Farey Permutations

S. Bockting-Conrad, Y. Kashina, T. K. Petersen, B. Tenner

DePaul University

AMS - Hawaii

March 23, 2019

1 Choose a line $y = \alpha x + \beta$

- Choose a line $y = \alpha x + \beta$
- $oldsymbol{2}$ Choose a nonnegative integer n

- Choose a line $y = \alpha x + \beta$
- Compute the list of numbers

$$[f(0), f(1), \dots, f(n)]$$

where $f(i) = \alpha i + \beta \pmod{1}$

- Choose a line $y = \alpha x + \beta$
- Compute the list of numbers

$$[f(0), f(1), \ldots, f(n)]$$

where $f(i) = \alpha i + \beta \pmod{1}$

• Sort this list with a permutation $\pi = \pi_{\alpha,\beta}$:

$$0 \le f(\pi(0)) \le f(\pi(1)) \le \dots \le f(\pi(n)) < 1$$

Choose
$$\alpha=.44$$
 , $\beta=.32$, $n=6$

Choose
$$\alpha = .44$$
, $\beta = .32$, $n = 6$

 $\left[0.32, 0.76, 0.20, 0.64, 0.08, 0.52, 0.96\right]$

Choose
$$\alpha=.44$$
, $\beta=.32$, $n=6$

$$\left[0.32, 0.76, 0.20, 0.64, 0.08, 0.52, 0.96\right]$$

sorted:

$$\left[0.08, 0.20, 0.32, 0.52, 0.64, 0.76, 0.96\right]$$

Choose
$$\alpha = .44$$
, $\beta = .32$, $n = 6$

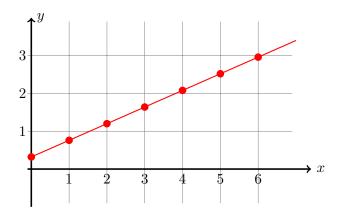
$$\left[0.32, 0.76, 0.20, 0.64, 0.08, 0.52, 0.96\right]$$

sorted:

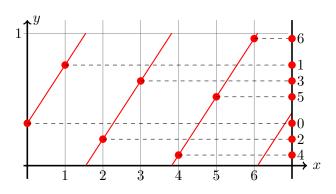
$$\left[0.08, 0.20, 0.32, 0.52, 0.64, 0.76, 0.96\right]$$

$$\pi = [4, 2, 0, 5, 3, 1, 6]$$

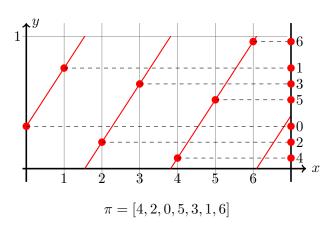
Choose $\alpha=.44$, $\beta=.32$, n=6

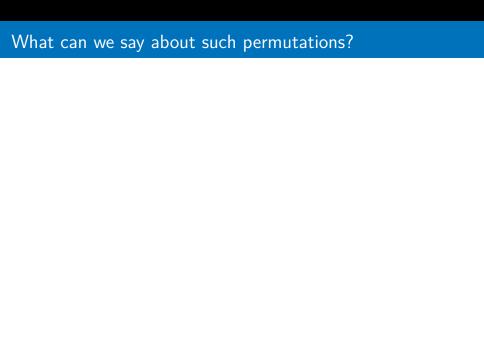


Choose $\alpha=.44$, $\beta=.32$, n=6



Choose $\alpha=.44$, $\beta=.32$, n=6





 $Q\colon \mathsf{Does}$ every permutation arise this way?

Q: Does every permutation arise this way?

A: No, only about n^3 of them

Q: Does every permutation arise this way?

A: No, only about n^3 of them

Q: How sensitive is π to $(\alpha, \beta) \in [0, 1) \times [0, 1)$?

Q: Does every permutation arise this way?

A: No, only about n^3 of them

Q: How sensitive is π to $(\alpha, \beta) \in [0, 1) \times [0, 1)$?

A: We can say precisely

Enumerative Result

The number of Farey permutations of $\{0,1,\ldots,n\}$, for $n=0,1,2,\ldots$ begins

 $1, 2, 6, 16, 30, 60, 84, 144, 198, \dots$

Enumerative Result

The number of Farey permutations of $\{0,1,\ldots,n\}$, for $n=0,1,2,\ldots$ begins

$$1, 2, 6, 16, 30, 60, 84, 144, 198, \dots$$

Theorem

For $n \ge 1$, the number of Farey permutations is given by

$$(n+1)\sum_{k=1}^{n}\varphi(k),$$

where $\varphi(k)$ is the totient function.

Enumerative Result

The number of Farey permutations of $\{0,1,\ldots,n\}$, for $n=0,1,2,\ldots$ begins

$$1, 2, 6, 16, 30, 60, 84, 144, 198, \dots$$

Theorem

For $n \ge 1$, the number of Farey permutations is given by

$$(n+1)\sum_{k=1}^{n}\varphi(k),$$

where $\varphi(k)$ is the totient function. Asymptotically, this is $\frac{3n^3}{\pi^2}$.

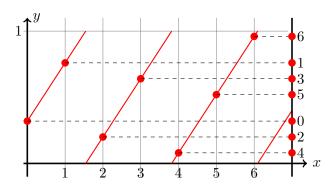
The (n+1) factor is easy to understand

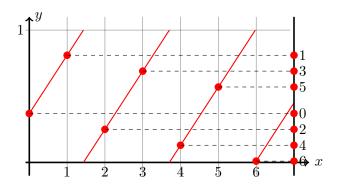
Proposition

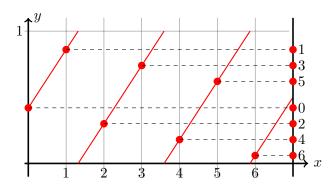
For fixed α , let $\pi = \pi_{\alpha,0}$. Then

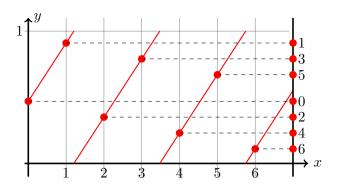
$$\{\pi_{\alpha,\beta}: 0 \le \beta < 1\} = \{\pi \cdot c^k : k = 0, 1, \dots, n\}$$

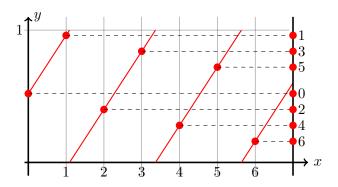
where c is the cycle $c = (n01 \cdots (n-1))$

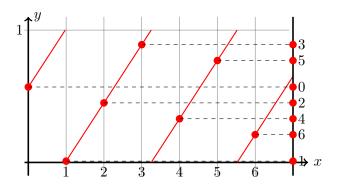




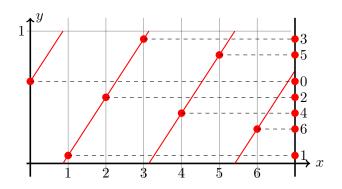








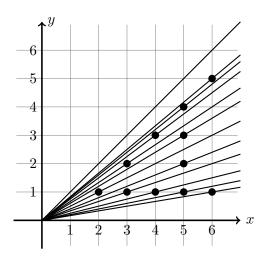
The (n+1) factor is easy to understand

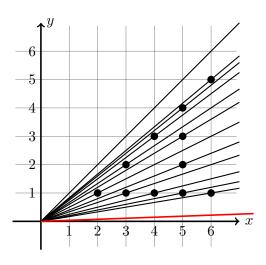


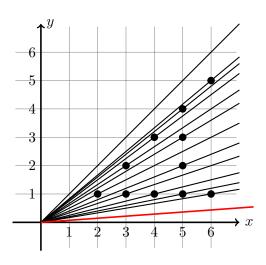
The factor of

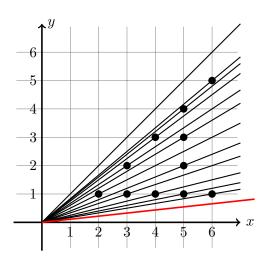
$$\varphi(1) + \varphi(2) + \dots + \varphi(n)$$

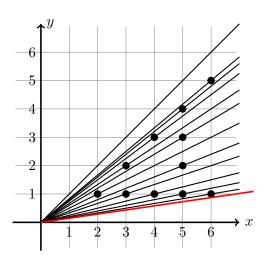
is more interesting

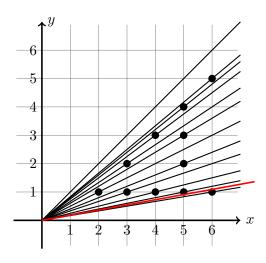


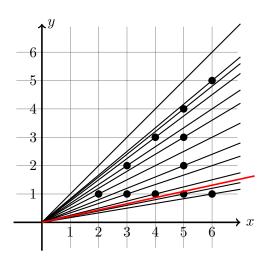


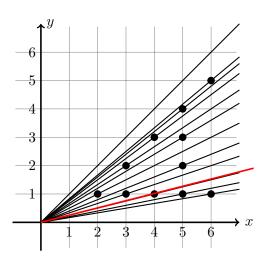


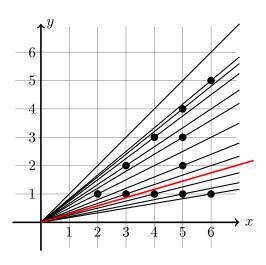


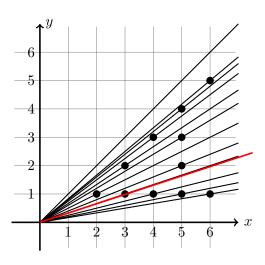


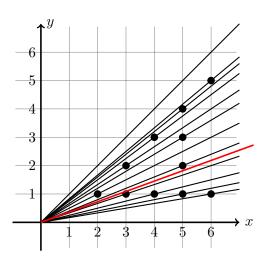


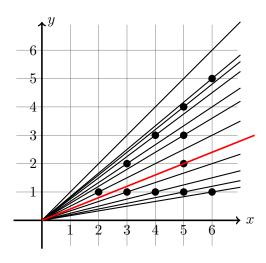


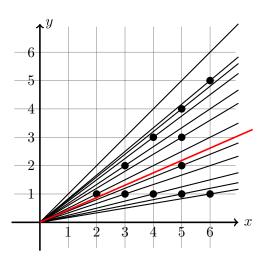


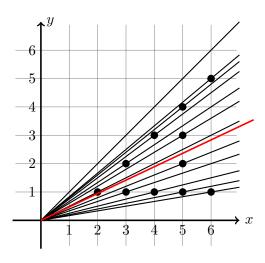


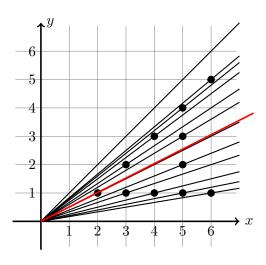


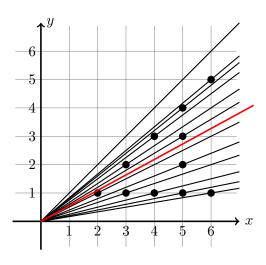


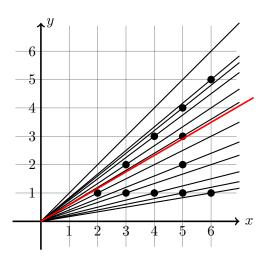


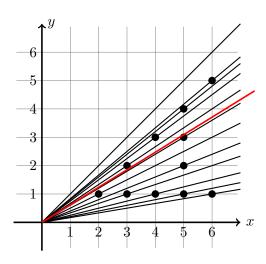


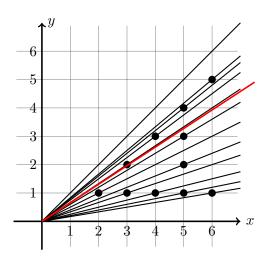


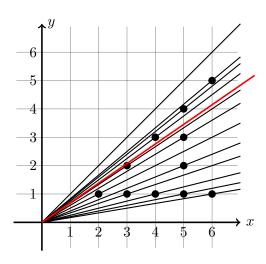


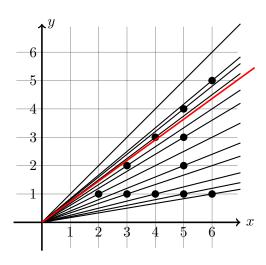


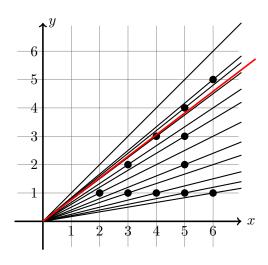


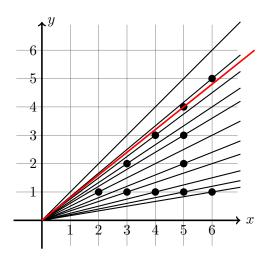


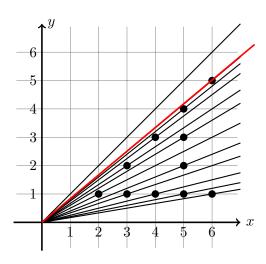


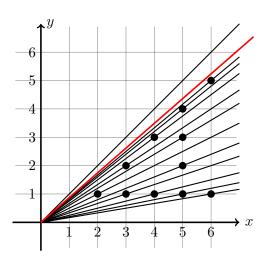


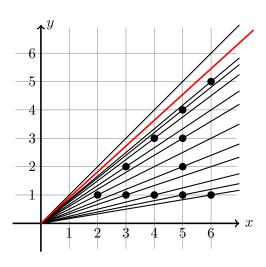


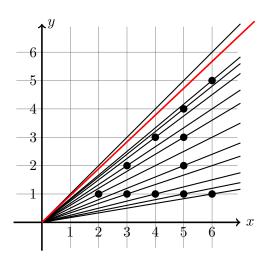












Farey sequences

Reduced fractions, denominator at most \boldsymbol{n}

Farey sequences

3										
Reduced $\frac{0}{1}$	fraction	ıs, de	non	ninato	r at r	most n).			
$\frac{0}{1}$					$\frac{1}{2}$					1 1
$\frac{0}{1}$			$\frac{1}{3}$		$\frac{1}{2}$		$\frac{2}{3}$			$\frac{1}{1}$
$\frac{0}{1}$		$\frac{1}{4}$	$\frac{1}{3}$		$\frac{1}{2}$		$\frac{2}{3}$	$\frac{3}{4}$		
$\frac{0}{1}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	1 1
0 1	$\frac{1}{6}$ $\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5} \frac{5}{6}$	
$\frac{0}{1}$	$\frac{1}{7}\frac{1}{6}\frac{1}{5}$	$\frac{1}{4}$ $\frac{2}{7}$	$\frac{1}{3}$	$\frac{2}{5} \frac{3}{7}$	$\frac{1}{2}$	$\frac{4}{7} \frac{3}{5}$	$\frac{2}{3}$	$\frac{5}{7}$ $\frac{3}{4}$	$\frac{4}{5} \frac{5}{6} \frac{6}{7}$	$\frac{1}{1}$

A Farey interval $(\frac{a}{b},\frac{c}{d})$ is a pair of fractions that are consecutive in the Farey sequence for some n

A Farey interval $(\frac{a}{b},\frac{c}{d})$ is a pair of fractions that are consecutive in the Farey sequence for some n

Proposition (Sós, Surányi (both 1958))

There is a bijection between intervals in the nth Farey sequence and the Farey permutations $\pi_{\alpha,0}$ of $\{0,1,\ldots,n\}$.

A Farey interval $(\frac{a}{b},\frac{c}{d})$ is a pair of fractions that are consecutive in the Farey sequence for some n

Proposition (Sós, Surányi (both 1958))

There is a bijection between intervals in the nth Farey sequence and the Farey permutations $\pi_{\alpha,0}$ of $\{0,1,\ldots,n\}$.

$$\varphi(n) = |\{1 \le i \le n : \gcd(i, n) = 1\}|$$
 (reduced fractions i/n)

A Farey interval $(\frac{a}{b},\frac{c}{d})$ is a pair of fractions that are consecutive in the Farey sequence for some n

Proposition (Sós, Surányi (both 1958))

There is a bijection between intervals in the nth Farey sequence and the Farey permutations $\pi_{\alpha,0}$ of $\{0,1,\ldots,n\}$.

 $\varphi(n)=|\{1\leq i\leq n:\gcd(i,n)=1\}|$ (reduced fractions i/n) hence the number of Farey intervals in the nth sequence is:

$$\varphi(1) + \varphi(2) + \dots + \varphi(n)$$

Enumerative Result

The number of Farey permutations of $\{0,1,\ldots,n\}$, for $n=0,1,2,\ldots$ begins

$$1, 2, 6, 16, 30, 60, 84, 144, 198, \dots$$

Theorem

For $n \ge 1$, the number of Farey permutations is given by

$$(n+1)\sum_{k=1}^{n}\varphi(k),$$

where $\varphi(k)$ is the totient function. Asymptotically, this is $\frac{3n^3}{\pi^2}$.

More details on $\beta = 0$

Sós, Surányi work on Steinhaus' "three gaps conjecture"

Theorem (Sós, Surányi (both 1958))

If $a/b < \alpha < c/d$, then $\pi = \pi_{\alpha,0}$ is given by:

More details on $\beta = 0$

Sós, Surányi work on Steinhaus' "three gaps conjecture"

Theorem (Sós, Surányi (both 1958))

If $a/b < \alpha < c/d$, then $\pi = \pi_{\alpha,0}$ is given by:

•
$$\pi(0) = 0$$
, $\pi(1) = b$, $\pi(n) = d$

More details on $\beta = 0$

Sós, Surányi work on Steinhaus' "three gaps conjecture"

Theorem (Sós, Surányi (both 1958))

If $a/b < \alpha < c/d$, then $\pi = \pi_{\alpha,0}$ is given by:

- $\pi(0) = 0$, $\pi(1) = b$, $\pi(n) = d$
- for $k \geq 1$,

$$\pi(k+1) = \begin{cases} \pi(k) + b & \text{if } \pi(k) < d \text{ and } b + \pi(k) \leq n, \\ \pi(k) - d & \text{if } \pi(k) > d \text{ and } b + \pi(k) > n \\ \pi(k) + b - d & \text{if } \pi(k) < d \text{ and } b + \pi(k) > n. \end{cases}$$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

 $\frac{0}{1}$

 $\frac{1}{1}$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

 $\frac{0}{1}$

 $\frac{1}{2}$

 $\frac{1}{1}$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

 $\frac{0}{1}$

 $\frac{1}{2}$

 $\frac{1}{1}$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{0}{1}$$
 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{2}{3}$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{0}{1}$$
 $\frac{1}{4}$ $\frac{1}{3}$ $\frac{2}{5}$ $\frac{1}{2}$ $\frac{3}{5}$ $\frac{2}{3}$ $\frac{3}{4}$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

The *mediant*:
$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

Set
$$\alpha = .453$$
, $n = 8$,

$$\frac{0}{1} < \alpha < \frac{1}{1}$$

$$\frac{0}{1} < \alpha < \frac{1}{1}$$

$$\frac{0}{1} < \alpha < \frac{1}{2}$$

$$\frac{0}{1} < \alpha < \frac{1}{1}$$

$$\frac{0}{1} < \alpha < \frac{1}{2}$$

$$\frac{1}{3} < \alpha < \frac{1}{2}$$

$$\begin{array}{l} \frac{0}{1} < \alpha < \frac{1}{1} \\ \frac{0}{1} < \alpha < \frac{1}{2} \\ \frac{1}{3} < \alpha < \frac{1}{2} \\ \frac{2}{5} < \alpha < \frac{1}{2} \end{array}$$

$$\begin{array}{l} \frac{0}{1} < \alpha < \frac{1}{1} \\ \frac{0}{1} < \alpha < \frac{1}{2} \\ \frac{1}{3} < \alpha < \frac{1}{2} \\ \frac{2}{5} < \alpha < \frac{1}{2} \\ \frac{3}{7} < \alpha < \frac{1}{2} \end{array}$$

$$\begin{array}{l} \frac{0}{1} < \alpha < \frac{1}{1} \\ \frac{0}{1} < \alpha < \frac{1}{2} \\ \frac{1}{3} < \alpha < \frac{1}{2} \\ \frac{2}{5} < \alpha < \frac{1}{2} \\ \frac{3}{7} < \alpha < \frac{1}{2} \end{array}$$

```
Set \alpha = .453, n = 8, \alpha \approx 4/9 now, f(i) \approx 4i \pmod{9},
```

```
[ \ , \ , \ , \ , \ , \ , \ , \ ]
```

```
Set \alpha = .453, n = 8, \alpha \approx 4/9 now, f(i) \approx 4i \pmod{9},
```

```
[0, , , , , , , , , ]
```

```
Set \alpha = .453, n = 8, \alpha \approx 4/9 now, f(i) \approx 4i \pmod{9},
```

```
[0,4, , , , , , , ]
```

```
Set \alpha = .453, n = 8, \alpha \approx 4/9 now, f(i) \approx 4i \pmod{9},
```

```
[0,4,8, , , , , , , ]
```

```
Set \alpha = .453, n = 8, \alpha \approx 4/9 now, f(i) \approx 4i \pmod{9},
```

```
[0,4,8,3, , , , , , ]
```

```
Set \alpha=.453, n=8, \alpha\approx 4/9 now, f(i)\approx 4i\pmod 9,
```

```
Set \alpha=.453, n=8, \alpha\approx 4/9 now, f(i)\approx 4i\pmod 9,
```

Set
$$\alpha=.453$$
, $n=8$, $\alpha\approx 4/9$ now, $f(i)\approx 4i\pmod 9$,

Set
$$\alpha=.453,\ n=8,\ \alpha\approx 4/9$$
 now, $f(i)\approx 4i\pmod 9$,

$$[0,4,8,3,7,2,6,1, ,]$$

Set
$$\alpha=.453$$
, $n=8$, $\alpha\approx 4/9$ now, $f(i)\approx 4i\pmod 9$,

$$[0,4,8,3,7,2,6,1,5,]$$

Set $\alpha = .453$, n = 8, $\alpha \approx 4/9$ now, $f(i) \approx 4i \pmod{9}$,

 $[0,4,8,3,7,2,6,1,5,0,\ldots]$

Set $\alpha = .453$, n = 8, $\alpha \approx 4/9$ now, $f(i) \approx 4i \pmod{9}$,

$$[0,4,8,3,7,2,6,1,5,0,\dots]$$

entries 0 to 8 sort with

$$\pi = [0, 7, 5, 3, 1, 8, 6, 4, 2]$$

note two gap sizes: b=7 and d=2

Set $\alpha = .453$, n = 8, $\alpha \approx 4/9$ now, $f(i) \approx 4i \pmod{9}$,

$$[0,4,8,3,7,2,6,1,5,0,\ldots]$$

entries 0 to 8 sort with

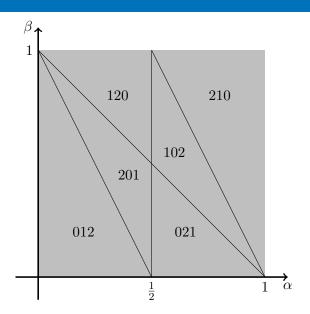
$$\pi = [0, 7, 5, 3, 1, 8, 6, 4, 2]$$

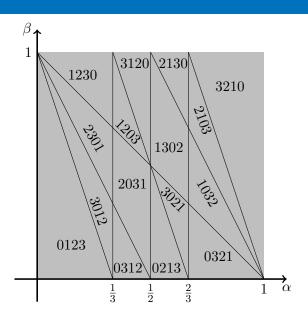
note two gap sizes: b=7 and d=2 if we wanted only n=7, then delete 8 to get a gap of size b-d=5:

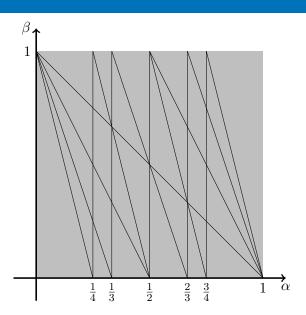
$$\pi = [0, 7, 5, 3, 1, 6, 4, 2]$$

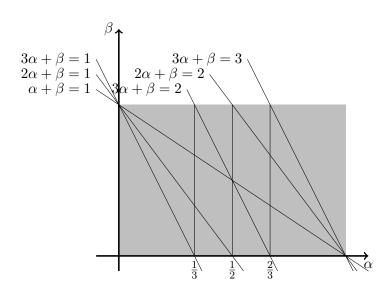
Back to the general case

We now try to consider all values of α and β that give the same permutation









Theorem

Fix n and let π be a Farey permutation with $\pi(k) = 0$. Then $\pi = \pi_{\alpha,\beta}$ for all points α,β such that:

Theorem

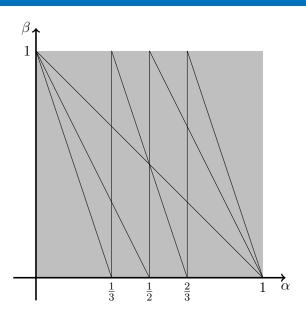
Fix n and let π be a Farey permutation with $\pi(k) = 0$. Then $\pi = \pi_{\alpha,\beta}$ for all points α,β such that:

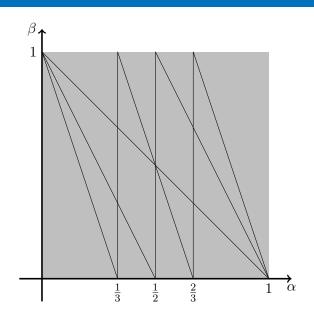
• α is in the Farey interval $(\frac{a}{b}, \frac{c}{d})$, where $b = \pi(k+1)$ and $d = \pi(k-1)$ (which uniquely determines the interval)

Theorem

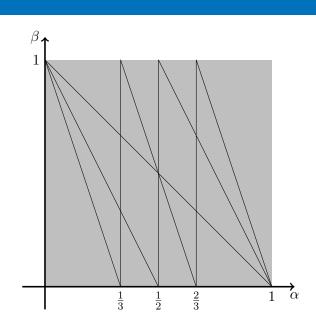
Fix n and let π be a Farey permutation with $\pi(k) = 0$. Then $\pi = \pi_{\alpha,\beta}$ for all points α,β such that:

- α is in the Farey interval $(\frac{a}{b}, \frac{c}{d})$, where $b = \pi(k+1)$ and $d = \pi(k-1)$ (which uniquely determines the interval)
- $\ell(0) < \beta < \ell(n)$, where $\ell(i)$ is the line defined by $\ell(i) = 1 + |\pi(i)\frac{a}{b}| \pi(i)\alpha$

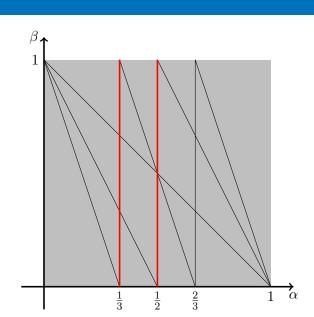




$$b=3, d=2$$



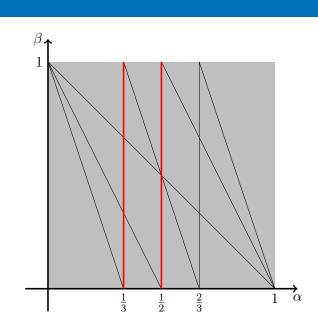
$$b=3, d=2$$



$$b = 3, d = 2$$

$$\ell(0) = 1 - 2\alpha$$

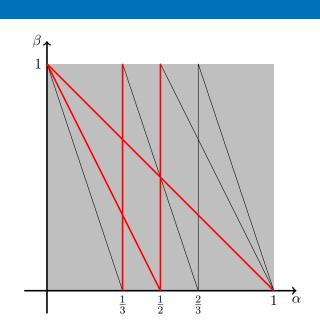
$$\ell(n) = 1 - \alpha$$



$$b=3, d=2$$

$$\ell(0) = 1 - 2\alpha$$

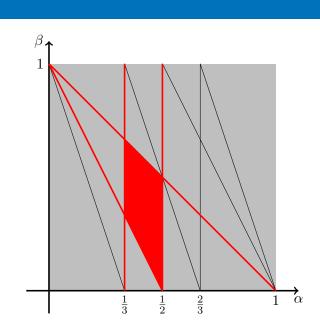
$$\ell(n) = 1 - \alpha$$



$$b=3, d=2$$

$$\ell(0) = 1 - 2\alpha$$

$$\ell(n) = 1 - \alpha$$



Motivation

Original motivation here came from thinking about pseudo-randomness, e.g., Elizalde's work with discrete dynamical systems (" β -shifts") and Steele's work with the sequences $\{\alpha n \pmod{1}\}, n \to \infty$ (related to Ulam's problem of longest increasing subsequences)

Motivation

Original motivation here came from thinking about pseudo-randomness, e.g., Elizalde's work with discrete dynamical systems (" β -shifts") and Steele's work with the sequences $\{\alpha n \pmod{1}\}, n \to \infty$ (related to Ulam's problem of longest increasing subsequences)

The hope was that by fixing n large and sampling $(\alpha,\beta)\in[0,1)\times[0,1)$, we might achieve permutations with interesting statistical properties

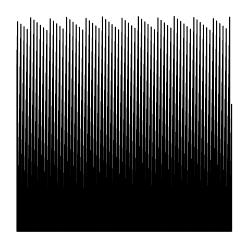
Motivation

Original motivation here came from thinking about pseudo-randomness, e.g., Elizalde's work with discrete dynamical systems (" β -shifts") and Steele's work with the sequences $\{\alpha n \pmod{1}\}, n \to \infty$ (related to Ulam's problem of longest increasing subsequences)

The hope was that by fixing n large and sampling $(\alpha,\beta)\in[0,1)\times[0,1)$, we might achieve permutations with interesting statistical properties

...the jury is still out, but

Random Farey permutations are not very random!



Thank you!