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Introduction Notation

• G - simple, simply-connected algebraic group over Fp

• G (Fq) - finite subgroup of Fq-rational points in G , q = pr

• B - Borel subgroup of G

• U - unipotent radical of B

• Gr - Frobenius kernel of G

• L(λ) - irreducible G -module of highest weight λ

• V (λ) - Weyl module of highest weight λ

• H0(λ) = indG
B (λ) - induced module

e.g.,

• G = SLn(Fp)

• G (Fq) = SLn(Fq)

• B - lower triangular invertible matrices

• U - lower triangular unipotent matrices
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Introduction Background

Problem

Compute
H1(G (Fq), L(λ)) and H2(G (Fq), L(λ))

for λ small, say, less than or equal to a fundamental dominant weight.

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Let λ be a minimal nonzero dominant weight. Then

dim H1(G (Fq), L(λ)) ≤

{
2 if p = 2

1 if p 6= 2

Our goal: Compare Hi (G (Fq), L(λ)) to Hi (G , L(λ)).
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Introduction Background

Commutative square of restriction maps:

Hi (G ,V )

��

∼ // Hi (B,V )

��
Hi (G (Fq),V ) �

� // Hi (B(Fq),V ).

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G -module, and let i ∈ N. Then for
all sufficiently large e and q, the restriction map is an isomorphism

Hi (G ,V (e))
∼−→ Hi (G (Fq),V (e)).

Avoid twists and q � 0 by more direct appeal to the left column.
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Results Set-up

Consider the functor indG
G(Fq)

(−). There exists a short exact sequence

0→ k → indG
G(Fq)

(k)→ N → 0.

Let M be a rational G -module. Then there exists a short exact sequence

0→ M → indG
G(Fq)

(M)→ M ⊗ N → 0.

Using ExtnG (k, indG
G(Fq)

(M)) ∼= ExtnG(Fq)
(k ,M), we get:

Long exact sequence for restriction

0 → HomG (k ,M)
res→ HomG(Fq)(k ,M) → HomG (k,M ⊗ N)

→ Ext1G (k,M)
res→ Ext1G(Fq)

(k,M) → Ext1G (k ,M ⊗ N)

→ Ext2G (k,M)
res→ Ext2G(Fq)

(k,M) → Ext2G (k ,M ⊗ N) →
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Results Main Theorem

Restriction Isomorphism Theorem

Let λ be less than or equal to a fundamental dominant weight. Suppose p
and q are as below. Then ExtiG (k , L(λ)) ∼= ExtiG(Fq)

(k, L(λ)) for i ≤ 2.

Type Conditions on p and q

An p odd, q > 3
Bn p > 3 (q > 5 if n ≤ 3)
Cn p > 3, q > 5
Dn p odd, q > 3
E6 p > 3
E7 p > 3, q > 5
E8 p > 5
F4 p > 3, q > 5
G2 p > 5
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Results Idea of the argument

Bendel, Nakano, Pillen (2010)

indG
G(Fq)

(k) admits a filtration by G -submodules with sections of the form

H0(µ)⊗ H0(µ∗)(r) µ ∈ X (T )+.

Corollary: N = coker(k → indG
G(Fq)

(k)) admits such a filtration with µ 6= 0.

Then ExtiG (k, L(λ)⊗ N) = 0 if it is zero for each section, i.e., if for µ 6= 0,

ExtiG (k, L(λ)⊗ H0(µ)⊗ H0(µ∗)(r))

∼= ExtiG (V (µ)(r), L(λ)⊗ H0(µ)) = 0.
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Results Idea of the argument

Analyze the spectral sequences

E i ,j
2 = ExtiG/Gr

(V (µ)(r),ExtjGr
(k , L(λ)⊗ H0(µ)))

⇒ Exti+j
G (V (µ)(r), L(λ)⊗ H0(µ))

and E i ,j
2 = R i ind

G/Gr

B/Br
ExtjBr

(k, L(λ)⊗ µ)⇒ Exti+j
Gr

(k , L(λ)⊗ H0(µ)).

Critical calculation

Let λ ∈ X (T )+ be less than or equal to a fundamental dominant weight,
and let p and q be as above. Then there exists I ⊆ ∆ such that

Ext1Ur
(k, L(λ)) ∼=

⊕
α∈I
−sα · λ∗ ⊕

⊕
σ↑λ

(−σ)⊕mσ

where mσ = dim Ext1G (L(λ∗),H0(σ)).
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Results Vanishing results

First Cohomology Main Theorem

Let λ ∈ X (T )+ be a fundamental dominant weight. Assume q > 3 and

p > 2 if Φ has type An, Dn;
p > 3 if Φ has type Bn, Cn, E6, E7, F4, G2;
p > 5 if Φ has type E8.

Then dim H1(G (Fq), L(λ)) = dim H1(G , L(λ)) ≤ 1.

Space is one-dimensional in the following cases:

• Φ has type E7, p = 7, and λ = ω6; and

• Φ has type Cn, n ≥ 3, and λ = ωj with j
2 a nonzero term in the

p-adic expansion of n + 1, but not the last term in the expansion.

Reasons for vanishing: Linkage principle for G , Ext1G (V (0),H0(λ)) = 0.

Christopher Drupieski (UGA) Comparing cohomology June 1, 2011 10 / 14



Results Vanishing results

Second Cohomology Main Theorem

Let λ ∈ X (T )+ be less than or equal to a fundamental dominant weight.
Let p > 7. Then Ext2G(Fq)

(k , L(λ)) ∼= Ext2G (k, L(λ)) = 0, except possibly in
the cases

• Φ = E8, p = 31, and λ ∈ {ω6 + ω8, ω7 + ω8}
• Φ = Cn, n ≥ 3, and λ = ωj with j even
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Results Type C

Adamovich described combinatorially the submodule structure of Weyl
modules in Type C having fundamental highest weight. We use this and
Ext2Cn

(k , L(ωj)) ∼= Ext1Cn
(radG V (ωj), k) to make computations.

i ←→ L(ωi )

i Ext1Cn
(k, L(ωi )) ∼= k.

i [V (ωi ) : k] = 1

i neither
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Results Type C

Values of n and j for which H2(Sp2n, L(ωj)) 6= 0, p = 3.

In each case, H2 is 1-dimensional.

n j

6 6
7 6
8
9 6

10 6
11
12 6
13 6
14

n j

15 6, 8
16 6, 10
17
18 6, 14
19 6, 16
20 18
21 6, 18
22 6, 18
23 18

n j

24 6, 8, 18
25 6, 10, 18
26
27 6, 14
28 6, 16
29 18
30 6, 18
31 6, 18
32 18

n j

33 6, 8, 18
34 6, 10, 18
35
36 6, 14
37 6, 16
38 18
39 6, 18, 20
40 6, 18, 22

For n = 12, we have also H1(Sp2n, L(ω6)) 6= 0 (parity vanishing violated).
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Results Type C

Values of n and j for which H2(Sp2n, L(ωj)) 6= 0: p = 5.

In each case, H2 is 1-dimensional.

n j

10 10
11 10
12 10
13 10
14
15 10
16 10
17 10
18 10
19

n j

20 10
21 10
22 10
23 10
24
25 10
26 10
27 10
28 10
29

n j

30 10
31 10
32 10
33 10
34
35 10, 12
36 10, 14
37 10, 16
38 10, 18
39

n j

40 10, 22
41 10, 24
42 10, 26
43 10, 28
44
45 10, 32
46 10, 34
47 10, 36
48 10, 38
49

n j

50 10, 42
51 10, 44
52 10, 46
53 10, 48
54 50

For n = 30, we also have H1(Sp2n, L(ω10)) 6= 0 (parity vanishing violated).
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