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What is a Farey permutation?

Q Choose a liney =ax+ 6
@ Choose a nonnegative integer n

© Compute the list of numbers

[£(0), f(1), .-, f(n)]

where f(i) = ai + 8 (mod 1)
@ Sort this list with a permutation 7™ = 7, g:

0<f((0) < f(x(1)) <--- < flw(n)) <1
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Example

Choose a = 44, 6 =.32, n =6

7 =1[4,2,0,5,3,1,6]
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What can we say about such permutations?

Q: Does every permutation arise this way?
A: No, only about n? of them
Q: How sensitive is 7 to (a, 5) € [0,1) x [0,1)?

A: We can say precisely
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Proposition

For fixed i, let m = 74 0. Then

{ﬂ'a,/;:0§6<1}={7r~ck:k=0,1,...,n}

where c is the cycle ¢ = (n01---(n — 1))
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Results

The factor of
e(1) +¢(2) + -+ p(n)

is more interesting
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Farey sequences

Reduced fractions, denominator at most n
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Bijection with Farey intervals

A Farey interval (§, %) is a pair of fractions that are consecutive in

the Farey sequence for some n

Proposition (Sés, Suranyi (both 1958))

There is a bijection between intervals in the nth Farey sequence
and the Farey permutations 7, of {0,1,...,n}.

o(n) ={1 <i<n:ged(i,n) = 1}| (reduced fractions i/n)
hence the number of Farey intervals in the nth sequence is:

e(1) +¢(2) + -+ p(n)
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The number of Farey permutations of {0,1,...,n}, for
n=20,1,2,... begins
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More details on 5 = 0

Sés, Suranyi work on Steinhaus’ “three gaps conjecture”

Theorem (Sés, Suranyi (both 1958))

Ifa/b < o <c/d, thent =7, is given by:
o 7(0)=0,7(1)=b, n(n) =d
o fork >1,

a(k)+b  ifn(k) <dandb+ (k) <n
n(k+1)=m(k)—d ifw(k) >dand b+ (k) >n
n(k)+b—d ifm(k)<dandb+n(k) > n.
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Set o = .453, n = 8, find Farey interval in which the mediant has
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|dea of proof via mediant approximation

Set « = .453, n =8, a = 4/9
now, f(i) ~ 4i (mod 9),

[0,4,8,3,7,2,6,1,5,0,...]

entries 0 to 8 sort with
T=10,7,5,3,1,8,6,4,2]

note two gap sizes: b="7 and d = 2
if we wanted only n = 7, then delete 8 to get a gap of size
b—d=05:

T =1[0,7,5,3,1,6,4,2]



Back to the general case

We now try to consider all values of & and 3 that give the same
permutation
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Fix n and let m be a Farey permutation with w(k) = 0. Then
T = 7, for all points o, B such that:

a c

® «a is in the Farey interval (3, ), where b = m(k + 1) and
d = m(k — 1) (which uniquely determines the interval)

e ((0) < B < €(n), where £(i) is the line defined by
(@) =1+ [m(i) %] — m(i)c
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subsequences)
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Motivation

Original motivation here came from thinking about
pseudo-randomness, e.g., Elizalde's work with discrete dynamical
systems (“[-shifts”) and Steele’'s work with the sequences {an
(mod 1)},n — oo (related to Ulam's problem of longest increasing
subsequences)

The hope was that by fixing n large and sampling
(o, 8) € ]0,1) x [0,1), we might achieve permutations with
interesting statistical properties

...the jury is still out, but



Random Farey permutations are not very random!

Thank you!



