

A New Proof of Uniqueness for Multiple Trigonometric Series

Author(s): J. Marshall Ash

Source: Proceedings of the American Mathematical Society, Vol. 107, No. 2 (Oct., 1989), pp.

409-410

Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2047830

Accessed: 26/10/2009 12:24

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

A NEW PROOF OF UNIQUENESS FOR MULTIPLE TRIGONOMETRIC SERIES

J. MARSHALL ASH

(Communicated by R. Daniel Mauldin)

ABSTRACT. Georg Cantor's 1870 theorem that an everywhere convergent to zero trigonometric series has all its coefficients equal to zero is given a new proof. The new proof uses the first formal integral of the series, while Cantor's proof used the second formal integral.

In 1870 Georg Cantor proved the following uniqueness theorem:

Theorem (Cantor [3]). If $\{a_n\}$ and $\{b_n\}$ are sequences of real numbers and if

(1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

converges at each x to 0, then the series vanishes identically; i.e., all its coefficients are 0.

Cantor's proof used an idea of Riemann: That much of the behavior of (1) can be inferred from studying its formal second integral, $\frac{1}{4}a_0x^2 - \sum_{n=1}^{\infty}(a_n\cos nx + b_n, \sin nx)/n^2$. For this proof see [7, p. 326], [1, pp. 1-4] or [3]. The idea of the present work is to use the *first* formal integral, $L(x) := \frac{1}{2}a_0x + \sum_{n=1}^{\infty}(a_n\sin nx - b_n\cos nx)/n$. (L is for Lebesgue.) Zygmund points out that the difficulty in using L(x) is that L(x) need not converge everywhere even if the series (1) does. (For example $\sum \sin nx/\log n$ converges everywhere but $-\sum \cos n0/n\log n$ diverges.) Nevertheless, here is a proof, dedicated to the would be extenders of Cantor's theorem, which uses L.

Proof. By the theorem of Cantor-Lebesgue ([7, p. 316], [1, Appendix 1] or [2]), a_n and b_n tend to 0 as n tends to ∞ so that the coefficients of the series part of L are o(1/n), whence the sum of their squares is finite. By the Riesz-Fisher Theorem, this series represents an L^2 function. ([7, p. 127]) A theorem of Rajchman and Zygmund says that at every point the symmetric approximate derivative of L is equal to (the value of (1) which is) 0. ([7, p. 324]) We may also assume that L is approximately continuous at every

Received by the editors January 6, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 42A63; Secondary 26A24.

point of a 2π -periodic set E of full Lebesgue measure, since every measurable function is approximately continuous a.e. ([6, Vol. 2, p. 257]). Since L(x) is approximately continuous and has non-negative symmetric derivative on E, by a recent elementary but ingenious and difficult result of C. Freiling and D. Rinne, E is non-decreasing on E ([4] and [5, Theorem 2]). Symmetrically E is non-increasing on E, so that there is a constant E with E is E for all E in other words, for all E is E in other words, for all E in E in

(2)
$$-c + \sum_{n=1}^{\infty} (a_n \sin nx - b_n \cos nx)/n = -\frac{1}{2}a_0x.$$

The left side of equation (2) represents an L^2 function and is therefore Abel summable a.e. to that function ([7, p. 90, Equation 3.9 and p. 80, Equation 1.33]). At each point of Abel summability Tauber's original Tauberian theorem (recall the coefficients are o(1/n)) guarantees convergence ([7, p. 81]). Fix one such point x_0 which is also in E. Since equation (2) holds at x_0 and at $x_0+2\pi$ and the left side has the same value at both points, it follows that $a_0=0$. This means that the L^2 function represented by the left side of equation (2) is 0 a.e. Bessel's inequality ([7, p. 13, Equation 7.5]) gives that $(-c)^2 + \sum (a_n^2 + b_n^2)/n^2 \le 0$. The Theorem is proved.

Remark. The theorem of Freiling and Rinne which replaces the theorem of Schwarz and Cantor ([1, Appendix 2], [7, pp. 23 and 326], or [3]) that appears in the classical proof of the Theorem seems to avoid the maximum principle. However, Freiling and Rinne's present proof seems to require special properties of \mathbf{R}^1 that are not enjoyed by \mathbf{R}^n for n > 1.

REFERENCES

- 1. J. M. Ash, Uniqueness of representation by trigonometric series, Amer. Math. Monthly, (to appear).
- G. Cantor, Über einen die trigonometrischen Reihen betreffenden Lehrsatz, Crelles J. für Math.
 (1870) 130-138; also in Gesammelte Abhandlungen, Georg Olms, Hildesheim, 1962, 71-79.
- 3. _____, Beweis, das eine für jeden reellen Wert von x durch eine trigonometrische Reihe gegebene Funktion f(x) sich nur auf eine einzige Weise in dieser Form darstellen lässt, Crelles J. für Math. 72 (1870) 139–142; also in Gesammelte Abhandlungen, Georg Olms, Hildesheim, 1962, 80–83.
- 4. C. Freiling and D. Rinne, A symmetric density property: monotonicity and the approximate symmetric derivative, Proc. of the Amer. Math. Soc., 104 (1988) 1098-1102.
- 5. _____, A symmetric density property for measurable sets, Real Analysis Exchange, 14 (1988-89) 203-209.
- 6. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, 2 vols., Dover Publications, New York, 1957, MR 19 #1166.
- A. Zygmund, Trigonometric series, vol. 1, 2nd rev. ed., Cambridge Univ. Press, New York, 1959, MR 21 #6498.

DEPARTMENT OF MATHEMATICS, DE PAUL UNIVERSITY, CHICAGO, ILLINOIS 60614