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Background Notation

• g finite-dimensional simple complex Lie algebra

• Φ root system of g, with highest short root α0

• ρ = 1
2

∑
α∈Φ+ α the Weyl weight

• h = (ρ, α∨0 ) + 1 the Coxeter number of Φ

• W the Weyl group of Φ

• ` ∈ N odd integer with ` > h and 3 - ` if Φ is of type G2

• ζ ∈ C primitive `-th root of unity

• uζ(g) small quantum group associated to g, a finite-dimensional Hopf
subalgebra of the Lusztig quantum group Uζ(g) with parameter ζ.

• W` = W n `ZΦ affine Weyl group

• N nullcone of g, consisting of the nilpotent elements in g

Christopher M. Drupieski (UGA) Support varieties for irreducible modules April 21, 2012 3 / 14



Background Definitions

Let A be a Hopf algebra over an algebraically closed field k .
Suppose R = H2•(A, k) is finitely-generated as an algebra over k .

Cohomological spectrum

VA(k) = MaxSpec H2•(A, k) (maximal ideal spectrum).

Let M be a finite-dimensional A-module. Set IA(M) = AnnR Ext•A(M,M).

Support variety of a module

VA(M) = MaxSpec(H2•(A,C)/IA(M)), closed subvariety of VA(k)

The cases A = kG , the group ring of a finite group G , and A = u(g), the
restricted enveloping algebra of a p-restricted Lie algebra g, have been of
interest since at least the early 1980s.
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Background Past calculations

Ginzburg–Kumar (1993)

H2•(uζ(g),C) ∼= C[N ], hence Vuζ(g)(C) ∼= N .

General problem that few explicit examples of support varieties of known.

For λ ∈ X+, have H0(λ) and V (λ) (induced and Weyl modules for Uζ(g)).

Set Φλ = {α ∈ Φ : (λ+ ρ, α∨) ≡ 0 mod `}.
There exists w ∈W and a subset of simple roots J such that w(Φλ) = ΦJ .

Let uJ be the nilradical of the standard parabolic subalgebra pJ ⊂ g.

Ostrik (1998), Bendel–Nakano–Parshall–Pillen (2011)

Vuζ(g)(H0(λ)) = Vuζ(g)(V (λ)) = G ·uJ , irreducible of dimension |Φ|− |ΦJ |
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Background Problem and Main Theorem

Question

What is the support variety of each irreducible uζ(g)-module L(λ)?

No previous calculation of the support varieties for all irreducible modules
of a finite-dimensional Hopf algebra (except in cases where all VA(L) equal
the full cohomological spectrum, i.e., the variety of the trivial module).

L(λ) = socUζ(g) H
0(λ), follows via induction that Vuζ(g)(L(λ)) ⊆ G · uJ .

Theorem (D–Nakano–Parshall)

Suppose w(Φλ) = ΦJ for some w ∈W . Then Vuζ(g)(L(λ)) = G · uJ .
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Overview of the proof Generic dimension and complexity

Let M be a finite-dimensional Uζ(g)-module, with M =
⊕

λ∈X Mλ.

Generic dimension of a weight module

dimt M =
∑

λ∈X (dimMλ)t−2 wht(λ) ∈ Z[t, t−1]

Here wht(λ) = 1
2

∑
α∈Φ+ dα(λ, α∨) ∈ Z[ 1

2 ], where dα = (α, α)/(α0, α0).

Nakano–Parshall–Vella (2002)

Suppose ζ is a root of multiplicity s in dimt M. Then

dimVuζ(g)(M) ≥ |Φ| − 2s.
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Overview of the proof Generic dimension and complexity

Outline of the argument for the induced modules:

“Generic” Weyl Character Formula

dimt H
0(µ) = Dλ(t)/D0(t), where

Dλ(t) =
∏
α∈Φ+(tdα(λ+ρ,α∨) − t−dα(λ+ρ,α∨)).

Note that ζ is a root of tdα(λ+ρ,α∨) − t−dα(λ+ρ,α∨) if and only if α ∈ Φ+
λ .

Then ζ is a root of dimt H
0(λ) with multiplicity |Φ+

λ | = |Φ+
J |, hence

dimVuζ(g)(H0(λ)) ≥ |Φ| − 2|Φ+
J | = |Φ| − |ΦJ | = dimG · uJ .

But Vuζ(g)(H0(λ)) ⊆ G · uJ from other techniques, so by dimension
comparison and irreducibility of G · uJ , the varieties must be equal.

To imitate this approach for the L(λ), we need to know their characters.
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Overview of the proof Lusztig character formula

“Generic” Lusztig Character Formula

Let λ ∈ X+. Choose λ− ∈ C
−
Z (alcove opposite to the lowest `-alcove) and

w ∈W` of minimal length such that λ = w · λ−. Then

dimt L(λ) =
∑
y∈W`

(−1)`(w)−`(y)Py ,w (1) · dimt H
0(y · λ−).

Let W`,I be the standard parabolic subgroup stabilizing λ−, and let W I
` be

the set of minimal length right coset representatives for W`,I . Then

dimt L(λ) =
∑
y∈W I

`

(−1)`(w)−`(y)P I ,−1
y ,w (1) · dimt H

0(y · λ−).
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Overview of the proof Computing the derivative

Recall Dλ(t) =
∏
α∈Φ+(tdα(λ+ρ,α∨) − t−dα(λ+ρ,α∨)). Then

f (t) = D0(t) · dimt L(λ) =
∑
y∈W I

`

y ·λ−∈X+

(−1)`(w)−`(y)P I ,−1
y ,w (1) · Dy ·λ−(t).

Set s = |Φ+
J |. Now ζ is a root with multiplicity s in f (t) if f (s)(ζ) 6= 0.

The derivative

f (s)(ζ) = z ·

 ∑
y∈W I

` ,y ·λ−∈X+

P I ,−1
y ,w (1)

 ∏
α∈Φ+

y·λ−

2dα(y · λ− + ρ, α∨)




for some explicitly describable nonzero element z ∈ C.

P I ,−1
y ,w (1) ∈ N ∪ {0}, and P I ,−1

w ,w (1) = 1. Follows that f (s)(ζ) 6= 0.
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Overview of the proof Computing the derivative

Summary:

• Vuζ(g)(L(λ)) ⊆ G · uJ
• dimVuζ(g)(L(λ)) ≥ dimG · uJ from differentiating the generic LCF

• By irreducibility of G · uJ , must have Vuζ(g)(L(λ)) = G · uJ .
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Results for algebraic groups Main result for algebraic groups

Theorem (D–Nakano–Parshall)

Let G be a simple simply-connected algebraic group over an algebraically
closed field k of characteristic p > h. Assume that the Lusztig character
formula holds for G for all restricted dominant weights. Let λ ∈ X+, and
suppose Φλ ∼ ΦJ for some subset of simple roots J. Then

Vu(g)(L(λ)) = G · uJ .

Equivalently, VG1(L(λ)) = G · uJ .

Holds for groups of type A1 if p ≥ 2, A2 if p ≥ 3, B2 if p ≥ 5,
G2 if p ≥ 11, A3 if p ≥ 5, A4 if p ∈ {5, 7}, and p � 0 in general.
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Results for algebraic groups Extension to higher Frobenius kernels

Suslin, Friedlander, Bendel (1997)

Suppose G admits an embedding of exponential type G ↪→ GLn. Then

VGr (k) ∼= Cr (N ) = {(x0, . . . , xr−1) ∈ N r : [xi , xj ] = 0 for all i , j} .

Using SFB’s rank variety characterization of VGr (M), Sobaje has proved:

Sobaje (2011)

Suppose G is a classical group, and that p > hc , where c is as given below.
Let λ = λ0 + pλ1 + · · ·+ psλs with λi ∈ X1(T ). Then

VGr (L(λ)) = {(x0, . . . , xr−1) ∈ Cr (N ) : xi ∈ VG1(L(λi ))} .

c =
(
n+1

2

)2
for An, n(n+1)

2 for Bn, n2

2 for Cn, and n(n−1)
2 for Dn.
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