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Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove
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(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove

COMPUTING AFFINE REFLECTION LENGTH 25

1

2

(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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Figure 8. The translates t
�

· P in type A3 colored ac-
cording to the local distribution of reflection length.

A3

� f
�

(s, t)
0 (1 + t)(1 + 2t)(1 + 3t)
↵_ (s+ t)(1 + 2t)(1 + 3t)

↵_
1 + ↵_

3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
generic span of ↵_

1 ,↵
_
2 (s+ t)(s+ 2t)(1 + 3t)

generic span of ↵_
1 ,↵

_
3 (s+ t)(t+ 6t2 + s+ 4st)

generic (s+ t)(s+ 2t)(s+ 3t)

Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
�

) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function

g
u

(q, t) =
X

�2L

td(t�u)qstat(�,u)
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Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove
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contains � and Mov(u). But by hypothesis, every such U contains
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u). Then the result follows
immediately from the definition of f
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Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f
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(s, t), or even all f
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3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
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Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
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) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function
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Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove
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contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t
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u). Then the result follows
immediately from the definition of f
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. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f
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(s, t), or even all f
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(t), in general. We show in Appendix
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Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1
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A that computing d(t
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) for an element � of the type A
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coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
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We use the term “area” because this is the number of 1/
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2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.
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Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove
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Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
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W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f
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(t), in general. We show in Appendix
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Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.

As a larger example, the path q = UHDHUUUDHUDDHD has the step weights:

•

1
•

3
•

1

•
1

•

1
•

2
•

3
•

3

•
5

•

3
•

3

•
2

•
3

•
1

•

so !(q) = 22 · 36 · 5 = 14580.

Remark 4.3. In [4, Proposition 3.3], the first author and Tenner prove that the number
of permutations w 2 Sn which achieve the maximal depth of bn2/4c is

|{w 2 Sn : dep(w) = bn2/4c}| =
(
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.

We can recover this result as a corollary of 4.2 by noting that this is the weight of the
Motzkin path with maximal area, namely p = UkDk if n = 2k is even, and p = UkHDk

if n = 2k + 1 is odd.
Statements equivalent to [4, Proposition 3.2] and [4, Proposition 3.3] can be found in

the paper of Diaconis and Graham, although without proof (see Table 1 and Remark 2
of [1]). They are also mentioned in the remarks (and links therein) for entry A062870
of [5].

5 Counting weighted Motzkin paths by area

Taking Propositions 3.2 and 4.2 into account, we can express the generating function for
permutations with respect to depth as

F (t, z) =
X

n>0

X

w2Sn

tdep(w)zn =
X

p2Motz

!(p)tarea(p)z|p|,

where |p| is the number of steps in the path p. Furthermore, if we decompose each
Motzkin path into vertical strips (instead of horizontal strips as in section 3) to compute
its area, we can rewrite the whole term !(p)tarea(p)z|p| as a product over the steps of p.
For example, if p = UUHDDUD, we would have the modified weights

•

t
1
2 z

•

2t
3
2 z

•
5t2z

•
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3
2 z

•
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1
2 z

•
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1
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•
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Figure 3. Inequivalently labeled colored posets.

Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove

COMPUTING AFFINE REFLECTION LENGTH 25

1

2

(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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Figure 8. The translates t
�

· P in type A3 colored ac-
cording to the local distribution of reflection length.

A3

� f
�

(s, t)
0 (1 + t)(1 + 2t)(1 + 3t)
↵_ (s+ t)(1 + 2t)(1 + 3t)

↵_
1 + ↵_

3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
generic span of ↵_

1 ,↵
_
2 (s+ t)(s+ 2t)(1 + 3t)

generic span of ↵_
1 ,↵

_
3 (s+ t)(t+ 6t2 + s+ 4st)

generic (s+ t)(s+ 2t)(s+ 3t)

Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
�

) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function

g
u

(q, t) =
X

�2L

td(t�u)qstat(�,u)
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Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.

As a larger example, the path q = UHDHUUUDHUDDHD has the step weights:

•

1
•

3
•

1

•
1

•

1
•

2
•

3
•

3

•
5

•

3
•

3

•
2

•
3

•
1

•

so !(q) = 22 · 36 · 5 = 14580.

Remark 4.3. In [4, Proposition 3.3], the first author and Tenner prove that the number
of permutations w 2 Sn which achieve the maximal depth of bn2/4c is

|{w 2 Sn : dep(w) = bn2/4c}| =
(
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.

We can recover this result as a corollary of 4.2 by noting that this is the weight of the
Motzkin path with maximal area, namely p = UkDk if n = 2k is even, and p = UkHDk

if n = 2k + 1 is odd.
Statements equivalent to [4, Proposition 3.2] and [4, Proposition 3.3] can be found in

the paper of Diaconis and Graham, although without proof (see Table 1 and Remark 2
of [1]). They are also mentioned in the remarks (and links therein) for entry A062870
of [5].

5 Counting weighted Motzkin paths by area

Taking Propositions 3.2 and 4.2 into account, we can express the generating function for
permutations with respect to depth as

F (t, z) =
X

n>0

X

w2Sn

tdep(w)zn =
X

p2Motz

!(p)tarea(p)z|p|,

where |p| is the number of steps in the path p. Furthermore, if we decompose each
Motzkin path into vertical strips (instead of horizontal strips as in section 3) to compute
its area, we can rewrite the whole term !(p)tarea(p)z|p| as a product over the steps of p.
For example, if p = UUHDDUD, we would have the modified weights

•
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1
2 z
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•
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(a)

(b)

V;

V1

V2

V12

Figure 1. Two views of the threshold arrangement T3 of rank 3. In (a)
we can see seven chambers above V; (the other seven are antipodal to
these), thus there are T2 = 14 threshold functions on two variables. In
(b) the six regions of the resonance arrangement R2 can be seen as the
restrictions of V1, V2, and V12 to the subspace V;.

The sign vector of a point in Rn with respect to Tn is denoted by

⌧(x) = (⌧S(x))S✓[n�1],

where ⌧S(x) = sgn(hx, vSi).
For example, the point x = (1, 2, 1) has ⌧(x) given by

(⌧;, ⌧1, ⌧2, ⌧12) = (�,�, 0,+).

2.2. The resonance arrangement. For any subset S ✓ [n], let uS denote the 0/1
vector of length n in which the elements of S denote the entries that are 1. For example,
if n = 8,

u{1,3,4,6} = (1, 0, 1, 1, 0, 1, 0, 0).
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Figure 3. Inequivalently labeled colored posets.

Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove
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(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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Figure 8. The translates t
�

· P in type A3 colored ac-
cording to the local distribution of reflection length.

A3

� f
�

(s, t)
0 (1 + t)(1 + 2t)(1 + 3t)
↵_ (s+ t)(1 + 2t)(1 + 3t)

↵_
1 + ↵_

3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
generic span of ↵_

1 ,↵
_
2 (s+ t)(s+ 2t)(1 + 3t)

generic span of ↵_
1 ,↵

_
3 (s+ t)(t+ 6t2 + s+ 4st)

generic (s+ t)(s+ 2t)(s+ 3t)

Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
�

) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function

g
u

(q, t) =
X

�2L

td(t�u)qstat(�,u)
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Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.

As a larger example, the path q = UHDHUUUDHUDDHD has the step weights:

•

1
•

3
•

1

•
1

•

1
•

2
•

3
•

3

•
5

•

3
•

3

•
2

•
3

•
1

•

so !(q) = 22 · 36 · 5 = 14580.

Remark 4.3. In [4, Proposition 3.3], the first author and Tenner prove that the number
of permutations w 2 Sn which achieve the maximal depth of bn2/4c is

|{w 2 Sn : dep(w) = bn2/4c}| =
(
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.

We can recover this result as a corollary of 4.2 by noting that this is the weight of the
Motzkin path with maximal area, namely p = UkDk if n = 2k is even, and p = UkHDk

if n = 2k + 1 is odd.
Statements equivalent to [4, Proposition 3.2] and [4, Proposition 3.3] can be found in

the paper of Diaconis and Graham, although without proof (see Table 1 and Remark 2
of [1]). They are also mentioned in the remarks (and links therein) for entry A062870
of [5].

5 Counting weighted Motzkin paths by area

Taking Propositions 3.2 and 4.2 into account, we can express the generating function for
permutations with respect to depth as

F (t, z) =
X

n>0

X

w2Sn

tdep(w)zn =
X

p2Motz

!(p)tarea(p)z|p|,

where |p| is the number of steps in the path p. Furthermore, if we decompose each
Motzkin path into vertical strips (instead of horizontal strips as in section 3) to compute
its area, we can rewrite the whole term !(p)tarea(p)z|p| as a product over the steps of p.
For example, if p = UUHDDUD, we would have the modified weights

•

t
1
2 z

•

2t
3
2 z

•
5t2z

•
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3
2 z

•
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1
2 z
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(a)

(b)

V;

V1

V2

V12

Figure 1. Two views of the threshold arrangement T3 of rank 3. In (a)
we can see seven chambers above V; (the other seven are antipodal to
these), thus there are T2 = 14 threshold functions on two variables. In
(b) the six regions of the resonance arrangement R2 can be seen as the
restrictions of V1, V2, and V12 to the subspace V;.

The sign vector of a point in Rn with respect to Tn is denoted by

⌧(x) = (⌧S(x))S✓[n�1],

where ⌧S(x) = sgn(hx, vSi).
For example, the point x = (1, 2, 1) has ⌧(x) given by

(⌧;, ⌧1, ⌧2, ⌧12) = (�,�, 0,+).

2.2. The resonance arrangement. For any subset S ✓ [n], let uS denote the 0/1
vector of length n in which the elements of S denote the entries that are 1. For example,
if n = 8,

u{1,3,4,6} = (1, 0, 1, 1, 0, 1, 0, 0).

PROMOTION AND CYCLIC SIEVING VIA WEBS 13

examination of the growth rules in Figure 3, we see that any right turn from a downward-
pointing 0-edge takes us on an upward-pointing 1-labeled edge. Any left turn from an
upward-pointing 1-edge leads to another downward-pointing 0-edge and so on, as shown
in Figure 7. Because the path must have even length in order to end up on the boundary,
we know that the final edge traversed is labeled with a 0. Similarly, by examination of
the local moves we have that Cr alternates 1̄01̄0 · · · upon leaving v∗, terminating at vr,
which, by parity considerations, must be labeled with 1̄.

We define L(D) to be the collection of faces to the left of C l (when moving from v∗ to
vl). Similarly, R(D) denotes the faces to the right of Cr (notice that this includes the
outer face f0). Let M(D) denote the faces to the right of C l and to the left of Cr. See
Figure 7.

1

1̄
1

0

1

0

0

1

0

1̄ 1̄

1̄
1̄

1̄
1̄

0

1̄

0

0

1̄

1
1

1 1

1

• • •

•

◦ ◦ ◦ ◦ ◦ ◦ ◦

f0

L(D)

M(D) R(D)

L1

M1

R1

L2

Lk

e∗

v∗

vl vr

Figure 7

Lemma 3.4. Let D be a web. After moving the leftmost boundary vertex to the right,

(1) the depth of every face in L(D) decreases by 1,
(2) the depth of every face in R(D) increases by 1, and
(3) the depth of every face in M(D) remains unchanged.

Proof. Let L1 denote the face separated from the outer face by e∗. This face will be the
outer face once the leftmost boundary vertex moves to the right. Let L2, . . . , Lk denote
the other faces of L(D) that border the left cut. By examining the edge labels (which
by Lemma 3.3 are consistent with depth) every face Li has a minimal path to f0 that
passes through L1. Thus, any face in L(D) has a minimal path to f0 that goes through
L1. Claim (1) then follows.

By examining the faces on the boundary of M(D), we see that no face in M(D) has
a minimal length path through L1, but they all have such a path through M1. Since M1
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Figure 2. Two equivalently labeled colored posets.
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Figure 3. Inequivalently labeled colored posets.

Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.

10 T. K. PETERSEN AND D. SPEYER

Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove

COMPUTING AFFINE REFLECTION LENGTH 25

1

2

(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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Figure 8. The translates t
�

· P in type A3 colored ac-
cording to the local distribution of reflection length.

A3

� f
�

(s, t)
0 (1 + t)(1 + 2t)(1 + 3t)
↵_ (s+ t)(1 + 2t)(1 + 3t)

↵_
1 + ↵_

3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
generic span of ↵_

1 ,↵
_
2 (s+ t)(s+ 2t)(1 + 3t)

generic span of ↵_
1 ,↵

_
3 (s+ t)(t+ 6t2 + s+ 4st)

generic (s+ t)(s+ 2t)(s+ 3t)

Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
�

) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function

g
u

(q, t) =
X

�2L

td(t�u)qstat(�,u)

AREA AND RANK OF A DYCK PATH 7

· · · · ·· · · ·
1 2 3 4

1

· · · · ·· · · ··
1 2 3 4

qt
· · · · ·· · · ·· ··

1 2 3 4

q3t
· · · · ·· · · ·· · ·· ·

1 2 3 4

q5t

· · · · ·· · · ··
1 2 3 4

qt
· · · · ·· · · ·· · ·
1 2 3 4

q3t

· · · · ·· · · ··
1 2 3 4

qt

· · · · ·· · · ·· ·
1 2 3 4

q2t2
· · · · ·· · · ·· · ·

1 2 3 4

q4t2
· · · · ·· · · ·· · ··

1 2 3 4

q4t2
· · · · ·· · · ·· ·
1 2 3 4

q2t2
· · · · ·· · · ·

·
· · ···

1 2 3 4

q6t2

· · · · ·· · · ···
1 2 3 4

q2t2

· · · · ·· · · ··· ·
1 2 3 4

q3t3

Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.

As a larger example, the path q = UHDHUUUDHUDDHD has the step weights:

•

1
•

3
•

1

•
1

•

1
•

2
•

3
•

3

•
5

•

3
•

3

•
2

•
3

•
1

•

so !(q) = 22 · 36 · 5 = 14580.

Remark 4.3. In [4, Proposition 3.3], the first author and Tenner prove that the number
of permutations w 2 Sn which achieve the maximal depth of bn2/4c is

|{w 2 Sn : dep(w) = bn2/4c}| =
(
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.

We can recover this result as a corollary of 4.2 by noting that this is the weight of the
Motzkin path with maximal area, namely p = UkDk if n = 2k is even, and p = UkHDk

if n = 2k + 1 is odd.
Statements equivalent to [4, Proposition 3.2] and [4, Proposition 3.3] can be found in

the paper of Diaconis and Graham, although without proof (see Table 1 and Remark 2
of [1]). They are also mentioned in the remarks (and links therein) for entry A062870
of [5].

5 Counting weighted Motzkin paths by area

Taking Propositions 3.2 and 4.2 into account, we can express the generating function for
permutations with respect to depth as

F (t, z) =
X

n>0

X

w2Sn

tdep(w)zn =
X

p2Motz

!(p)tarea(p)z|p|,

where |p| is the number of steps in the path p. Furthermore, if we decompose each
Motzkin path into vertical strips (instead of horizontal strips as in section 3) to compute
its area, we can rewrite the whole term !(p)tarea(p)z|p| as a product over the steps of p.
For example, if p = UUHDDUD, we would have the modified weights
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(a)

(b)

V;

V1

V2

V12

Figure 1. Two views of the threshold arrangement T3 of rank 3. In (a)
we can see seven chambers above V; (the other seven are antipodal to
these), thus there are T2 = 14 threshold functions on two variables. In
(b) the six regions of the resonance arrangement R2 can be seen as the
restrictions of V1, V2, and V12 to the subspace V;.

The sign vector of a point in Rn with respect to Tn is denoted by

⌧(x) = (⌧S(x))S✓[n�1],

where ⌧S(x) = sgn(hx, vSi).
For example, the point x = (1, 2, 1) has ⌧(x) given by

(⌧;, ⌧1, ⌧2, ⌧12) = (�,�, 0,+).

2.2. The resonance arrangement. For any subset S ✓ [n], let uS denote the 0/1
vector of length n in which the elements of S denote the entries that are 1. For example,
if n = 8,

u{1,3,4,6} = (1, 0, 1, 1, 0, 1, 0, 0).
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examination of the growth rules in Figure 3, we see that any right turn from a downward-
pointing 0-edge takes us on an upward-pointing 1-labeled edge. Any left turn from an
upward-pointing 1-edge leads to another downward-pointing 0-edge and so on, as shown
in Figure 7. Because the path must have even length in order to end up on the boundary,
we know that the final edge traversed is labeled with a 0. Similarly, by examination of
the local moves we have that Cr alternates 1̄01̄0 · · · upon leaving v∗, terminating at vr,
which, by parity considerations, must be labeled with 1̄.

We define L(D) to be the collection of faces to the left of C l (when moving from v∗ to
vl). Similarly, R(D) denotes the faces to the right of Cr (notice that this includes the
outer face f0). Let M(D) denote the faces to the right of C l and to the left of Cr. See
Figure 7.
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Lk

e∗
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Figure 7

Lemma 3.4. Let D be a web. After moving the leftmost boundary vertex to the right,

(1) the depth of every face in L(D) decreases by 1,
(2) the depth of every face in R(D) increases by 1, and
(3) the depth of every face in M(D) remains unchanged.

Proof. Let L1 denote the face separated from the outer face by e∗. This face will be the
outer face once the leftmost boundary vertex moves to the right. Let L2, . . . , Lk denote
the other faces of L(D) that border the left cut. By examining the edge labels (which
by Lemma 3.3 are consistent with depth) every face Li has a minimal path to f0 that
passes through L1. Thus, any face in L(D) has a minimal path to f0 that goes through
L1. Claim (1) then follows.

By examining the faces on the boundary of M(D), we see that no face in M(D) has
a minimal length path through L1, but they all have such a path through M1. Since M1

THE DEPTH OF A PERMUTATION 7
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Figure 1. The edge-weighted Bruhat graphs of type A

2

and G

2

.

2.3. Depth for dihedral groups. For dihedral groups, depth is straightforward. Let I
2

(m)
denote the dihedral group of order 2m, for m  1. Let S = {s

1

, s

2

} denote the simple
reflections.

Proposition 2.7. For an element w 2 I

2

(m), we have

dp(w) =

⇠
`S(w) + 1

2

⇡
.

Hence,

X

w2I2(m)

q

`S(w)

t

dp(w) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 2qt+ q

m
t

m
2 +1 + 2(1 + q)t

m
2 �1X

i=1

q

2i
t

i if m is even,

1 + 2qt+ q

m�1

t

m+1
2 (2 + q) + 2(1 + q)t

m�3
2X

i=1

q

2i
t

i if m is odd, and

1 + 2qt · 1 + qt

1� q

2

t

if m = 1.
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Figure 2. Two equivalently labeled colored posets.
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Figure 3. Inequivalently labeled colored posets.

Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.
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Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove

COMPUTING AFFINE REFLECTION LENGTH 25

1

2

(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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Figure 8. The translates t
�

· P in type A3 colored ac-
cording to the local distribution of reflection length.

A3

� f
�

(s, t)
0 (1 + t)(1 + 2t)(1 + 3t)
↵_ (s+ t)(1 + 2t)(1 + 3t)

↵_
1 + ↵_

3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
generic span of ↵_

1 ,↵
_
2 (s+ t)(s+ 2t)(1 + 3t)

generic span of ↵_
1 ,↵

_
3 (s+ t)(t+ 6t2 + s+ 4st)

generic (s+ t)(s+ 2t)(s+ 3t)

Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
�

) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function

g
u

(q, t) =
X

�2L

td(t�u)qstat(�,u)
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Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.

As a larger example, the path q = UHDHUUUDHUDDHD has the step weights:

•

1
•

3
•

1

•
1

•

1
•

2
•

3
•

3

•
5

•

3
•

3

•
2

•
3

•
1

•

so !(q) = 22 · 36 · 5 = 14580.

Remark 4.3. In [4, Proposition 3.3], the first author and Tenner prove that the number
of permutations w 2 Sn which achieve the maximal depth of bn2/4c is

|{w 2 Sn : dep(w) = bn2/4c}| =
(
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.

We can recover this result as a corollary of 4.2 by noting that this is the weight of the
Motzkin path with maximal area, namely p = UkDk if n = 2k is even, and p = UkHDk

if n = 2k + 1 is odd.
Statements equivalent to [4, Proposition 3.2] and [4, Proposition 3.3] can be found in

the paper of Diaconis and Graham, although without proof (see Table 1 and Remark 2
of [1]). They are also mentioned in the remarks (and links therein) for entry A062870
of [5].

5 Counting weighted Motzkin paths by area

Taking Propositions 3.2 and 4.2 into account, we can express the generating function for
permutations with respect to depth as

F (t, z) =
X

n>0

X

w2Sn

tdep(w)zn =
X

p2Motz

!(p)tarea(p)z|p|,

where |p| is the number of steps in the path p. Furthermore, if we decompose each
Motzkin path into vertical strips (instead of horizontal strips as in section 3) to compute
its area, we can rewrite the whole term !(p)tarea(p)z|p| as a product over the steps of p.
For example, if p = UUHDDUD, we would have the modified weights

•

t
1
2 z

•

2t
3
2 z

•
5t2z

•
2t

3
2 z

•
t
1
2 z

•

t
1
2 z

•
t
1
2 z

•
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(a)

(b)

V;

V1

V2

V12

Figure 1. Two views of the threshold arrangement T3 of rank 3. In (a)
we can see seven chambers above V; (the other seven are antipodal to
these), thus there are T2 = 14 threshold functions on two variables. In
(b) the six regions of the resonance arrangement R2 can be seen as the
restrictions of V1, V2, and V12 to the subspace V;.

The sign vector of a point in Rn with respect to Tn is denoted by

⌧(x) = (⌧S(x))S✓[n�1],

where ⌧S(x) = sgn(hx, vSi).
For example, the point x = (1, 2, 1) has ⌧(x) given by

(⌧;, ⌧1, ⌧2, ⌧12) = (�,�, 0,+).

2.2. The resonance arrangement. For any subset S ✓ [n], let uS denote the 0/1
vector of length n in which the elements of S denote the entries that are 1. For example,
if n = 8,

u{1,3,4,6} = (1, 0, 1, 1, 0, 1, 0, 0).
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examination of the growth rules in Figure 3, we see that any right turn from a downward-
pointing 0-edge takes us on an upward-pointing 1-labeled edge. Any left turn from an
upward-pointing 1-edge leads to another downward-pointing 0-edge and so on, as shown
in Figure 7. Because the path must have even length in order to end up on the boundary,
we know that the final edge traversed is labeled with a 0. Similarly, by examination of
the local moves we have that Cr alternates 1̄01̄0 · · · upon leaving v∗, terminating at vr,
which, by parity considerations, must be labeled with 1̄.

We define L(D) to be the collection of faces to the left of C l (when moving from v∗ to
vl). Similarly, R(D) denotes the faces to the right of Cr (notice that this includes the
outer face f0). Let M(D) denote the faces to the right of C l and to the left of Cr. See
Figure 7.

1
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1
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1

0

0

1

0

1̄ 1̄

1̄
1̄

1̄
1̄

0

1̄

0
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1̄

1
1

1 1

1

• • •

•

◦ ◦ ◦ ◦ ◦ ◦ ◦

f0

L(D)

M(D) R(D)

L1

M1

R1

L2

Lk

e∗

v∗

vl vr

Figure 7

Lemma 3.4. Let D be a web. After moving the leftmost boundary vertex to the right,

(1) the depth of every face in L(D) decreases by 1,
(2) the depth of every face in R(D) increases by 1, and
(3) the depth of every face in M(D) remains unchanged.

Proof. Let L1 denote the face separated from the outer face by e∗. This face will be the
outer face once the leftmost boundary vertex moves to the right. Let L2, . . . , Lk denote
the other faces of L(D) that border the left cut. By examining the edge labels (which
by Lemma 3.3 are consistent with depth) every face Li has a minimal path to f0 that
passes through L1. Thus, any face in L(D) has a minimal path to f0 that goes through
L1. Claim (1) then follows.

By examining the faces on the boundary of M(D), we see that no face in M(D) has
a minimal length path through L1, but they all have such a path through M1. Since M1

THE DEPTH OF A PERMUTATION 7
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Figure 1. The edge-weighted Bruhat graphs of type A

2

and G

2

.

2.3. Depth for dihedral groups. For dihedral groups, depth is straightforward. Let I
2

(m)
denote the dihedral group of order 2m, for m  1. Let S = {s

1

, s

2

} denote the simple
reflections.

Proposition 2.7. For an element w 2 I

2

(m), we have

dp(w) =

⇠
`S(w) + 1

2

⇡
.

Hence,

X

w2I2(m)

q

`S(w)

t

dp(w) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 2qt+ q

m
t

m
2 +1 + 2(1 + q)t

m
2 �1X

i=1

q

2i
t

i if m is even,

1 + 2qt+ q

m�1

t

m+1
2 (2 + q) + 2(1 + q)t

m�3
2X

i=1

q

2i
t

i if m is odd, and

1 + 2qt · 1 + qt

1� q

2

t

if m = 1.
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Example 8.11. Let us take m = 5 and take the shape L with sinks (1, 4) and (3, 2).

Then the associated complex m
(nc)
L

∗

and a realization of the dual polytope are shown

(2, 3) (1, 4)

(2, 4)

(1, 2, 4, 5)(2, 5)

(1, 3, 4, 5)(3, 5)

(1, 3)

Figure 7

on Figure 7. Here the outer triangle {(2, 3), (1, 4), (2, 4)} should also be understood as a
face.

Example 8.12. If L is a 2 × n (or an n × 2) rectangle, m
(nc)
L

∗
is the type A cluster

complex of [FZ]. It is known to be polytopal, and the dual polytope is known as the
associahedron. However, ΓL is usually not simplicial. The first counter-example is when
n = 4 (so m = 6). Here ΓL has a square face whose vertices correspond to 14, 15, 25 and

24. In m
(nc)
L

∗
, this square is subdivided into two triangles, along the diagonal joining

(1, 5) and (2, 4).

Example 8.13. Let L be a 3× 3 rectangle (so m = 6). In this example, we will explore

the difference between m
(nc)
L

and m
(ws)
L

. There are 6 solid paths and N(L) = 9, so m
(nc)
L

∗

is a 3-sphere. We write m
(ws)
L

∗

for the subcomplex of m
(nc)
L

∗

corresponding to weakly
separated paths. There are two pairs of 3-element subsets of [6] which are non-crossing
but not weakly separated, namely the pairs (145, 236) and (124, 356). (The first pair of
paths crosses twice; the second pair has an hourglass.) Each of these pairs corresponds

to an edge in m
(nc)
L

∗

. Each of these edges is surrounded by four tetrahedra and these
tetrahedra fit together to form an octahedron subdivided around a central axis. These

two octahedra are disjoint from one another. In m
(ws)
L

∗
, these two octahedra are removed,

leaving behind a complex homeomorphic to S2× [0, 1]. The endpoints of this product are
a pair of 2-spheres, each triangulated as the boundary of the octahedron. The simplicial

complex m
(ws)
L

∗

is a subcomplex of the D4-cluster complex, which is again a 3-sphere. In
the D4 cluster complex, two new vertices are added. One of these vertices is compatible
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• Mostly	deals	in	discrete	mathematical	models	(originating	in	
“real-world”	applications,	or	in	other	parts	of	math)

• Search	for	patterns,	count	things,	make	pictures!
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Figure 2. Two equivalently labeled colored posets.
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Figure 3. Inequivalently labeled colored posets.

Definition 3. An m-colored poset of n elements, or an (m,n)-poset, is a poset P whose
elements form a subset of Pm with distinct absolute values.

We say that two colored posets P and Q have equivalent labelings, written P ⇠ Q, if there
is an isomorphism of posets � : P ! Q such that:

(1) the map � preserves colors, i.e., "(a) = "(�(a)) for any a 2 P , and
(2) for all a <P b, �(a) <Pm �(b) if and only if a <Pm b.

See Figures 2 and 3. Let P (m)
n denote the vector space over Q with basis consisting of all

(m,n)-posets, modulo equivalence of labelings, and define

P (m) =
M

n�0

P (m)
n .

We will define a product tm and coproduct �m that make P (m) into a graded Hopf algebra.
If P is an (m,n)-poset and Q is an (m, r)-poset then let P tm Q be the (m,n + r)-poset

defined as follows. If as sets P and Q have any elements of the same absolute value, then
replace Q by another (m, r)-poset that is label-equivalent to Q and whose elements have
absolute values distinct from those of P . Again, this is easy to do since P and Q are finite
sets. Now let P tm Q be the poset formed by taking the union of P and Q as posets. We
have

|P | \ |Q| = ;, and

x <PtmQ y () x <P y or x <Q y.

10 T. K. PETERSEN AND D. SPEYER

Figure 8. Frozen regions of a random grove of order 12.

Figure 9. A grove on standard initial conditions of order 100.

there is homogeneity of the edges in an appropriately scaled random grove of order
n, with probability approaching 1 as n → ∞. Specifically, we will examine the
limiting probability of finding a particular type of edge in a given location outside
of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n−i−j, be the probability
that ai,j(n), the horizontal edge on triangle xi,j,k+1, is present in a random grove

COMPUTING AFFINE REFLECTION LENGTH 25

1

2

(a) (b)3

(c)

Figure 7. The translates t
�

·P in (a) type A2, (b) type
B2, and (c) type C2, colored according to the local dis-
tribution of reflection length.

contains � and Mov(u). But by hypothesis, every such U contains
µ and Mov(u), and so contains Mov(t

µ

u). Then the result follows
immediately from the definition of f

�

. ⇤

Unfortunately, while Theorem 3.3 and Proposition 3.2 imply bounds
on the number of local generating functions in terms of the number of
W0-orbits of intersections of root subspaces, it is probably intractable to
compute all f

�

(s, t), or even all f
�

(t), in general. We show in Appendix
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Figure 8. The translates t
�

· P in type A3 colored ac-
cording to the local distribution of reflection length.

A3

� f
�

(s, t)
0 (1 + t)(1 + 2t)(1 + 3t)
↵_ (s+ t)(1 + 2t)(1 + 3t)

↵_
1 + ↵_

3 2t2 + 6t3 + 4st+ 9st2 + s2 + 2s2t
generic span of ↵_

1 ,↵
_
2 (s+ t)(s+ 2t)(1 + 3t)

generic span of ↵_
1 ,↵

_
3 (s+ t)(t+ 6t2 + s+ 4st)

generic (s+ t)(s+ 2t)(s+ 3t)

Table 3. Local generating functions for a�ne A3. Here
↵1 and ↵3 are any two orthogonal roots, while ↵2 and ↵1

are not orthogonal.

A that computing d(t
�

) for an element � of the type A
n

coroot lattice
is essentially equivalent to the NP-complete problem SubsetSum.
A di↵erent approach to understanding the distribution of reflection

length would be to introduce a new statistic that grows with � and
take a bivariate generating function, either over the whole group W or
over the elements with fixed elliptic part (that is, over a coset of the
translations). Thus, for a given element u 2 W0 one could consider the
generating function

g
u

(q, t) =
X

�2L

td(t�u)qstat(�,u)
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Figure 3. The noncrossing partitions of {1, 2, 3, 4}, drawn as nested Dyck
paths. Weights are given with respect to area and rank. Boldface lines indicate
Simion and Ullmann’s symmetric boolean decomposition of the poset.

have area(p) = 8 for the following path:

p =

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•

•

We use the term “area” because this is the number of 1/
√
2 × 1/

√
2 diamonds that can fit

below the path and above the x-axis. (Just put the bottom of the diamonds on the unused
lattice points.) This is indicated with dashed lines in the picture above. The distribution of
area for Dyck paths has been studied by many, starting with Carlitz and Riordan [11].
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and
x2 < x4 = x6 < x1 = x3 = x5 < x2 + 1,

respectively.
The faces in ⌃(A2), labeled with spin necklaces, are shown in Figure 19.
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Figure 19. The faces of the Steinberg torus ⌃(A2), with colors corresponding
to W -orbits. Note the identifications along the boundary.

The partial order on faces (given by inclusion of closures) corresponds to the partial order
on spin necklaces given by edge contraction. On the other hand, sliding consecutive beads
(blocks) past each other in the necklace corresponds to walking between adjacent chambers.
A permutation w acts on a spin necklace by changing each block B into w(B), and keeping

the edge labels. This corresponds to the action of the Weyl group on faces of the torus,
and the set of edge labels of the necklace corresponds to the color set of the face (under the
identification between e� and {1, . . . , n}.) The orbits are thus parametrized by nonempty
subsets of {1, . . . , n}, with the orbit ⌃J consisting of the spin necklaces with edge label set
J . Figure 19 shows the orbits in ⌃(A2). For example, the edges in red constitute the orbit of
color set {2, 3}.
The permutation associated to the torus face as in (16) (or as in Corollary 6) is obtained

by listing the blocks in the split necklace from left to right, and writing the elements in
each block in increasing order. For example, the permutations associated to the faces (spin
necklaces) (30) and (31) are 524613 and 246135, respectively.

As a larger example, the path q = UHDHUUUDHUDDHD has the step weights:

•

1
•

3
•

1

•
1

•

1
•

2
•

3
•

3

•
5

•

3
•

3

•
2

•
3

•
1

•

so !(q) = 22 · 36 · 5 = 14580.

Remark 4.3. In [4, Proposition 3.3], the first author and Tenner prove that the number
of permutations w 2 Sn which achieve the maximal depth of bn2/4c is

|{w 2 Sn : dep(w) = bn2/4c}| =
(
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.

We can recover this result as a corollary of 4.2 by noting that this is the weight of the
Motzkin path with maximal area, namely p = UkDk if n = 2k is even, and p = UkHDk

if n = 2k + 1 is odd.
Statements equivalent to [4, Proposition 3.2] and [4, Proposition 3.3] can be found in

the paper of Diaconis and Graham, although without proof (see Table 1 and Remark 2
of [1]). They are also mentioned in the remarks (and links therein) for entry A062870
of [5].

5 Counting weighted Motzkin paths by area

Taking Propositions 3.2 and 4.2 into account, we can express the generating function for
permutations with respect to depth as

F (t, z) =
X

n>0

X

w2Sn

tdep(w)zn =
X

p2Motz

!(p)tarea(p)z|p|,

where |p| is the number of steps in the path p. Furthermore, if we decompose each
Motzkin path into vertical strips (instead of horizontal strips as in section 3) to compute
its area, we can rewrite the whole term !(p)tarea(p)z|p| as a product over the steps of p.
For example, if p = UUHDDUD, we would have the modified weights

•

t
1
2 z

•

2t
3
2 z

•
5t2z

•
2t

3
2 z

•
t
1
2 z

•

t
1
2 z

•
t
1
2 z

•
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(a)

(b)

V;

V1

V2

V12

Figure 1. Two views of the threshold arrangement T3 of rank 3. In (a)
we can see seven chambers above V; (the other seven are antipodal to
these), thus there are T2 = 14 threshold functions on two variables. In
(b) the six regions of the resonance arrangement R2 can be seen as the
restrictions of V1, V2, and V12 to the subspace V;.

The sign vector of a point in Rn with respect to Tn is denoted by

⌧(x) = (⌧S(x))S✓[n�1],

where ⌧S(x) = sgn(hx, vSi).
For example, the point x = (1, 2, 1) has ⌧(x) given by

(⌧;, ⌧1, ⌧2, ⌧12) = (�,�, 0,+).

2.2. The resonance arrangement. For any subset S ✓ [n], let uS denote the 0/1
vector of length n in which the elements of S denote the entries that are 1. For example,
if n = 8,

u{1,3,4,6} = (1, 0, 1, 1, 0, 1, 0, 0).

PROMOTION AND CYCLIC SIEVING VIA WEBS 13

examination of the growth rules in Figure 3, we see that any right turn from a downward-
pointing 0-edge takes us on an upward-pointing 1-labeled edge. Any left turn from an
upward-pointing 1-edge leads to another downward-pointing 0-edge and so on, as shown
in Figure 7. Because the path must have even length in order to end up on the boundary,
we know that the final edge traversed is labeled with a 0. Similarly, by examination of
the local moves we have that Cr alternates 1̄01̄0 · · · upon leaving v∗, terminating at vr,
which, by parity considerations, must be labeled with 1̄.

We define L(D) to be the collection of faces to the left of C l (when moving from v∗ to
vl). Similarly, R(D) denotes the faces to the right of Cr (notice that this includes the
outer face f0). Let M(D) denote the faces to the right of C l and to the left of Cr. See
Figure 7.

1

1̄
1

0

1

0

0

1

0

1̄ 1̄

1̄
1̄

1̄
1̄

0

1̄

0

0

1̄

1
1

1 1

1

• • •

•

◦ ◦ ◦ ◦ ◦ ◦ ◦

f0

L(D)

M(D) R(D)

L1

M1

R1

L2

Lk

e∗

v∗

vl vr

Figure 7

Lemma 3.4. Let D be a web. After moving the leftmost boundary vertex to the right,

(1) the depth of every face in L(D) decreases by 1,
(2) the depth of every face in R(D) increases by 1, and
(3) the depth of every face in M(D) remains unchanged.

Proof. Let L1 denote the face separated from the outer face by e∗. This face will be the
outer face once the leftmost boundary vertex moves to the right. Let L2, . . . , Lk denote
the other faces of L(D) that border the left cut. By examining the edge labels (which
by Lemma 3.3 are consistent with depth) every face Li has a minimal path to f0 that
passes through L1. Thus, any face in L(D) has a minimal path to f0 that goes through
L1. Claim (1) then follows.

By examining the faces on the boundary of M(D), we see that no face in M(D) has
a minimal length path through L1, but they all have such a path through M1. Since M1

THE DEPTH OF A PERMUTATION 7
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Figure 1. The edge-weighted Bruhat graphs of type A

2

and G

2

.

2.3. Depth for dihedral groups. For dihedral groups, depth is straightforward. Let I
2

(m)
denote the dihedral group of order 2m, for m  1. Let S = {s

1

, s

2

} denote the simple
reflections.

Proposition 2.7. For an element w 2 I

2

(m), we have

dp(w) =

⇠
`S(w) + 1

2

⇡
.

Hence,

X

w2I2(m)

q

`S(w)

t

dp(w) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 2qt+ q

m
t

m
2 +1 + 2(1 + q)t

m
2 �1X

i=1

q

2i
t

i if m is even,

1 + 2qt+ q

m�1

t

m+1
2 (2 + q) + 2(1 + q)t

m�3
2X

i=1

q

2i
t

i if m is odd, and

1 + 2qt · 1 + qt

1� q

2

t

if m = 1.
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Example 8.11. Let us take m = 5 and take the shape L with sinks (1, 4) and (3, 2).

Then the associated complex m
(nc)
L

∗

and a realization of the dual polytope are shown

(2, 3) (1, 4)

(2, 4)

(1, 2, 4, 5)(2, 5)

(1, 3, 4, 5)(3, 5)

(1, 3)

Figure 7

on Figure 7. Here the outer triangle {(2, 3), (1, 4), (2, 4)} should also be understood as a
face.

Example 8.12. If L is a 2 × n (or an n × 2) rectangle, m
(nc)
L

∗
is the type A cluster

complex of [FZ]. It is known to be polytopal, and the dual polytope is known as the
associahedron. However, ΓL is usually not simplicial. The first counter-example is when
n = 4 (so m = 6). Here ΓL has a square face whose vertices correspond to 14, 15, 25 and

24. In m
(nc)
L

∗
, this square is subdivided into two triangles, along the diagonal joining

(1, 5) and (2, 4).

Example 8.13. Let L be a 3× 3 rectangle (so m = 6). In this example, we will explore

the difference between m
(nc)
L

and m
(ws)
L

. There are 6 solid paths and N(L) = 9, so m
(nc)
L

∗

is a 3-sphere. We write m
(ws)
L

∗

for the subcomplex of m
(nc)
L

∗

corresponding to weakly
separated paths. There are two pairs of 3-element subsets of [6] which are non-crossing
but not weakly separated, namely the pairs (145, 236) and (124, 356). (The first pair of
paths crosses twice; the second pair has an hourglass.) Each of these pairs corresponds

to an edge in m
(nc)
L

∗

. Each of these edges is surrounded by four tetrahedra and these
tetrahedra fit together to form an octahedron subdivided around a central axis. These

two octahedra are disjoint from one another. In m
(ws)
L

∗
, these two octahedra are removed,

leaving behind a complex homeomorphic to S2× [0, 1]. The endpoints of this product are
a pair of 2-spheres, each triangulated as the boundary of the octahedron. The simplicial

complex m
(ws)
L

∗

is a subcomplex of the D4-cluster complex, which is again a 3-sphere. In
the D4 cluster complex, two new vertices are added. One of these vertices is compatible
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Generating	Function:

1 − 1− 4𝑥
2𝑥 = 1 + 𝑥 + 2𝑥( + 5𝑥- + 14𝑥. +⋯
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“Shelling”	the	Coxeter complex
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“Shelling”	the	noncrossing complex



Combinatorial	Topology
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Combinatorial	Topology

1

1 1

1 3 1

1 6 6 1

1 10 20 10 1

“h-vector”

“triangulated	sphere”Big	fish:	Hopf conjecture,	Charney-
Davis	conjecture,	g-conjecture…
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Alice	and	Bob	have	lunch

Version	I:	Submarine	Sandwich

Version	II:	Submarine	Sandwich	
(even	number)

Version	III:	Pizza

“Bob	can	get	5/9	of	the	pizza”	
(…??!!?)


