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Counting “Clybourn paths”

Let Cn denote the number of paths of length 2n

C0 = 1 :

C1 = 1 :

C2 = 2 :

C3 = 5 :
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Counting “Clybourn paths”

C4 = 14 :
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Counting “Clybourn paths”

C5 =

C0 · C4

+

C1 · C3

+

C2 · C2

+

C3 · C1

+

C4 · C0
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Counting “Clybourn paths”

C5 =

C0 · C4

+

C1 · C3

+

C2 · C2

+

C3 · C1

+

C4 · C0

= 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1 = 42



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Catalan numbers

C0 = 1, Cn+1 =
n
∑

i=0

CiCn−i



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Catalan numbers

C0 = 1, Cn+1 =
n
∑

i=0

CiCn−i

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .
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Catalan numbers

C0 = 1, Cn+1 =
n
∑

i=0

CiCn−i

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,Cn =
1

n + 1

(

2n

n

)

, . . .

Also counts:

balanced parenthesizations (()(()))

planar binary trees

noncrossing partitions:
• •

••

and about 200 other sets of things. . .
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A local transformation

n = 0
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A local transformation

n = 0 n = 1 n = 2 n = 3
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Tamari poset (Associahedron)

n = 4
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Jean-Louis Loday: “the integers as molecules”

0 1 2 3 4
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A meditation

We can do arithmetic at the molecular level. Can we do it at the
atomic level?
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p ∨ q:

∨ =



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

The wedge operation

p ∨ q:

∨ =



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

The wedge operation

p ∨ q:

∨ =

(Recall the role the wedge played in the Catalan identity)
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p = pℓ ∨ pr (unique decomposition)
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Decomposing paths

p = pℓ ∨ pr (unique decomposition)

= ∨

= ∨ = ( ∨ ) ∨
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Defining addition

Goal: define addition for paths,

p + q,

in a way that generalizes addition for integers
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Defining addition

Goal: define addition for paths,

p + q,

in a way that generalizes addition for integers

p + 0 = 0+ p = p

for p, q 6= 0, p + q = (p ⊣ q) ∪ (p ⊢ q)
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Defining addition

Goal: define addition for paths,

p + q,

in a way that generalizes addition for integers

p + 0 = 0+ p = p

for p, q 6= 0, p + q = (p ⊣ q) ∪ (p ⊢ q)

now recursively,

p ⊣ q = pℓ ∨ (pr + q) and p ⊢ q = (p + qℓ) ∨ qr
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Split the plus sign: + = ⊣ ∪ ⊢
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⋃
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⊢
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Surprise!

Theorem

If a+ b = c (as nonnegative integers), then

a+ b = c

(as Tamari lattices)
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A better way to add

Can we add two paths more simply?



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+

\



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+

�

�



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+

�

�

/



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

+

�

�

�



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

Theorem (Loday-Ronco)

For any paths p and q,

p + q =
⋃

p/q≤r≤p\q

r



Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

Adding paths and the Tamari poset

Theorem (Loday-Ronco)

For any paths p and q,

p + q =
⋃

p/q≤r≤p\q

r

There is also a multiplication that refines ordinary integer
multiplication. . .
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Adding paths and the Tamari poset

Theorem (Loday-Ronco)

For any paths p and q,

p + q =
⋃

p/q≤r≤p\q

r

There is also a multiplication that refines ordinary integer
multiplication. . . the Loday-Ronco algebra is the “free dendriform
algebra on one generator” and a “combinatorial Hopf algebra”
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Food for thought

We can now do arithmetic:

at the molecular level (whole numbers)
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Food for thought

We can now do arithmetic:

at the molecular level (whole numbers)

at the atomic level (paths)

What about the subatomic level?
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