Reflection length in affine Coxeter groups

J. B. Lewis, J. McCammond, T. K. Petersen, P. Schwer

George Washington University, UC–Santa Barbara, DePaul University, Karlruhe Institute of Technology

FPSAC 2018

Reflection length in affine Coxeter groups

Reflection length

Main results

3 Local distributions

(roots)
$$\Phi = \{\alpha, \beta, \ldots\}$$
 , satisfying some axioms

```
(roots) \Phi=\{\alpha,\beta,\ldots\} , satisfying some axioms (vector space) V=\operatorname{span}(\Phi)
```

```
(roots) \Phi=\{\alpha,\beta,\ldots\}, satisfying some axioms (vector space) V=\operatorname{span}(\Phi) (hyperplanes) H_{\alpha}=\{v:\langle v,\alpha\rangle=0\}
```

```
(roots) \Phi = \{\alpha, \beta, \ldots\}, satisfying some axioms (vector space) V = \operatorname{span}(\Phi) (hyperplanes) H_{\alpha} = \{v : \langle v, \alpha \rangle = 0\} (reflections) R = \{r_{\alpha} : \alpha \in \Phi\}
```

```
(roots) \Phi = \{\alpha, \beta, \ldots\}, satisfying some axioms (vector space) V = \operatorname{span}(\Phi) (hyperplanes) H_{\alpha} = \{v : \langle v, \alpha \rangle = 0\} (reflections) R = \{r_{\alpha} : \alpha \in \Phi\} W is the subgroup of O(V) generated by R
```

```
(roots) \Phi = \{\alpha, \beta, \ldots\}, satisfying some axioms (vector space) V = \operatorname{span}(\Phi) (hyperplanes) H_{\alpha} = \{v : \langle v, \alpha \rangle = 0\} (reflections) R = \{r_{\alpha} : \alpha \in \Phi\} W is the subgroup of O(V) generated by R (simple roots) \Delta \subset \Phi, a basis for V
```

```
 \begin{array}{l} (\mathsf{roots}) \ \Phi = \{\alpha, \beta, \ldots\}, \ \mathsf{satisfying \ some \ axioms} \\ (\mathsf{vector \ space}) \ V = \mathsf{span}(\Phi) \\ (\mathsf{hyperplanes}) \ H_\alpha = \{v : \langle v, \alpha \rangle = 0\} \\ (\mathsf{reflections}) \ R = \{r_\alpha : \alpha \in \Phi\} \\ W \ \mathsf{is \ the \ subgroup \ of} \ O(V) \ \mathsf{generated \ by} \ R \\ (\mathsf{simple \ roots}) \ \Delta \subset \Phi, \ \mathsf{a \ basis \ for} \ V \\ (\mathsf{simple \ reflections}) \ S = \{r_\alpha : \alpha \in \Delta\} \\ \end{array}
```

```
 \begin{array}{l} (\mathsf{roots}) \ \Phi = \{\alpha,\beta,\ldots\}, \ \mathsf{satisfying \ some \ axioms} \\ (\mathsf{vector \ space}) \ V = \mathsf{span}(\Phi) \\ (\mathsf{hyperplanes}) \ H_\alpha = \{v : \langle v,\alpha \rangle = 0\} \\ (\mathsf{reflections}) \ R = \{r_\alpha : \alpha \in \Phi\} \\ W \ \mathsf{is \ the \ subgroup \ of} \ O(V) \ \mathsf{generated \ by} \ R \\ (\mathsf{simple \ roots}) \ \Delta \subset \Phi, \ \mathsf{a \ basis \ for} \ V \\ (\mathsf{simple \ reflections}) \ S = \{r_\alpha : \alpha \in \Delta\} \\ S \ \mathsf{is \ a \ minimal \ generating \ set \ for} \ W \ \mathsf{and} \\ R = \{wsw^{-1} : s \in S, w \in W\} \\ \end{array}
```

```
 \begin{array}{l} (\mathsf{roots}) \ \Phi = \{\alpha,\beta,\ldots\}, \ \mathsf{satisfying \ some \ axioms} \\ (\mathsf{vector \ space}) \ V = \mathsf{span}(\Phi) \\ (\mathsf{hyperplanes}) \ H_\alpha = \{v : \langle v,\alpha \rangle = 0\} \\ (\mathsf{reflections}) \ R = \{r_\alpha : \alpha \in \Phi\} \\ W \ \mathsf{is \ the \ subgroup \ of} \ O(V) \ \mathsf{generated \ by} \ R \\ (\mathsf{simple \ roots}) \ \Delta \subset \Phi, \ \mathsf{a \ basis \ for} \ V \\ (\mathsf{simple \ reflections}) \ S = \{r_\alpha : \alpha \in \Delta\} \\ S \ \mathsf{is \ a \ minimal \ generating \ set \ for} \ W \ \mathsf{and} \\ R = \{wsw^{-1} : s \in S, w \in W\} \\ \end{array}
```

(for more, see books by Humphreys, or by Björner and Brenti)

Two fundamental statistics for $w \in W$:

Two fundamental statistics for $w \in W$:

Definition (Coxeter length)

$$\ell_S(w) = \min\{k : w = s_1 \cdots s_k, s_i \in S\}$$

Two fundamental statistics for $w \in W$:

Definition (Coxeter length)

$$\ell_S(w) = \min\{k : w = s_1 \cdots s_k, s_i \in S\}$$

Definition (Reflection Length)

$$\ell_R(w) = \min\{k : w = r_1 \cdots r_k, r_i \in R\}$$

Two fundamental statistics for $w \in W$:

Definition (Coxeter length)

$$\ell_S(w) = \min\{k : w = s_1 \cdots s_k, s_i \in S\}$$

Definition (Reflection Length)

$$\ell_R(w) = \min\{k : w = r_1 \cdots r_k, r_i \in R\}$$

For the symmetric group $W = S_n$:

Two fundamental statistics for $w \in W$:

Definition (Coxeter length)

$$\ell_S(w) = \min\{k : w = s_1 \cdots s_k, s_i \in S\}$$

Definition (Reflection Length)

$$\ell_R(w) = \min\{k : w = r_1 \cdots r_k, r_i \in R\}$$

For the symmetric group $W = S_n$:

$$\ell_S(w) = \text{INV}(w)$$

 $\ell_R(w) = n - \text{CYC}(w)$

Coxeter arrangement

Picking a base region identifies open cells with group elements

Coxeter arrangement

Picking a base region identifies open cells with group elements

Reflection Length

Use any reflections

Reflection Length

Use any reflections

Use any reflections, compare with length

Nice results for reflection length for finite W

Theorem (Shephard and Todd, 1954)

$$\sum_{w \in W} t^{\ell_R(w)} = \prod_{i=1}^n (1 + e_i t),$$

where the e_i are the exponents of W

Theorem (Carter, 1972)

For any $w \in W$, $\ell_R(w) = \dim(w)$, where $\dim(w)$ is the dimension of the smallest span of roots that contains $\operatorname{Im}(w-1)$

Nice results for reflection length for finite W

Theorem (Shephard and Todd, 1954)

$$\sum_{w \in W} t^{\ell_R(w)} = \prod_{i=1}^n (1 + e_i t),$$

where the e_i are the exponents of W

Theorem (Carter, 1972)

For any $w \in W$, $\ell_R(w) = \dim(w)$, where $\dim(w)$ is the dimension of the smallest span of roots that contains $\operatorname{Im}(w-1)$

What about infinite Coxeter groups?

Theorem (A trichotomy)

Let W be a Coxeter group.

• If W is spherical of rank n, then $\ell_R(w) \leq n$ for all w. (Cor. of Shephard-Todd or Carter)

Theorem (A trichotomy)

Let W be a Coxeter group.

- If W is spherical of rank n, then $\ell_R(w) \leq n$ for all w. (Cor. of Shephard-Todd or Carter)
- If W is affine of rank n, then $\ell_R(w) \leq 2n$ for all w. (McCammond–Petersen, 2011)

Theorem (A trichotomy)

Let W be a Coxeter group.

- If W is spherical of rank n, then $\ell_R(w) \leq n$ for all w. (Cor. of Shephard-Todd or Carter)
- If W is affine of rank n, then $\ell_R(w) \leq 2n$ for all w. (McCammond-Petersen, 2011)
- If W is otherwise, then $\ell_R(w)$ is unbounded. (Duszenko, 2012)

Theorem (A trichotomy)

Let W be a Coxeter group.

- If W is spherical of rank n, then $\ell_R(w) \leq n$ for all w. (Cor. of Shephard-Todd or Carter)
- If W is affine of rank n, then $\ell_R(w) \leq 2n$ for all w. (McCammond-Petersen, 2011)
- If W is otherwise, then $\ell_R(w)$ is unbounded. (Duszenko, 2012)

This work generalizes Carter's result to the affine setting.

(roots)
$$\Phi = \{\alpha, \beta, \ldots\}$$
, satisfying some axioms

```
(roots) \Phi = \{\alpha, \beta, \ldots\}, satisfying some axioms (vector space) V = \operatorname{span}(\Phi)
```

```
(roots) \Phi=\{\alpha,\beta,\ldots\}, satisfying some axioms (vector space) V=\operatorname{span}(\Phi) (hyperplanes) H_{\alpha,j}=\{v:\langle v,\alpha\rangle=j\}
```

```
(roots) \Phi = \{\alpha, \beta, \ldots\}, satisfying some axioms (vector space) V = \operatorname{span}(\Phi) (hyperplanes) H_{\alpha,j} = \{v : \langle v, \alpha \rangle = j\} (reflections) R = \{r_{\alpha,j} : \alpha \in \Phi, j \in \mathbb{Z}\}
```

```
 \begin{array}{l} (\mathsf{roots}) \ \Phi = \{\alpha, \beta, \ldots\}, \ \mathsf{satisfying \ some \ axioms} \\ (\mathsf{vector \ space}) \ V = \mathsf{span}(\Phi) \\ (\mathsf{hyperplanes}) \ H_{\alpha,j} = \{v : \langle v, \alpha \rangle = j\} \\ (\mathsf{reflections}) \ R = \{r_{\alpha,j} : \alpha \in \Phi, j \in \mathbb{Z}\} \\ (\mathsf{simple \ reflections}) \ S_0 = S \cup \{r_{\tilde{\alpha},1}\} \\ \end{array}
```

```
(roots) \Phi = \{\alpha, \beta, \ldots\}, satisfying some axioms (vector space) V = \operatorname{span}(\Phi) (hyperplanes) H_{\alpha,j} = \{v : \langle v, \alpha \rangle = j\} (reflections) R = \{r_{\alpha,j} : \alpha \in \Phi, j \in \mathbb{Z}\} (simple reflections) S_0 = S \cup \{r_{\tilde{\alpha},1}\}
```

W is the (infinite) group of Euclidean isometries generated by R (or minimally, S_0)

Coxeter Length

Coxeter Length

Coxeter Length

Reflection Length Wallpaper

Other reflection length wallpaper

Reflection length in affine Coxeter groups

Reflection length

2 Main results

3 Local distributions

Projection onto the spherical subgroup

Translations and Normal Forms

```
(inclusion) i:W_0\hookrightarrow W, r_\alpha\mapsto r_{\alpha,0}

(projection) p:W\twoheadrightarrow W_0, r_{\alpha,j}\mapsto r_\alpha

(translations) T=\mathrm{Ker}(p)=\{t_\lambda:\lambda\in\Phi^\vee\}

(quotient) W_0\cong W/T

(semidirect product) W\cong T\rtimes W_0
```

Definition (Normal form)

Each $w \in W$ can be written as

$$w = t_{\lambda} u$$

for some $t_{\lambda} \in T$ and $u \in W_0$.

Choice of $i:W_0\hookrightarrow W$ is like choosing the origin for V, and any $u\in W_0$ fixes this point

Choice of $i: W_0 \hookrightarrow W$ is like choosing the origin for V, and any $u \in W_0$ fixes this point More generally, say $u \in W$ is *elliptical* if it fixes a point

Choice of $i:W_0\hookrightarrow W$ is like choosing the origin for V, and any $u\in W_0$ fixes this point More generally, say $u\in W$ is *elliptical* if it fixes a point $(u \text{ not necessarily in } W_0)$

Choice of $i:W_0\hookrightarrow W$ is like choosing the origin for V, and any $u\in W_0$ fixes this point More generally, say $u\in W$ is *elliptical* if it fixes a point $(u \text{ not necessarily in } W_0)$

Definition (Translation-elliptic factorizations)

Each $w \in W$ can be written as

$$w = t_{\lambda} u$$

for some $t_{\lambda} \in T$ and elliptical element u.

Definition (Move-set)

$$Mov(w) = \{\lambda : w(x) = x + \lambda \text{ for some } x \in V\}$$

Definition (Move-set)

$$\mathrm{Mov}(w) = \{\lambda : w(x) = x + \lambda \text{ for some } x \in V\}$$

Definition (Dimension)

 $\dim(w)$ is the dimension of the smallest root subspace (span of roots) containing $\operatorname{Mov}(w)$

Definition (Move-set)

$$Mov(w) = \{\lambda : w(x) = x + \lambda \text{ for some } x \in V\}$$

Definition (Dimension)

 $\dim(w)$ is the dimension of the smallest root subspace (span of roots) containing $\operatorname{Mov}(w)$

A straightforward consequence:

Proposition

If u is elliptical, then Mov(u) = Mov(p(u)) and hence

$$\dim(u) = \dim(p(u))$$

Corollary

If w is elliptical (i.e., fixes a point),

$$\ell_R(w) = \dim(w)$$

Corollary

If w is elliptical (i.e., fixes a point),

$$\ell_R(w) = \dim(w)$$

this generalizes Carter's Theorem slightly, and we also know

Corollary

If w is elliptical (i.e., fixes a point),

$$\ell_R(w) = \dim(w)$$

this generalizes Carter's Theorem slightly, and we also know

Theorem (McCammond-Petersen, 2011)

If w is a translation,

$$\ell_R(w) = 2\dim(w)$$

Corollary

If w is elliptical (i.e., fixes a point),

$$\ell_R(w) = \dim(w)$$

this generalizes Carter's Theorem slightly, and we also know

Theorem (McCammond-Petersen, 2011)

If w is a translation,

$$\ell_R(w) = 2\dim(w)$$

How to bring these two extremes together?

(differential dimension) $d(w) = \dim(w) - \dim(p(w))$

```
(differential dimension) d(w) = \dim(w) - \dim(p(w))
(elliptical dimension) e(w) = \dim(p(w))
```

```
(differential dimension) d(w) = \dim(w) - \dim(p(w)) (elliptical dimension) e(w) = \dim(p(w))
```

Theorem (Statistics and geometry)

An element w is:

```
(differential dimension) d(w) = \dim(w) - \dim(p(w)) (elliptical dimension) e(w) = \dim(p(w))
```

Theorem (Statistics and geometry)

An element w is:

• elliptical if and only if d(w) = 0

```
(differential dimension) d(w) = \dim(w) - \dim(p(w)) (elliptical dimension) e(w) = \dim(p(w))
```

Theorem (Statistics and geometry)

An element w is:

- elliptical if and only if d(w) = 0
- a translation if and only if e(w) = 0

Geometric interpretation of reflection length

```
(differential dimension) d(w) = \dim(w) - \dim(p(w))
(elliptical dimension) e(w) = \dim(p(w))
```

Theorem (Statistics and geometry)

An element w is:

- elliptical if and only if d(w) = 0
- a translation if and only if e(w) = 0

w	Mov(w)	d	e	ℓ_R
identity	the origin	0	0	0
reflection	a root line	0	1	1
rotation	the plane	0	2	2
translation	an affine point	1 or 2	0	2 or 4
glide reflection	an affine line	1	1	3

Main theorems

Theorem (Formula)

For any w in an affine Coxeter group,

$$\ell_R(w) = 2d(w) + e(w) = 2\dim(w) - \dim(p(w))$$

Main theorems

Theorem (Formula)

For any w in an affine Coxeter group,

$$\ell_R(w) = 2d(w) + e(w) = 2\dim(w) - \dim(p(w))$$

$\mathsf{Theorem}\;(\mathsf{Factorization})$

For any w in an affine Coxeter group, there exists a translation-elliptic factorization $w=t_\lambda u$ (not necessary a normal form) such that

$$\ell_R(w) = \ell_R(t_\lambda) + \ell_R(u)$$

Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group $\widetilde{\mathfrak{S}}_n$ with normal form $t_\lambda \pi$,

$$d(w) = \text{CYC}(\pi) - \nu(\lambda/\pi)$$

$$e(w) = n - \text{CYC}(\pi)$$

$$\ell_R(w) = n - 2\nu(\lambda/\pi) + \text{CYC}(\pi)$$

Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group $\widetilde{\mathfrak{S}}_n$ with normal form $t_\lambda \pi$,

$$d(w) = \text{CYC}(\pi) - \nu(\lambda/\pi)$$

$$e(w) = n - \text{CYC}(\pi)$$

$$\ell_R(w) = n - 2\nu(\lambda/\pi) + \text{CYC}(\pi)$$

Ex:
$$w=t_{\lambda}\pi$$
, with $\lambda=(-2,-1,3,1,1,-2,0)$, $\pi=(1,5,7)(2,4)(3)(6)$

Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group \mathfrak{S}_n with normal form $t_\lambda \pi$,

$$d(w) = \text{CYC}(\pi) - \nu(\lambda/\pi)$$

$$e(w) = n - \text{CYC}(\pi)$$

$$\ell_R(w) = n - 2\nu(\lambda/\pi) + \text{CYC}(\pi)$$

Ex:
$$w=t_{\lambda}\pi$$
, with $\lambda=(-2,-1,3,1,1,-2,0)$, $\pi=(1,5,7)(2,4)(3)(6)$ $\lambda/\pi=(-1,0,3,-2)$

Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group \mathfrak{S}_n with normal form $t_\lambda \pi$,

$$d(w) = \text{CYC}(\pi) - \nu(\lambda/\pi)$$

$$e(w) = n - \text{CYC}(\pi)$$

$$\ell_R(w) = n - 2\nu(\lambda/\pi) + \text{CYC}(\pi)$$

Ex:
$$w=t_{\lambda}\pi$$
, with $\lambda=(-2,-1,3,1,1,-2,0),\ \pi=(1,5,7)(2,4)(3)(6)$ $\lambda/\pi=(-1,0,3,-2)$ $\nu(\lambda/\pi)=2$

Theorem (Symmetric Group Formula)

For any w in the affine Symmetric group $\widetilde{\mathfrak{S}}_n$ with normal form $t_\lambda \pi$,

$$d(w) = \text{CYC}(\pi) - \nu(\lambda/\pi)$$

$$e(w) = n - \text{CYC}(\pi)$$

$$\ell_R(w) = n - 2\nu(\lambda/\pi) + \text{CYC}(\pi)$$

Ex:
$$w=t_{\lambda}\pi$$
, with $\lambda=(-2,-1,3,1,1,-2,0),\ \pi=(1,5,7)(2,4)(3)(6)$ $\lambda/\pi=(-1,0,3,-2)$ $\nu(\lambda/\pi)=2$ $\ell_R(w)=7-2\cdot 2+4=7$

Reflection length in affine Coxeter groups

Reflection length

Main results

3 Local distributions

Shepard and Todd's factorization

Theorem (Shephard and Todd, 1954)

For a spherical Coxeter group W_0 ,

$$\sum_{u \in W_0} t^{\ell_R(u)} = \prod_{i=1}^n (1 + e_i t),$$

where the e_i are the exponents of W_0

Shepard and Todd's factorization

Theorem (Shephard and Todd, 1954)

For a spherical Coxeter group W_0 ,

$$\sum_{u \in W_0} t^{\ell_R(u)} = \prod_{i=1}^n (1 + e_i t),$$

where the e_i are the exponents of W_0

Definition (Local generating function)

For any λ , let

$$f_{\lambda}(s,t) = \sum_{u \in W_0} s^{d(t_{\lambda}u)} t^{e(t_{\lambda}u)}$$

Proposition (Properties of local generating functions)

Let λ be a coroot. Then,

• (Origin) If
$$\lambda = 0$$
, $f_{\lambda}(s,t) = \prod_{i=1}^{n} (1 + e_i t)$

Proposition (Properties of local generating functions)

Let λ be a coroot. Then,

- (Origin) If $\lambda = 0$, $f_{\lambda}(s,t) = \prod_{i=1}^{n} (1 + e_i t)$
- (Generic) If λ is generic, $f_{\lambda}(s,t) = \prod_{i=1}^{n} (s + e_i t)$

Proposition (Properties of local generating functions)

Let λ be a coroot. Then,

- (Origin) If $\lambda = 0$, $f_{\lambda}(s,t) = \prod_{i=1}^{n} (1 + e_i t)$
- (Generic) If λ is generic, $f_{\lambda}(s,t) = \prod_{i=1}^{n} (s + e_i t)$
- (Permutations) If λ and λ' belong to the same W_0 -orbit, $f_{\lambda}(s,t) = f_{\lambda'}(s,t)$.

Local generating function wallpaper

Local generating function wallpaper

Affine A_3 local reflection length

