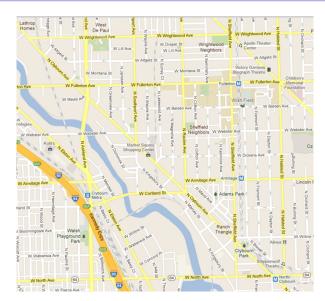
A funny thing happened on the way to Steppenwolf Theatre. . .

from lattice paths to polytopes and Hopf algebras

T. Kyle Petersen

DePaul University
Department of Mathematical Sciences


MathFest Madison, WI August 2012

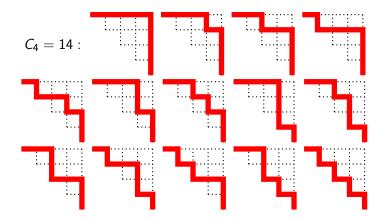
Combinatorics, geometry, and an algebra of paths

Combinatorics: Walking to Steppenwolf

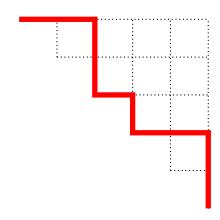
The problem

Combinatorics: Walking to Steppenwolf

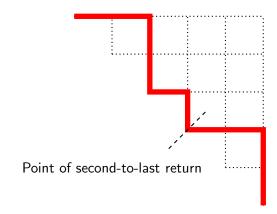
The problem

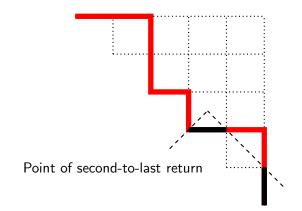


$$C_0 = 1$$
:

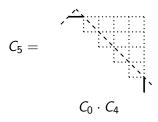

$$C_0 = 1$$
:

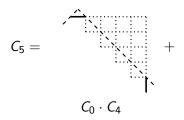
$$C_0 = 1$$
: $C_1 = 1$:

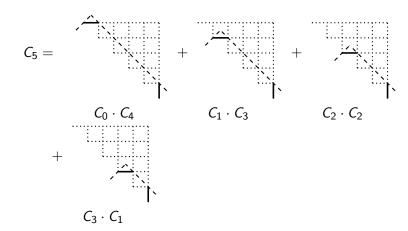

$$C_0 = 1$$
: $C_1 = 1$: $C_2 = 2$:

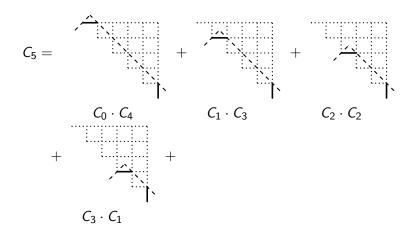

 C_5 ?

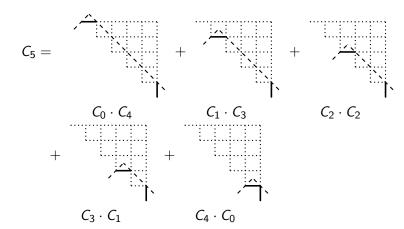
 C_5 ?

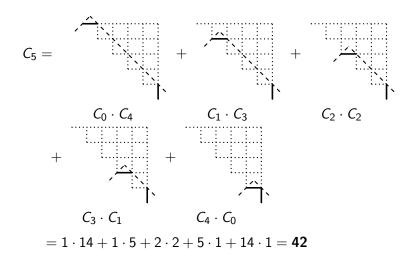



 C_5 ?




$$C_5 =$$





$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots$

$$C_0 = 1, \quad C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots, C_n = \frac{1}{n+1} {2n \choose n}, \dots$$

$$C_0 = 1, \quad C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots, C_n = \frac{1}{n+1} {2n \choose n}, \dots$$

Also counts:

• balanced parenthesizations (()(()))

$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots, C_n = \frac{1}{n+1} {2n \choose n}, \dots$$

Also counts:

- balanced parenthesizations (()(()))
- planar binary trees

$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots, C_n = \frac{1}{n+1} {2n \choose n}, \dots$$

Also counts:

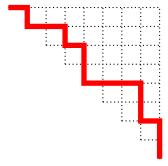
- balanced parenthesizations (()(()))
- planar binary trees
- noncrossing partitions:

$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

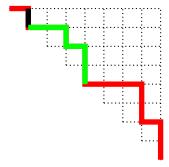
$$1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots, C_n = \frac{1}{n+1} {2n \choose n}, \dots$$

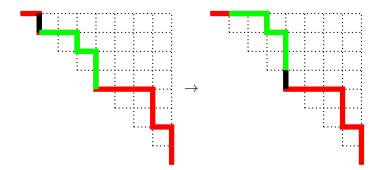
Also counts:

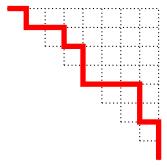
- balanced parenthesizations (()(()))
- planar binary trees
- noncrossing partitions:
- and about 200 other sets of things...

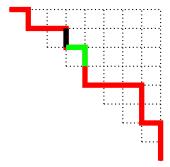

Combinatorics, geometry, and an algebra of paths

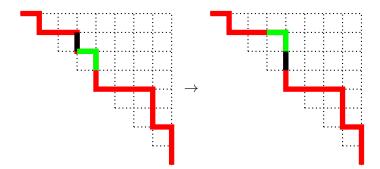
1 Combinatorics: Walking to Steppenwolf

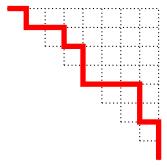

② Geometry: Tamari poset/associahedron

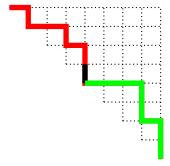

Algebra: Loday-Ronco

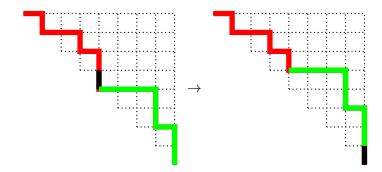

A local transformation

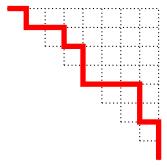


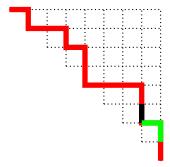

A local transformation

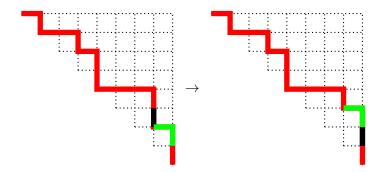


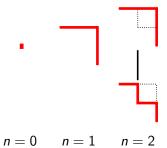


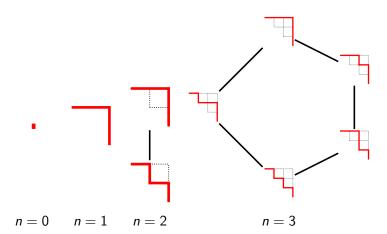




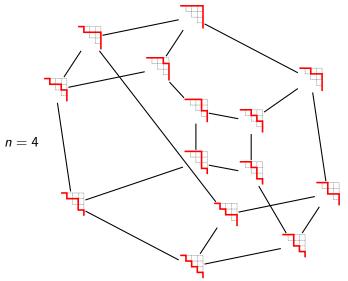






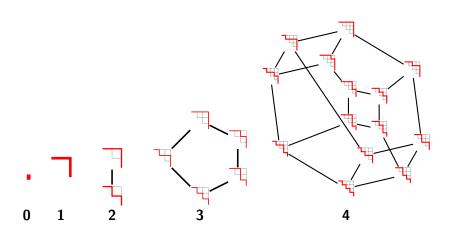


$$n = 0$$



$$n=0$$
 $n=1$

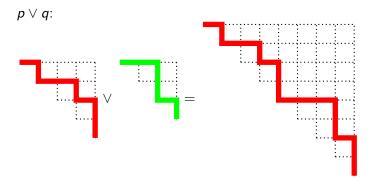
Tamari poset (Associahedron)

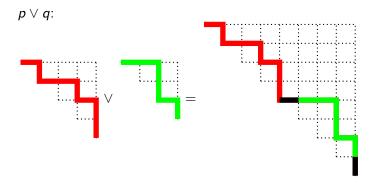

Combinatorics, geometry, and an algebra of paths

Combinatorics: Walking to Steppenwolf

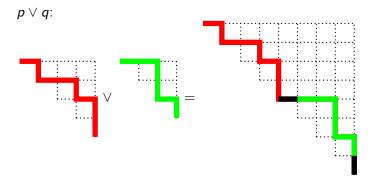
2 Geometry: Tamari poset/associahedror

3 Algebra: Loday-Ronco


Jean-Louis Loday: "the integers as molecules"


A meditation

We can do arithmetic at the molecular level. Can we do it at the atomic level?


The wedge operation

The wedge operation

The wedge operation

(Recall the role the wedge played in the Catalan identity)

Decomposing paths

$$p = p^{\ell} \vee p^r$$
 (unique decomposition)

$$= . \lor .$$

Decomposing paths

$$p = p^{\ell} \vee p^r$$
 (unique decomposition)

Decomposing paths

$$p = p^{\ell} \vee p^r$$
 (unique decomposition)

Goal: define addition for paths,

$$p + q$$

in a way that generalizes addition for integers

Goal: define addition for paths,

$$p+q$$
,

in a way that generalizes addition for integers

•
$$p + 0 = 0 + p = p$$

Goal: define addition for paths,

$$p+q$$
,

in a way that generalizes addition for integers

•
$$p + 0 = 0 + p = p$$

• for
$$p, q \neq 0$$
, $p + q = (p \dashv q) \cup (p \vdash q)$

Goal: define addition for paths,

$$p+q$$
,

in a way that generalizes addition for integers

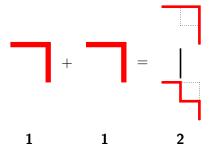
•
$$p + 0 = 0 + p = p$$

• for
$$p, q \neq 0$$
, $p + q = (p \dashv q) \cup (p \vdash q)$

now recursively,

$$p\dashv q=p^\ell\lor (p^r+q)$$
 and $p\vdash q=(p+q^\ell)\lor q^r$

Why 1 + 1 = 2



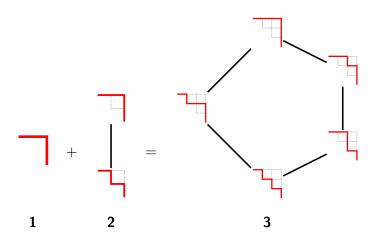
1

Why
$$1 + 1 = 2$$

1 1

Why
$$1 + 1 = 2$$

Why
$$1 + 1 = 2$$


Why 1 + 1 = 2

Why 1 + 1 = 2

Why $\mathbf{1}+\mathbf{1}=\mathbf{2}$

Why 1 + 2 = 3

Want:

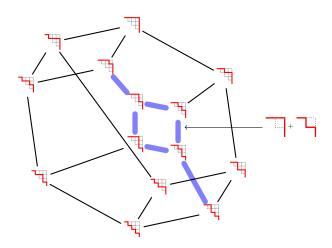
Why $\mathbf{1} + \mathbf{2} = \mathbf{3}$

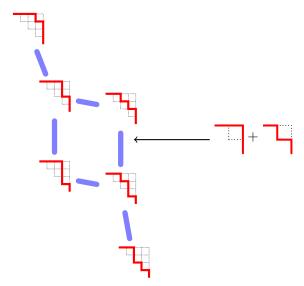
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} + \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} = \left(\begin{array}{c} \\ \end{array} + \begin{array}{c} \end{array} \end{array} \right) \cup \left(\begin{array}{c} \\ \end{array} + \begin{array}{c} \end{array} \right) \\ \\ \begin{array}{c} \\ \end{array} \right) \cup \left(\begin{array}{c} \\ \end{array} \right) + \begin{array}{c} \end{array} \right)$$

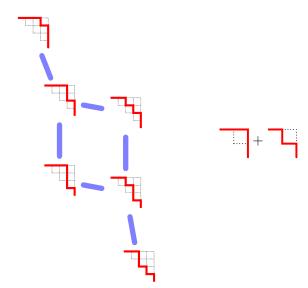
Why
$$1 + 2 = 3$$

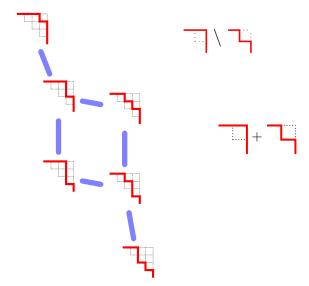
Surprise!

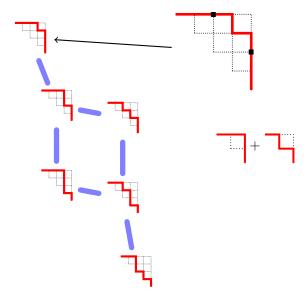
Theorem

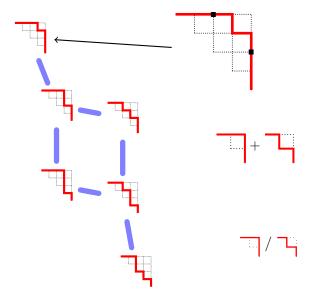

If a + b = c (as nonnegative integers), then

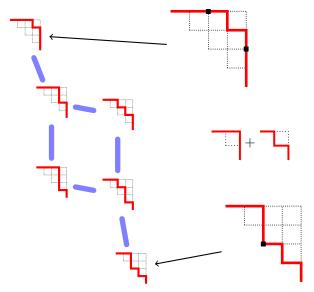

$$\mathbf{a} + \mathbf{b} = \mathbf{c}$$


(as Tamari lattices)


A better way to add


Can we add two paths more simply?





Theorem (Loday-Ronco)

For any paths p and q,

$$p+q=\bigcup_{p/q\leq r\leq p\setminus q}r$$

Theorem (Loday-Ronco)

For any paths p and q,

$$p+q=\bigcup_{p/q\leq r\leq p\setminus q}r$$

There is also a multiplication that refines ordinary integer multiplication...

Theorem (Loday-Ronco)

For any paths p and q,

$$p+q=\bigcup_{p/q\leq r\leq p\setminus q}r$$

There is also a multiplication that refines ordinary integer multiplication...the Loday-Ronco algebra is the "free dendriform algebra on one generator" and a "combinatorial Hopf algebra"

We can now do arithmetic:

We can now do arithmetic:

• at the molecular level (whole numbers)

We can now do arithmetic:

- at the molecular level (whole numbers)
- at the atomic level (paths)

We can now do arithmetic:

- at the molecular level (whole numbers)
- at the atomic level (paths)
- What about the subatomic level?

References

- M. Aguiar and F. Sottile, *Structure of the Loday-Ronco Hopf algebra of trees.* J. Algebra 295 (2006), 473–511.
- J.-L. Loday, Dichotomy of the addition of natural numbers. in Associahedra, Tamari Lattices and Related Structures, Progress in Math. 299, Birkhauser (2012). (also arXiv:1108.6238)
- J.-L. Loday, Arithmetree. J. Algebra 258 (2002), 275-309.
- J.-L. Loday and M. Ronco, *Hopf algebra of the planar binary trees*. Adv. Math. 139 (1998), 293–309