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Sorting by transpositions

1234567 cost

w: 3715246
J 5—-4
3715546 3.1 How did we make these choices?
1732546
. : -
! 4_9 Is 8 the minimal sorting cost?
1237546 , . .
! 6_ 4 Let's return to straight selection sort. ..
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Playing both sides
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The Bruhat graph

321 515251 = S251%
231 312 5152% &5251
? el 7T
2
213 132 S1 2
PN P
123 e

Depth: dp(w) = min{cost of path e — --- — w}
where each reflection t = wsw™! has cost dp(t) = fs(w) + 1
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First observations

@ Definition makes sense in any Coxeter group

o /1(w) < dp(w) < ls(w), in fact

o (L7(w)+ Ls(w))/2 < dp(w) < £s(w)

o if /7(w) = dp(w), then £1(w) = £s(w), and for the
symmetric group these are known to be the 321- and
3412-avoiders (Edelman, Tenner)
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Theorem (P.-Tenner)

For any permutation w,

dp(w) = 3" (w; — )

w;>i

Ex: dp(3715246) = (3 — 1)+ (7—2)+ (5—4) =8

> w>i(wi — i) is "Edif" (difference of excedences) in work of
Clarke, Steingrimsson, Zeng (1997)

2- 3 ysilwi —i) =% |w; — i] is known as “total displacement”
studied by Diaconis and Graham (1977)



The symmetric group

Theorem (P.-Tenner)

For any permutation w, dp(w) = ¢s(w) (= inv(w)) if and only if
w avoids the pattern 321.




The symmetric group

Theorem (P.-Tenner)

For any permutation w, dp(w) = ¢s(w) (= inv(w)) if and only if
w avoids the pattern 321.
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k=0 1 2 3 4 5 6 7 8 9 10 11 12
n=1 1
2 1 1
3 1 2 3
4 1 3 7 9 4
5 1 4 12 24 35 24 20
6 1 5 18 46 93 137 148 136 100 36
7 1 6 25 76 187 366 591 744 884 832 716 360 252
8 1 7 33 115 327 765 1523 2553 3696 4852 5708 5892

Knuth: “The generating function for total displacement does not
appear to have a simple form."”

Gardner: “We are continually faced with a series of great
opportunities brilliantly disguised as insoluble problems.”
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Theorem (Guay-Paquet, P.)
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The distribution of depth

A refined version of this continued fraction expansion also appears
in Clarke, Steingrimsson, Zeng (1997)

Proof relies on a map from permutations to Motzkin paths that
takes depth to area under the path. ..
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Map first appears in work of Foata and Zeilberger (1990)
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Map to Motzkin paths

Consequences of the map to Motzkin paths:

o maximum depth = maximum area = |n?/4|

@ number of permutatons with maximal depth is

(k1)? if n=12k

{w € S, :dp(w) = [n?/4]}| = {n(k!)2 ifn=2k+1
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@ Can we characterize/count the number of permutations for
which dp(w) = (¢s(w) + ¢1(w))/27

1,2,6,23,103,511,2719, 15205, ...?2(not in OEIS)

@ Can we find combinatorial characterizations for depth in other
Coxeter groups, e.g., the hyperoctahedral group B,?

@ In type B, the elements for which dp(w) = ¢s(w) are
25,14, 42,132, 429

forn=1,...,6.

{w € By : dp(w) = ls(w)}| = Cosa?
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