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What is a Farey permutation?

1 Choose a line y = αx+ β

2 Choose a nonnegative integer n
3 Compute the list of numbers

[f(0), f(1), . . . , f(n)]

where f(i) = αi+ β (mod 1)
4 Sort this list with a permutation π = πα,β:

0 ≤ f(π(0)) ≤ f(π(1)) ≤ · · · ≤ f(π(n)) < 1
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Example

Choose α = .44, β = .32, n = 6

[0.32, 0.76, 0.20, 0.64, 0.08, 0.52, 0.96]

sorted:
[0.08, 0.20, 0.32, 0.52, 0.64, 0.76, 0.96]

π = [4, 2, 0, 5, 3, 1, 6]
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What can we say about such permutations?

Q: Does every permutation arise this way?

A: No, only about n3 of them

Q: How sensitive is π to (α, β) ∈ [0, 1)× [0, 1)?

A: We can say precisely
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Enumerative Result

The number of Farey permutations of {0, 1, . . . , n}, for
n = 0, 1, 2, . . . begins

1, 2, 6, 16, 30, 60, 84, 144, 198, . . .

Theorem
For n ≥ 1, the number of Farey permutations is given by

(n+ 1)
n∑
k=1

ϕ(k),

where ϕ(k) is the totient function. Asymptotically, this is 3n3

π2 .
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Results

The (n+ 1) factor is easy to understand

Proposition
For fixed α, let π = πα,0. Then

{πα,β : 0 ≤ β < 1} = {π · ck : k = 0, 1, . . . , n}

where c is the cycle c = (n01 · · · (n− 1))
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Results

The factor of
ϕ(1) + ϕ(2) + · · ·+ ϕ(n)

is more interesting
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Farey sequences
Reduced fractions, denominator at most n
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Bijection with Farey intervals

A Farey interval (ab ,
c
d) is a pair of fractions that are consecutive in

the Farey sequence for some n

Proposition (Sós, Surányi (both 1958))
There is a bijection between intervals in the nth Farey sequence
and the Farey permutations πα,0 of {0, 1, . . . , n}.

ϕ(n) = |{1 ≤ i ≤ n : gcd(i, n) = 1}| (reduced fractions i/n)
hence the number of Farey intervals in the nth sequence is:

ϕ(1) + ϕ(2) + · · ·+ ϕ(n)
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More details on β = 0

Sós, Surányi work on Steinhaus’ “three gaps conjecture”

Theorem (Sós, Surányi (both 1958))
If a/b < α < c/d, then π = πα,0 is given by:

π(0) = 0, π(1) = b, π(n) = d

for k ≥ 1,

π(k + 1) =


π(k) + b if π(k) < d and b+ π(k) ≤ n,
π(k)− d if π(k) > d and b+ π(k) > n

π(k) + b− d if π(k) < d and b+ π(k) > n.
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Idea of proof via mediant approximation

Set α = .453, n = 8,

find Farey interval in which the mediant has
denominator greater than n:

0
1 < α <

1
1

0
1 < α <

1
2

1
3 < α <

1
2

2
5 < α <

1
2

3
7 < α <

1
2

So α ≈ 4/9
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Idea of proof via mediant approximation

Set α = .453, n = 8, α ≈ 4/9
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note two gap sizes: b = 7 and d = 2
if we wanted only n = 7, then delete 8 to get a gap of size
b− d = 5:

π = [0, 7, 5, 3, 1, 6, 4, 2]
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Back to the general case

We now try to consider all values of α and β that give the same
permutation
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π = πα,β for all points α, β such that:

α is in the Farey interval (ab ,
c
d), where b = π(k + 1) and

d = π(k − 1) (which uniquely determines the interval)
`(0) < β < `(n), where `(i) is the line defined by
`(i) = 1 + bπ(i)ab c − π(i)α
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Motivation

Original motivation here came from thinking about
pseudo-randomness, e.g., Elizalde’s work with discrete dynamical
systems (“β-shifts”) and Steele’s work with the sequences {αn
(mod 1)}, n→∞ (related to Ulam’s problem of longest increasing
subsequences)

The hope was that by fixing n large and sampling
(α, β) ∈ [0, 1)× [0, 1), we might achieve permutations with
interesting statistical properties

. . . the jury is still out, but
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Random Farey permutations are not very random!

Thank you!


