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Counting “Clybourn paths”
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Catalan numbers

Q=1 GCu1=) GG
i=0

1 2
1,1,2,5,14,42,132,429,1430,...,C, = < n>,...
n+1

Also counts:
@ balanced parenthesizations  (()(()))

@ planar binary trees V
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@ and about 200 other sets of things. ..
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Tamari poset (Associahedron)
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Jean-Louis Loday: “the integers as molecules”
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A meditation

We can do arithmetic at the molecular level. Can we do it at the
atomic level?
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The wedge operation

(Recall the role the wedge played in the Catalan identity)
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Defining addition

Goal: define addition for paths,

pP+q,
in a way that generalizes addition for integers
o p+0=0+p=p

o forp,g#0, p+qg=(p1q)U(pFq)
@ now recursively,

pig=p'V(p'+q) and prg=(p+q)Vq
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Surprise!

If a+ b = c (as nonnegative integers), then

at+tb=c

(as Tamari lattices)
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A better way to add

Can we add two paths more simply?
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Adding paths and the Tamari poset

Theorem (Loday-Ronco)
For any paths p and q,

p+ta= |J -

p/qa<r<p\q

There is also a multiplication that refines ordinary integer
multiplication. . . the Loday-Ronco algebra is the “free dendriform
algebra on one generator” and a “combinatorial Hopf algebra”
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Food for thought

We can now do arithmetic:

@ at the molecular level (whole numbers)
@ at the atomic level (paths)

@ What about the subatomic level?
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