
Integre Technical Publishing Co., Inc. Mathematics Magazine 77:1 October 17, 2003 1:14 p.m. notes.tex page 46

N O T E S

Tiling Deficient Rectangles with Trominoes
J. MARSHALL ASH

DePaul University
Chicago, IL 60614

mash@math.depaul.edu

SOLOMON W. GOLOMB
Communication Sciences Institute
University of Southern California

Los Angeles, CA 90089-2565

A tromino (rhymes with domino) is a shape made up of three 1 × 1 squares assembled
as shown.

Figure 1 A tromino

We will classify a variety of nearly rectangular shapes into those that can be tiled
by trominoes and those that cannot. From now on we will simply say tiled to mean
tiled by trominoes. We will consider shapes that are integer-dimensioned rectangles
with each dimension at least 2, and with one or two 1 × 1 squares removed. If one
square is removed, call the resultant shape a deficient rectangle. If the removed square
was a corner square, call the resulting deficient rectangle a dog-eared rectangle. The
area of a tromino is 3, so, evidentially, only shapes whose area is a multiple of 3 can
be tiled by trominoes. In this paper we will determine which deficient rectangles with
area divisible by 3 are tileable and which are not; in particular, all the dog-eared ones
are tileable. We will also get some partial results for the same question for rectangles
with two squares removed and remaining area divisible by 3.

We especially recommend the proof of the Deficient 5 × 5 Lemma to the casual
reader.

Trominoes were introduced by Golomb [3], who proved that deficient squares
whose side length is a power of two can be tiled. Chu and Johnsonbaugh first extended
Golomb’s work to the general cases of deficient squares [1]. They later went on to
rectangles and proved a slightly weaker version [2] of what we call the Deficient
Rectangle Theorem. The Proposition in the last section answers a question posed by
Chu and Johnsonbaugh [1].

Before proceeding with the business at hand, we will mention a few general facts
about trominoes and about another tiling question involving tiles other than trominoes.
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A tromino is a special case of a polyomino, a shape made by connecting certain
numbers of 1 × 1 squares, each joined together with at least one other square along an
edge. The polyomino of area 1, a single 1 × 1 tile is called a monomino. The polyomino
of area is two is the domino. Let P(n) be the number of distinct polyominoes of area n.
For example P(3) = 2, since there are actually two trominoes, a straight tromino,
which has the shape of a 1 × 3 rectangle; and the object shown in FIGURE 1 which
is called a right tromino when it needs to be distinguished from the straight one, but
which will be the only kind of tromino discussed in this paper. Notice that in defining
P , orientation is ignored. For example, the three objects created by rotating the tromino
shown in FIGURE 1 by 90◦, 180◦, and 270◦ are not counted as distinct from the original
tromino. For results and open questions about the exponentially growing values of
P(n), see [4, Appendix D].

Four trominoes can be fit together to form a tromino-shaped 4-reptile, that is, a set
in the plane that can be tiled by four congruent scaled down copies of itself. A tromino
has order 2, which means that the minimum number of trominoes required to form
a rectangle is 2, as in FIGURE 2. Finding the order of other polyominoes provides
challenging problems [4, Chapter 8]. The entire plane can be tiled in a periodic way
by any polyomino of finite order by simply repeating copies of the minimal rectangle.

Roger Penrose has given a remarkably simple aperiodic tiling of the entire plane
using copies of only two unit-edged rhombi, one with acute angle 36◦ and the other
with acute angle 72◦ [8]. Tilings are often found in Moorish architecture; some tromi-
noes can be seen in a display case in the Reales Alcazares, a great Arabian style palace
built during various epochs in Seville, Spain. A comprehensive and interesting book
concerning tiling is Tilings and Patterns [5]. There is lots of information about tiling
available on the internet; typing “tromino” into a search engine produced 577 hits. We
recommend http://www.ics.uci.edu/~eppstein/junkyard/polyomino.
html and http://www.amherst.edu/\symbol{126}nstarr/.

Elementary results for rectangles A basic tiling result that we will need identifies
precisely which rectangles can be tiled. Let’s start with some simple cases. First of all,
a 2 × 3 rectangles can be tiled by trominoes.

Figure 2 Tiling R(2, 3)

Denote a rectangle with i rows and j columns by R(i, j). We will indicate de-
compositions into nonoverlapping subrectangles by means of an additive notation. For
example, a 3i × 2 j rectangle can be decomposed into i j 3 × 2 subrectangles and we
write this fact as R(3i, 2 j) = ∑i

µ=1

∑ j
ν=1 R(3, 2) = i j R(3, 2). It follows from this

and the tiling in FIGURE 2 that

any 3i × 2 j or 2i × 3 j rectangle can be tiled. (1)

From now on, any rectangle decomposed into a combination of 3i × 2 j subrectangles,
2i × 3 j subrectangles and trominoes will be considered as successfully tiled by tro-
minoes. Denote the 1 × 1 square lying in row i and column j as (i, j).
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Now let’s look at some rectangles that cannot be tiled. Suppose that a 3 × 3 square
Q has been tiled. Some tromino must cover square (3, 1). Here are the three possible
ways that it can do that.

A B C

Figure 3 An impossibility proof

Orientation A is immediately ruled out, since square (1, 1) cannot be tiled. But in
cases B and C , the tiling must tile the leftmost 3 × 2 subrectangle of Q, so that the
original tiling is also a tiling of the third column of Q, which is an R(3, 1). This is
impossible. Similarly, suppose that a 3 × 5 rectangle R has been tiled. This argument
shows that the tiling must tile the first two columns of R, and hence also the rightmost
three columns of R. This is a contradiction since we have just shown 3 × 3 square to
be untileable. Iterating this procedure shows no R(3, odd) can be tiled. It turns out that
there are no other untileable rectangle with area divisible by 3.

The integers m and n will always be greater than or equal to 2.

CHU-JOHNSONBAUGH THEOREM [2]. An m × n rectangle can always be tiled by
trominoes if 3 divides its area mn, except when one dimension is 3 and the other is
odd.

The proof of this is not hard. We suggest that the reader give it a try. Here are a
few hints. Use fact (1) several times. First do the cases R(3k, even); then do the cases
R(6k, odd). This leaves only the cases R(9 + 6k, n), where n ≥ 5 is an odd integer.
Reduce such a case to R(9, 5). Finally tile R(9, 5) by trial and error. If you have trouble
with the last step, leaf ahead to the top left picture in FIGURE 9.

Dog-ears An m × n dog-eared rectangle is an m × n rectangle with a 1 × 1 cor-
ner square removed. We will denote the dog-eared rectangle by R(m, n)−, so that
R(m, n)− = R(m, n) \ {(1, n)}. Note that the area of R(m, n)− is mn − 1. If this rect-
angle is rotated 180◦, a similar figure with missing lower left-hand corner is created.
If it is reflected about a central vertical (resp., horizontal) axis, a similar figure with
missing upper left-hand (resp., lower right-hand) corner is created. The problem of
tiling the original figure is clearly equivalent to tiling any one of the other three, even
though the original figure cannot be rotated into either of the last two figures.

DOG-EARED RECTANGLE THEOREM. An m × n dog-eared rectangle can be tiled
with trominoes if and only if 3 divides its area.

To understand what this theorem means, note that if mn is congruent to 0 or 2 mod-
ulo 3, then the area of R(m, n)− is not congruent to 0 modulo 3 and so that dog-eared
rectangle can not be tiled by trominoes, since the area of any region tiled by tromi-
noes must be an integral multiple of 3. So the only m × n dog-eared rectangles that
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Figure 4 A dog-eared rectangle

could possibly be tiled by trominoes are those for which mn is congruent to 1. In other
words, the only m × n dog-eared rectangles that could possibly be tiled by trominoes
are those for which m ≡ n ≡ 1(mod 3) or m ≡ n ≡ 2 (mod 3), and, indeed, all those
dog-eared rectangles can be tiled.

We start with a family of special cases of the Dog-eared Rectangle Theorem, the
dog-eared dyadic squares, R(2k, 2k)−. This is a special case of a well-known and
beautiful example of mathematical induction [3], [4, page 4], [6, page 45], [9, prob-
lem 2.3.38]. If k = 1, note that R(2, 2)− is itself a tromino. If k = 2, see FIGURE 5
for a covering of R(4, 4)−. In FIGURE 5, R(4, 4)− was tiled by dividing it into 4 quad-
rants. The upper right quadrant was an R(2, 2)−while the other three quadrants were
all congruent to R(2, 2). Then the black tromino covering squares (2, 2), (2, 3), and
(3, 3) was placed at the center. This reduced the lower left quadrant to an R(2, 2)− and
the remaining two quadrants to rotations of R(2, 2)−. In short, the tiling of R(4, 4)−
was reduced to the tiling of four copies of R(2, 2)−. The reader should next do k = 3,
by dividing R(8, 8)− into 4 quadrants, and then covering the central squares (4, 4),
(4, 5), and (5, 5) with a tromino. This reduces the tiling of R(8, 8)− to the tiling of
four copies of R(4, 4)−. The general inductive proof should now be clear.

Figure 5 Tiling R(4, 4)−

Proof of the Dog-eared Rectangle Theorem: Let m ≤ n. As mentioned above, the
necessary condition that 3 divide the area of R− = R(m, n)− splits into the cases
m ≡ n ≡ 1(mod 3) and m ≡ n ≡ 2 (mod 3). It is not hard to see that the m × n dog-
eared rectangle is congruent to the n × m one. So, in the former case, we have either
R(4, 3k + 4)− with k ≥ 0, R(7, 6k + 7)− with k ≥ 0, R(7, 6k + 4)− with k ≥ 1, or
R(3 j + 4, 3k + 4)− with j ≥ 2 and k ≥ 2. There correspond these four decomposi-
tions:
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R(4, 3k + 4)− = R(4, 3k) + R(4, 4)−, k ≥ 0

R(7, 6k + 7)− = R(7, 6k) + R(7, 7)−, k ≥ 0

R(7, 6k + 4)− = R(7, 6k) + R(4, 3) + R(4, 4)−, k ≥ 1 and

R(3 j + 4, 3k + 4)− = R(3 j, 3k + 4) + R(4, 3k) + R(4, 4)−, j, k ≥ 2.

For the algebraically inclined reader, these decompositions need no further explana-
tion. However, the geometrically inclined reader should draw pictures to visualize
them. (All the similar decompositions appearing below have straightforward geomet-
rical interpretations.) Here, in the first three cases, a large rectangle was stripped from
the left side of the figure. In the fourth case, first a large rectangle was removed from
the bottom, and then another from the left side of what remained. All the full rect-
angles are tileable by the Chu-Johnsonbaugh Theorem, R(4, 4)− is tiled as in FIGURE

5, and the tiling of R(7, 7)− appears in Chu and Johnsonbaugh [1].
In the latter case, we must tile R− = R(3 j + 2, 3k + 2)− where 0 ≤ j ≤ k. If

j �= 1, we have

R− = R(3 j, 3k) + R(3 j, 2) + R(2, 3k) + R(2, 2)−.

The first three terms are tiled by the Chu-Johnsonbaugh Theorem, while the last
term actually is a tromino. Let j = 1. Either k is odd, 3k + 2 = 6� + 5; or else k is
even, 3k + 2 = 6� + 8. Correspondingly, either R− = R(5, 6� + 5)− = R(5, 6�) +
R(5, 5)− where the first term is tiled with the Chu-Johnsonbaugh Theorem and
R(5, 5)− is tiled as in FIGURE 6, or else R− = R(5, 6� + 8)− = R(5, 6�) + R(5, 8)−
where again the first term is tiled with the Chu-Johnsonbaugh Theorem and we also
have R(5, 8)− = R(5, 6) + R(3, 2) + R(2, 2)−, the first two terms being tiled by the
Chu-Johnsonbaugh Theorem, while the last term is a tromino.

Figure 6 Tiling R(5, 5)−

Here is an application of the Chu-Johnsonbaugh and Dog-eared Rectangle The-
orems. Consider the practical question of tiling as much as possible of any m × n
rectangle, where m and n both exceed 3. There are 3 cases depending on the value of
mn modulo 3. If mn ≡ 0, tile the entire rectangle with the Chu-Johnsonbaugh Theo-
rem. If mn ≡ 1, remove a single corner square and then use the Dog-eared Rectangle
Theorem to tile the rest of the rectangle. If mn ≡ 2, we must remove 2 squares. It
turns out that if mn ≡ 2 and if a corner square and a boundary square adjacent to it
are both removed, what remains can always be tiled. This can be proved by methods
very similar to those used to prove the other two theorems. We will leave its proof as
an exercise.

Deficiency Call a rectangle with one 1 × 1 square missing a deficient rectangle. Thus
to the rectangle R(m, n) correspond mn deficient rectangles, each being formed by
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removing one square from R(m, n); exactly 4 of these are congruent to R(m, n)−.
The question of whether a deficient rectangle can be tiled with trominoes is clearly
equivalent to the question of whether the full rectangle consisting of the disjoint union
of the deficient rectangle and the 1 × 1 square can be tiled by a set of trominoes and a
single monomino, with the monomino covering the missing square.

Say that a 1 × 1 square is good if its removal from a full m × n rectangle produces
a deficient rectangle that can be tiled. We will now enumerate some m × n deficient
rectangles that cannot be tiled, even though 3 divides mn − 1. This enumeration will
be very precise in the sense that for each m and n the location of the bad squares will be
specified. In the very interesting case when m = n = 5, the following lemma produces
16 bad squares.

DEFICIENT 5 × 5 LEMMA. If the square (i, j) is removed from the 5 × 5 rectangles
where either i or j is even, then the resulting shape is not tileable.

Proof. Form a kind of checkerboard design by marking each of the nine squares


(1, 1), (1, 3), (1, 5),

(3, 1), (3, 3), (3, 5),

(5, 1), (5, 3), (5, 5),




and assume that one of the 16 unmarked squares has been removed from R(5, 5) to
form R−. Then a proposed tiling of R− must contain one tromino for each of the 9
marked squares, so that tiling must have area at least 9 · 3 = 27, which is absurd since
the area of R− is 24. Thus all 16 of the unmarked squares are bad.

Next we note that bad squares can also occur when (m, n) = (2, 5 + 3k), k =
0, 1, 2, . . . . Here some bad squares are those of the form (x, 3 j), j = 1, 2, . . . , k + 1,
x = 1 or 2. By symmetry we may assume that x = 1. To show that R(2, 5 + 3k) \
{(1, 3 j)} cannot be tiled, assume the opposite and let T be the tromino covering the
square (2, 3 j). Then to the left of T + {(1, 3 j)} lies either the rectangle R(2, 3 j − 1)

or the rectangle R(2, 3 j − 2), neither of which has area divisible by 3.
Finally, the square (3, 2) is bad in the 5 × (5 + 3k) case, that is, R(5, n) \ {(3, 2)}

cannot be tiled. For if (3, 2) were good, some tromino T would have to cover the
square (3, 1). If T lay above (3, 2) the square (1, 1) could not be reached, otherwise
the square (5, 1) could not be reached. Symmetrically, (3, 4 + 3k) is also bad in this
case.

DEFICIENT RECTANGLE THEOREM (COMPARE [2]). An m × n deficient rect-
angle, 2 ≤ m ≤ n, 3|mn − 1, has a tiling, regardless of the position of the miss-
ing square, if and only if (a) neither side has length 2 unless both of them do, and
(b) m �= 5. Furthermore, in all the exceptional cases the only bad squares are those
enumerated in the preceding discussion.

Proof. For this proof only, we change notation slightly and let R(m, n)− denote any
m × n rectangle of deficiency 1. The “outlier” R(2, 2)− is tiled with one tromino. First
assume that m ≥ 4, m �= 5, and 3 � m. The method of proof is to proceed inductively
after treating the cases m = 4, 7, 8, 10, and 11 individually. If m ≥ 13, then m − 6 > 6
so that we may slice a full rectangle of height 6 off of either the top or the bottom of
R(m, n)−, that is, R(m, n)− = R(m − 6, n)− + R(6, n). Since the last term is tileable
by the Chu-Johnsonbaugh Theorem, this first reduces the cases m ∈ [13, 17] to the
cases m ∈ [7, 11], then the cases m ∈ [19, 23] to the cases m ∈ [13, 17], and so on.

If m = 4, write R(4, 3k + 1)− = (k − 1)R(4, 3) + R(4, 4)−. Apply the Chu-
Johnsonbaugh Theorem to the first k − 1 terms. For the last term, observe that in [3],
Golomb showed that all 2k × 2k deficient squares can be tiled. (Its proof is an induc-
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tion argument almost identical to the one used above to tile the 2k × 2k dog-eared
squares.) If m = 7, we may write R(7, n)− = R(3, n) + R(4, n)− and thus reduce
the m = 7 case to the m = 4 case when n is even; while if n is odd, 6 divides n − 7
and R(7, n)− = ((n − 7)/6)R(7, 6) + R(7, 7)− is tiled using the Chu-Johnsonbaugh
Theorem and reference [2]. If m = 10; then R(10, n)− = R(7, n)− + R(3, n) so that
the Chu-Johnsonbaugh Theorem provides a reduction to the m = 7 case if n is even,
while R(10, n)− = R(10, n − 3)− + R(10, 3) reduces the odd n case to the even n
case. If m = 8, R(8, n)− = R(8, 8 + 3k)− = k R(8, 3) + R(8, 8)− is tiled by the Chu-
Johnsonbaugh Theorem and reference [3]. Finally if m = 11, n must be congruent to
either 8 or 11 modulo 6. If n = 8 + 6k, R(11, 8 + 6k)− = k R(11, 6) + R(11, 8)− with
the first terms tiled by the Chu-Johnsonbaugh Theorem and the last term tiled by the
m = 8 case since R(11, 8)− = R(8, 11)−, while if n = 11 + 6k, R(11, 11 + 6k)− =
k R(11, 6) + R(11, 11)−; the first terms are tiled by the Chu-Johnsonbaugh Theorem
and the tiling of the last term can be found in reference [1].

In view of the treatment of all the bad cases before the statement of this theo-
rem, it remains only to analyze the exceptional good cases. Since 3 divides mn − 1,
if m = 2, we must have n = 2 + 3k, k = 0, 1, . . . , while if m = 5, we must have
n = 5 + 3k, k = 0, 1, 2, . . . . Also notice that the (m, n) = (2, 2) case is not an excep-
tion. We’ll start with the 5 × 5 good cases. The tiling in FIGURE 6 above shows that
(1, 5) is good, while these two tilings show (3, 5) and (3, 3) to be good. Symmetry
considerations show that the remaining six marked tiles are also good. Thus all nine
marked tiles are good.

Figure 7 Tiling deficient 5 × 5 rectangles

Next, if (m, n) = (2, 5 + 3k), k = 0, 1, . . . , we determine to be good all the squares
of the form (x, 3 j + 1) or (x, 3 j + 2), j = 0, 1, . . . , k + 1, where x = 1 or 2. In fact,
we may write any of these as (k + 1)R(2, 3) + R(2, 2)−, apply (1) to each of the first
k + 1 terms, and use one more tromino to cover R(2, 2)−.

It remains to treat the deficient rectangles R(5, 8 + 3k)−, where k ≥ 0 and the re-
moved square is neither (3, 2) nor (3, 7 + 3k). Assume that all the cases R(5, 8)− and
R(5, 11)− have been done and that any square removed from now on is not (3, 2). Let
the square (i, j) be removed from R(5, 14). Symmetry allows the assumption j ≤ 7.
If (i, j) �= (3, 7), then the decomposition of the resulting R(5, 14)− into an R(5, 8)−
on the left and an R(5, 6) on the right allows a tiling, while R(5, 14) \ {(3, 7)} is tiled
by decomposing it into an R(5, 6) on the left and an R(5, 8)− on the right. The cases
of R(5, n), n ≥ 17 will be treated inductively. Symmetry allows us to consider only
R(5, n) \ {(i, j)} where j ≤ n/2 < n − 8 and where all but 2 tiles of R(5, n − 6) are
good. Now decompose into R(5, n − 6)− on the left and R(5, 6) on the right. Since
j �= (n − 6) − 1 the first term may be tiled, while the second is tiled with the Chu-
Johnsonbaugh Theorem.

The cases R(5, 8). By symmetry we may assume i ≥ 3 and j ≤ 4. Since (3, 2)

is bad, we have 11 cases to show good. If i ≥ 4 and j ∈ {1, 2, 4}, then (i, j) is a
good square of R(2, 8), so the decomposition of R(5, 8)− into a full upper rectangle
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R(3, 8) and a lower R(2, 8)− works in all six of these cases. There remain the five
cases (i, j) = (3, 1), (5, 3), (4, 3), (3, 3), and (3, 4). These are done in ad hoc fashion
in FIGURE 8.

Figure 8 Deficient 5 × 9 tilings

The cases R(5, 11). By symmetry we may assume i ≥ 3 and j ≤ 6. Since (3, 2) is
bad, we have 17 cases to show good. If i and j are both odd, (i, j) is a good square of
R(5, 5), so the decomposition of R(5, 11)− into a left R(5, 5)− and a full right R(5, 6)

works for these 6 cases. Five of the remaining 11 cases are done in ad hoc fashion in
FIGURE 9. A dark outlined 2 × 2 square appears in the tiling for the (4, 1) case that is
shown as the top left picture of FIGURE 9. Rotate that square 90◦ clockwise to produce
a tiling for the (4, 2) case; then rotate it another 90◦ to produce a tiling for the (5, 2)

Figure 9 Deficient 5 × 11 tilings
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case. Similar pairs of rotations produce tilings of the (4, 4) and (5, 4) cases from the
displayed tiling of the (4, 3) case, as well as tilings of the (4, 6) and (5, 6) cases from
the displayed tiling of the (4, 5) case.

Results and questions about 2-deficiency If two squares are removed from a rect-
angle, call the resultant shape a 2-deficient rectangle. The following proposition dis-
allows the possibility of making the natural definition of deficiency of order k, k ≥ 2
and then finding a direct extension of the Deficient Rectangle Theorem for higher de-
ficiencies.

PROPOSITION. No rectangle has the property that no matter which two 1 × 1
squares are removed, the remaining shape of area mn − 2 can be tiled.

For if the squares (1, 2) and (2, 1) are removed, then the square (1, 1) cannot be
covered by a tromino. (This also shows the proposition still holds even if “tiling”
is extended to mean “tiling by any collection of polyominoes which contains no
monomino.”)

Even though there will not be a direct analogue of the Deficient Rectangle Theorem,
there is room for some interesting work to be done here. Here is a program for what
to do about 2-deficiency. We extend the definition of good to 2-deficiency. A pair of
squares is good if their removal from a m × n rectangle leaves a figure that can be
tiled.

PROBLEM. For the general case of 2-deficiency, find all bad pairs of squares for
all m × n rectangles where mn ≡ 2 (mod 3). Slightly less generally, exactly when can
such a rectangle be covered by one domino and (mn − 2)/3 trominoes?

On the negative side, as we pointed out in the proof of the Proposition, the pair
{(2, 1), (1, 2)} is bad, that is, if square (2, 1) and square (1, 2) are removed, then
no tromino can cover square (1, 1). On the positive side, recall that in the applica-
tion given after the proof of the Dog-eared Rectangle Theorem we pointed out that
a tiling is always possible if the two removed squares are adjacent and in a corner
of the rectangle. In other words, if mn ≡ 2(mod 3), then the pair {(1, n), (2, n)} is
good. Now consider the 5 × 7 case. As in the analysis of the 5 × 5 case for defi-
cient rectangles done above, form a checkerboard-like pattern by marking each of the
12 squares that have both coordinates odd and assume that two of the 23 unmarked
squares have been removed from R(5, 7) to form R=. Then a proposed tiling of R=
must contain one tromino for each of the 12 marked squares, so that tiling must have
area at least 12 · 3 = 36, which is absurd since the area of R= is 33. This reasoning
disqualifies

(23
2

) = 253 pairs. Similar reasoning identifies a large number of bad pairs
for R(5, 13), . . . , R(5, 7 + 6k), . . . .
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