + 1, but not the last term in the expansion.

Second Cohomology Main Theorem A

Suppose p > 3 and q > 5. Let $\lambda \in X(T)_+$ be less than or equal to a fundamental dominant weight. Assume also that λ is not a dominant root. Then $H^2(G, L(\lambda)) \cong H^2(G(\mathbb{F}_q), L(\lambda))$.

Corollary

Suppose p, q, λ are as above. Then $H^2(G(\mathbb{F}_q), L(\lambda)) = 0$ except possibly in a small number of explicit cases in exceptional types, and except possibly in type C_n when $\lambda = \omega_j$ with j even and $p \leq n$.

Second Cohomology Main Theorem B

Let p > 3 and q > 5. Let $\lambda = \tilde{\alpha}$ be the highest root. Assume $p \nmid n+1$ in type A_n , and $p \nmid n-1$ in type B_n . Then $L(\lambda) = H^0(\lambda) = \mathfrak{g}$, and

 $\mathsf{H}^2(G(\mathbb{F}_q),\mathfrak{g})=k.$

Also have $H^{2}(SL_{3}(\mathbb{F}_{5}), L(\omega_{1})) = H^{2}(SL_{3}(\mathbb{F}_{5}), L(\omega_{2})) = k$.

Different strategy in these cases for analyzing the long exact sequence:

Our original commutative diagram:

$$\begin{array}{c} \mathsf{H}^{1}(G, L(\lambda)) & \xrightarrow{\sim} & \mathsf{H}^{1}(B, L(\lambda)) \\ & \downarrow & \downarrow \\ \\ \mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)) & \longrightarrow & \mathsf{H}^{1}(B(\mathbb{F}_{q}), L(\lambda)). \end{array}$$

Our original commutative diagram:

$$\begin{array}{c} \mathsf{H}^{1}(G, L(\lambda)) & \xrightarrow{\sim} & \mathsf{H}^{1}(B, L(\lambda)) \\ & \downarrow & \downarrow \\ \\ \mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)) & \longrightarrow & \mathsf{H}^{1}(B(\mathbb{F}_{q}), L(\lambda)). \end{array}$$

New diagram:

$$\begin{array}{ccc} \mathsf{H}^{1}(G, L(\lambda)) & \xrightarrow{\sim} & \mathsf{H}^{1}(B, L(\lambda)) \\ & \downarrow & & \downarrow \\ \mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)) & \stackrel{\leftarrow}{\longrightarrow} & \mathsf{H}^{1}(U(\mathbb{F}_{q}), L(\lambda))^{\mathcal{T}(\mathbb{F}_{q})} & \qquad \mathsf{H}^{1}(U_{1}, L(\lambda))^{\mathcal{T}(\mathbb{F}_{q})}. \end{array}$$

Lemma

Suppose
$$p > 2$$
 and $\lambda \in X_1(T)$. Then $H^1(B, L(\lambda)) \hookrightarrow H^1(U_1, L(\lambda))^{T(\mathbb{F}_q)}$.

Proof

LHS spectral sequence for B/B_1 combined with $\text{Ext}^1_B(k, L(\lambda))$.

$$\begin{array}{ccc} \mathsf{H}^{1}(G, L(\lambda)) & & \sim & & \to \mathsf{H}^{1}(B, L(\lambda)) \\ & & & & & & & \\ & & & & & & \\ \mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda))^{\subset} & & \mathsf{H}^{1}(U(\mathbb{F}_{q}), L(\lambda))^{T(\mathbb{F}_{q})} & & & \mathsf{H}^{1}(U_{1}, L(\lambda))^{T(\mathbb{F}_{q})}. \end{array}$$

Recall:

- $U(\mathbb{F}_q)$ is filtered by its lower central series.
- $kU(\mathbb{F}_q)$ is filtered by the powers of its augmentation ideal.

Theorem (Lazard)

gr $U(\mathbb{F}_q)$ is naturally a *p*-restricted Lie algebra over \mathbb{F}_p .

Theorem (Quillen)

There exists a natural isomorphism gr $kU(\mathbb{F}_q) \cong u(\text{gr } U(\mathbb{F}_q) \otimes_{\mathbb{F}_p} k).$

Lin, Nakano (1999), Friedlander (2010)

There exists a natural isomorphism gr $kU(\mathbb{F}_q) \cong u(\mathfrak{u}^{\oplus r})$.

If *M* is a rational *B*-module, then there exists a (weight) filtration on *M* such that gr *M* is naturally a $u(\mathfrak{u}^{\oplus r})$ -module. The restriction of gr *M* to the first (or any) factor $\mathfrak{u} \subset \mathfrak{u}^{\oplus r}$ identifies with $M|_{\mathfrak{u}}$ (equivalently, with $M|_{U_1}$).

Consequence: There exists a May spectral sequence

$$\mathsf{E}_1^{i,j} = \mathsf{H}^{i+j}(u(\mathfrak{u}^{\oplus r}), \operatorname{gr} M)_{(i)} \Rightarrow \mathsf{H}^{i+j}(U(\mathbb{F}_q), M).$$

Upshot: There exist vector space maps

$$\mathsf{H}^{1}(U(\mathbb{F}_{q}), M) \longrightarrow \mathsf{H}^{1}(u(\mathfrak{u}^{\oplus r}), \operatorname{gr} M)^{\mathcal{T}(\mathbb{F}_{q})} \stackrel{\operatorname{res}}{\longrightarrow} \mathsf{H}^{1}(U_{1}, M)^{\mathcal{T}(\mathbb{F}_{q})}.$$

Apply results of Parshall and Scott on filtered algebras, and spectral sequence and weight arguments, to conclude that the new diagram commutes and that the bottom row consists of injections:

$$\begin{array}{c} \mathsf{H}^{1}(G, L(\lambda)) & \longrightarrow & \mathsf{H}^{1}(U, L(\lambda))^{T} \\ \downarrow & & \downarrow \\ \mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)) & \longrightarrow & \mathsf{H}^{1}(U(\mathbb{F}_{q}), L(\lambda))^{T(\mathbb{F}_{q})} & \longrightarrow & \mathsf{H}^{1}(U_{1}, L(\lambda))^{T(\mathbb{F}_{q})} \end{array}$$

Apply results of Parshall and Scott on filtered algebras, and spectral sequence and weight arguments, to conclude that the new diagram commutes and that the bottom row consists of injections:

$$\begin{array}{c} \mathsf{H}^{1}(G, L(\lambda)) & \longrightarrow & \mathsf{H}^{1}(U, L(\lambda))^{T} \\ \downarrow & & & \downarrow \\ \mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)) & \longrightarrow & \mathsf{H}^{1}(U(\mathbb{F}_{q}), L(\lambda))^{T}(\mathbb{F}_{q}) & \longrightarrow & \mathsf{H}^{1}(U_{1}, L(\lambda))^{T}(\mathbb{F}_{q}) \end{array}$$

Theorem

Suppose p > 2, q > 3, and $\lambda \in X_1(T)$. Then

$$\dim \mathsf{H}^1(U_1, L(\lambda))^{\mathcal{T}(\mathbb{F}_q)} = \dim \mathsf{H}^1(U_1, L(\lambda))^{\mathcal{T}} = \dim \mathsf{H}^1(G, L(\lambda)).$$

Hence, $H^1(G, L(\lambda)) \cong H^1(G(\mathbb{F}_q), L(\lambda))$.

Open Question about cohomology for Sp_{2n}

For $p \leq n$, what is $H^2(G, L(\omega_j))$, and hence $H^2(G(\mathbb{F}_q), L(\omega_j))$, for j even?

Open Question about cohomology for Sp_{2n}

For $p \leq n$, what is $H^2(G, L(\omega_j))$, and hence $H^2(G(\mathbb{F}_q), L(\omega_j))$, for j even?

Values of *n* and *j* for which $H^2(Sp_{2n}, L(\omega_j))$ is 1-dimensional, p = 3.

п	j	п	j	п	j	п	j
6	6	15	6, 8	24	6, 8, 18	33	6, 8, 18
7	6	16	6,10	25	6, 10, 18	34	6, 10, 18
8		17		26		35	
9	6	18	6,14	27	6, 14	36	6,14
10	6	19	6,16	28	6, 16	37	6,16
11		20	18	29	18	38	18
12	6	21	6, 18	30	6, 18	39	6, 18, 20
13	6	22	6,18	31	6, 18	40	6, 18, 22
14		23	18	32	18		

Values of *n* and *j* for which $H^2(Sp_{2n}, L(\omega_j))$ is 1-dimensional, p = 5.

n	j	п	j	п	j	п	j	п	j
10	10	20	10	30	10	40	10, 22	50	10, 42
11	10	21	10	31	10	41	10, 24	51	10, 44
12	10	22	10	32	10	42	10, 26	52	10, 46
13	10	23	10	33	10	43	10, 28	53	10, 48
14		24		34		44		54	50
15	10	25	10	35	10, 12	45	10, 32		
16	10	26	10	36	10, 14	46	10, 34		
17	10	27	10	37	10, 16	47	10, 36		
18	10	28	10	38	10, 18	48	10, 38		
19		29		39		49			

- Are these cohomology groups always at most one-dimensional?
- Can the non-vanishing be described *p*-adically in terms of *n* and *j*?