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Spherical (finite) Coxeter groups

(roots) ® = {a, [, ...}, satisfying some axioms
(vector space) V' = span(®)

(hyperplanes) H, = {v : (v,a) = 0}
(reflections) R = {ro : a € ¥}

W is the subgroup of O(V') generated by R
(simple roots) A C ®, a basis for V/

(simple reflections) S = {r, : « € A}

S is a minimal generating set for W and

R={wsw™':s¢cSwecW}

(for more, see books by Humphreys, or by Bjérner and Brenti)
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Length vs. reflection length

Two fundamental statistics for w € W:

Definition (Coxeter length)

ls(w) =min{k : w = s1 - 8,8, € S}

Definition (Reflection Length)

ER(UJ) = mln{k CW=T1-Tk,T; € R}

For the symmetric group W = S;:

ls(w) = INV(w)
lr(w) =n —cyc(w)
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Nice results for reflection length for finite 1V

Theorem (Shephard and Todd, 1954)

n

3 tr @) =TT + eit),

weWw =1

where the e; are the exponents of W

Theorem (Carter, 1972)

For any w € W, {p(w) = dim(w), where dim(w) is the dimension
of the smallest span of roots that contains IM(w — 1)

What about infinite Coxeter groups?
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Reflection length trichotomy for Coxeter groups

Theorem (A trichotomy)
Let W be a Coxeter group.

o If W is spherical of rank n, then {r(w) < n for all w. (Cor.
of Shephard-Todd or Carter)

o If W is affine of rank n, then {r(w) < 2n for all w.
(McCammond—Petersen, 2011)

o If W is otherwise, then {r(w) is unbounded. (Duszenko,
2012)

This work generalizes Carter's result to the affine setting.
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Affine Coxeter groups

(roots) ® = {a, f3,...}, satisfying some axioms
(vector space) V' = span(®)

(hyperplanes) H, ; = {v: (v,a) = j}
(reflections) R = {rqj:a € ®,j € Z}

(simple reflections) Sy = S U {rs,1}

W is the (infinite) group of Euclidean isometries generated by R
(or minimally, Sp)
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Main results

Translations and Normal Forms

(inclusion) i : Wy — W, ¢ = T
(projection) p: W — Wy, 1o j — Ta
(translations) 7= KER(p) = {t\: A € ®"}
(quotient) Wy = W/T

(semidirect product) W = T x W)

Definition (Normal form)

Each w € W can be written as
w = t\u

for some ty € T and u € Wj.
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Translations and Elliptical elements

Choice of i : Wy < W s like choosing the origin for V', and any
u € Wy fixes this point

More generally, say u € W is elliptical if it fixes a point

(u not necessarily in W)

Definition (Translation-elliptic factorizations)

Each w € W can be written as
w = t\u

for some t\ € T and elliptical element w.
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Definition (Move-set)

Mov(w) = {A: w(z) =z + X for some z € V'}

N

Definition (Dimension)

dim(w) is the dimension of the smallest root subspace (span of
roots) containing Mov(w)

N,

A straightforward consequence:

Proposition

If w is elliptical, then Mov(u) = Mov(p(u)) and hence

dim(u) = dim(p(u))
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Geometric interpretation of reflection length

If w is elliptical (i.e., fixes a point),

lp(w) = dim(w)

this generalizes Carter’'s Theorem slightly, and we also know

Theorem (McCammond-Petersen, 2011)

If w is a translation,

lr(w) = 2dim(w)

How to bring these two extremes together?
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Main results

Geometric interpretation of reflection length

(differential dimension) d(w) = dim(w) — dim(p(w))
(elliptical dimension) e(w) = dim(p(w))

Theorem (Statistics and geometry)

An element w is:
o elliptical if and only if d(w) = 0
@ a translation if and only if e(w) = 0

w Mov(w) d e| Lgr
identity the origin 0 0 0
reflection a root line 0 1 1
rotation the plane 0 2 2

translation an affine point | Lor2 0| 2or4
glide reflection | an affine line 1 1 3
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Main theorems

Theorem (Formula)

For any w in an affine Coxeter group,

lr(w) = 2d(w) + e(w) = 2dim(w) — dim(p(w))

Theorem (Factorization)

For any w in an affine Coxeter group, there exists a
translation-elliptic factorization w = tyu (not necessary a normal
form) such that

lr(w) =LR(ty) + Cr(u)
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Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group S, with normal form ty,
cyce(m) —v(A/n)
e(w)=n— CYC( )
n —2v(\/m) 4+ cyc(n)

Ex: w = tym, with
( 2 17371a 1a *270)1 ™= (17577)(274)(3)(6)
)\/7r—( 1,0,3,-2)

v(A/m) =2



Main results

Affine Symmetric Groups

Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group S, with normal form ty,

d(w) = cyo(m) —v(A/m)
e(w)=n— CYC( )
lr(w) =n —2v(\/7) + cye(r) ]
Ex: w = tym, with
=(-2,-1,3,1,1,—2,0), 7 = (1,5,7)(2,4)(3)(6)
)\/7r =(-1,0,3,-2)
v(A/m) =2

lr(w)=T—-2-244=7
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Shepard and Todd's factorization

Theorem (Shephard and Todd, 1954)
For a spherical Coxeter group Wy,

n

ST 0 =TI+ et),

ueWy i=1

where the e; are the exponents of Wy

Definition (Local generating function)

For any A, let

f)\(S,t) = Z Sd(t)\u)te(b\’u)
ueWy
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Local distributions

Local generating functions

Proposition (Properties of local generating functions)
Let A\ be a coroot. Then,
o (Origin) If X =0, fa(s,t) =TI, (1 + eit)
o (Generic) If X is generic, fx(s,t) =Ii—1(s + e;t)
o (Permutations) If X\ and X' belong to the same Wy-orbit,

f)\(S, t) = f)\/(S, t).
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