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Abstract

Descents, Peaks, and P -partitions

A dissertation presented to the Faculty of the
Graduate School of Arts and Sciences of Brandeis University,

Waltham, Massachusetts

by T. Kyle Petersen

We use a variation on Richard Stanley’s P -partitions to study “Eulerian” descent

subalgebras of the group algebra of the symmetric group and of the hyperoctahedral

group. In each case we give explicit structure polynomials for orthogonal idempotents

(including q-analogues in many cases). Much of the study of descents carries over

similarly to the study of peaks, where we replace the use of Stanley’s P -partitions

with John Stembridge’s enriched P -partitions.
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Preface

The structure of the group algebra of the symmetric group has been studied by many.

Work on this group algebra has its roots in the early days of representation theory—

an area where properties of the group algebra provide useful tools for understanding.

One aspect of this investigation is the study of certain subalgebras of the group

algebra, called descent algebras.

Louis Solomon is credited with defining the first type of descent algebras [Sol76].

For a symmetric group on n letters, Solomon’s descent algebra is the subalgebra

defined as the linear span of elements uI , where uI is the sum of all permutations

having descent set I (the set of all i such that π(i) > π(i + 1)). In fact, Solomon’s

notion of descent algebra extends to any finite Coxeter group.

A variation on Solomon’s theme arises from taking the span of the elements Ei,

where Ei is the sum of all permutations with i−1 descents. The number of summands

in Ei is an Eulerian number, and so the Ei are called “Eulerian” elements, and the

subalgebra they span is called the Eulerian descent algebra. Eulerian descent algebras

comprise the initial focus of study in this paper.

Eulerian descent algebras exist in most Coxeter groups, and as was shown in some

generality by Paola Cellini [Cel95a, Cel95b, Cel98], one can modify the definition

of descent and still obtain a subalgebra spanned by sums of permutations with the

same number of descents. We call these different sorts of descents cyclic descents.

The novelty of this manuscript lies primarily in its approach to the subject. Ira

Gessel [Ges84] showed that a combinatorial tool called P -partitions, first defined

by Richard Stanley [Sta72, Sta97], could be used to obtain nice formulas for the

structure of the Eulerian descent algebra of the symmetric group. (In fact, he was

looking at the internal product on quasisymmetric functions, the descent algebra
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result being a nice corollary.) Here we take Gessel’s approach as a starting point

and try to interpret as many descent algebra results as possible in the same way. A

slightly modified notion of P -partitions becomes necessary, and several useful group

algebra formulas arise.

A more recent development in the study of the group algebra of the symmetric

group is the study of peak algebras. The basic idea for peak algebras is the same

as that for descent algebras except that we group permutations according to peaks:

positions i such that π(i − 1) < π(i) > π(i + 1). John Stembridge [Ste97] laid the

groundwork for the study of peak algebras, by introducing a tool he called enriched

P -partitions. Kathryn Nyman [Nym03] built on his idea to show that in the group

algebra of the symmetric group there is a subalgebra generated by the span of sums of

permutations with the same peak set. Later, Marcelo Aguiar, Nantel Bergeron, and

Nyman [ABN04] showed that another subalgebra could be obtained by grouping

permutations according to the number of peaks: an “Eulerian” peak algebra (see

also the work of Manfred Schocker [Sch05]). Moreover, they modified the definition

of peak slightly and found another peak subalgebra. They showed that these peak

algebras are homomorphic images of descent algebras of the hyperoctahedral group.

We will not exhibit these relationships in this manuscript, though our formulas are

certainly suggestive of them.

In the latter part of this work we study the Eulerian peak algebras of the symmetric

group, using formulas for enriched P -partitions similar to those found in the case

of descents. We conclude by providing a variation on enriched P -partitions for the

hyperoctahedral group and examining the consequences, leading to the Eulerian peak

algebra of the hyperoctahedral group. The author knows of no prior description of

this subalgebra.
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Chapter 1 provides an introduction to Stanley’s P -partitions and some basic ap-

plications to studying descents, including the Eulerian descent algebra and the cyclic

descent algebra for the symmetric group (type A Coxeter group). Chapter 2 car-

ries out a similar investigation for Coxeter groups of type B, noting some interesting

differences. Many of these results are included in [Pet05]. Chapter 3 introduces

Stembridge’s enriched P -partitions and gives results for the type A peak algebras.

Chapter 4 introduces type B enriched P -partitions and the type B peak algebra. The

results of chapters 3 and 4 can also be found in [Pet].

The remaining pages of this preface give a summary of the main results of this

paper. Not all of the results are new, but the P -partition approach is new, and

provides a way to see them as part of the same phenomenon.

viii



Definitions

Type A

• A descent of a permutation π ∈ Sn is any i ∈ [n−1] such that π(i) > π(i+1). The

set of all descents is denoted Des(π), the number of descents is des(π) = |Des(π)|.

• A cyclic descent is any i ∈ [n] such that π(i) > π(i+1 mod n). The set of all cyclic

descents is denoted cDes(π), the number of cyclic descents is cdes(π) = | cDes(π)|.

• An internal peak is any i ∈ {2, 3, . . . , n−1} such that π(i−1) < π(i) > π(i+1). The

set of all internal peaks is denoted Pk(π), the number of internal peaks is pk(π) =

|Pk(π)|.

• A left peak is any i ∈ [n − 1] such that π(i − 1) < π(i) > π(i + 1), where we take

π(0) = 0. The set of all left peaks is denoted Pk(ℓ)(π), the number of left peaks is

pk(ℓ)(π) = |Pk(ℓ)(π)|.

Type B

• A descent of a signed permutation π ∈ Bn is any i ∈ [0, n − 1] := {0} ∪ [n − 1]

such that π(i) > π(i+ 1), where we take π(0) = 0. The set of all descents is denoted

Des(π), the number of descents is des(π) = |Des(π)|.

• A cyclic descent (or augmented descent) is any i ∈ [0, n] such that π(i) > π(i + 1

mod (n+ 1)). The set of all cyclic descents is denoted aDes(π), the number of cyclic

descents is ades(π) = | aDes(π)|.

• A peak is any i ∈ [n− 1] such that π(i− 1) < π(i) > π(i+ 1), where π(0) = 0. The

set of all peaks is denoted Pk(π), the number of peaks is pk(π) = |Pk(π)|.
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Type A

Eulerian descent algebra

The Eulerian descent algebra is the span of the Ei, where Ei is the sum of all

permutations with i − 1 descents. It is a commutative, n-dimensional subalgebra of

the group algebra.

Order polynomial:

Ωπ(x) =

(
x+ n− 1− des(π)

n

)

Structure polynomial:

φ(x) =
∑

π∈Sn

Ωπ(x)π

=
n∑

i=1

Ωi(x)Ei

=
n∑

i=1

eix
i

Multiplication rule:

φ(x)φ(y) = φ(xy)

Therefore we have orthogonal idempotents

eiej =





ei if i = j

0 otherwise

Span{E1, E2, . . . , En} = Span{e1, e2, . . . , en}
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Cyclic Eulerian descent algebra

The cyclic Eulerian descent algebra is the span of the E
(c)
i , where E

(c)
i is the sum

of all permutations with i cyclic descents. It is a commutative, (n − 1)-dimensional

subalgebra of the group algebra.

Structure polynomial:

ϕ(x) =
1

n

∑

π∈Sn

(
x+ n− 1− cdes(π)

n− 1

)
π

=
1

n

n−1∑

i=1

(
x+ n− 1− i

n− 1

)
E

(c)
i

=
n−1∑

i=1

e
(c)
i xi

Multiplication rule:

ϕ(x)ϕ(y) = ϕ(xy)

Therefore we have orthogonal idempotents

e
(c)
i e

(c)
j =





e
(c)
i if i = j

0 otherwise

Span{E
(c)
1 , E

(c)
2 , . . . , E

(c)
n−1} = Span{e

(c)
1 , e

(c)
2 , . . . , e

(c)
n−1}
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Interior peak algebra

The interior peak algebra is the span of the E ′
i, where E ′

i is the sum of all per-

mutations with i − 1 interior peaks. It is a commutative, ⌊(n + 1)/2⌋-dimensional

subalgebra of the group algebra.

Enriched order polynomial:

Ω′
π(x)

with generating function

∑

k≥0

Ω′
π(k)tk =

1

2

(1 + t)n+1

(1− t)n+1
·

(
4t

(1 + t)2

)pk(π)+1

Structure polynomial:

ρ(x) =
∑

π∈Sn

Ω′
π(x/2)π =

⌊n+1
2

⌋∑

i=1

Ω′
i(x/2)E ′

i

=





n/2∑

i=1

e′ix
2i if n is even

(n+1)/2∑

i=1

e′ix
2i−1 if n is odd

Multiplication rule:

ρ(x)ρ(y) = ρ(xy)

Therefore we have orthogonal idempotents

e′ie
′
j =





e′i if i = j

0 otherwise

Span{E ′
1, E

′
2, . . . , E

′
⌊(n+1)/2⌋} = Span{e′1, e

′
2, . . . , e

′
⌊(n+1)/2⌋}
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Left peak algebra

The left peak algebra is the span of the E
(ℓ)
i , where E

(ℓ)
i is the sum of all permu-

tations with i−1 left peaks. It is a commutative, (⌊n/2⌋+1)-dimensional subalgebra

of the group algebra.

Left enriched order polynomial:

Ω(ℓ)
π (x)

with generating function

∑

k≥0

Ω(ℓ)
π (k)tk =

(1 + t)n

(1− t)n+1
·

(
4t

(1 + t)2

)pk(ℓ)(π)

Structure polynomial:

ρ(ℓ)(x) =
∑

π∈Sn

Ω(ℓ)
π ((x− 1)/2)π =

⌊n
2
⌋+1∑

i=1

Ω
(ℓ)
i ((x− 1)/2)E

(ℓ)
i

=





n/2∑

i=0

e
(ℓ)
i x2i if n is even,

(n−1)/2∑

i=0

e
(ℓ)
i x2i+1 if n is odd.

Multiplication rule:

ρ(ℓ)((x− 1)/2)ρ(ℓ)((y − 1)/2) = ρ(ℓ)((xy − 1)/2)

Therefore we have orthogonal idempotents

e
(ℓ)
i e

(ℓ)
j =





e
(ℓ)
i if i = j

0 otherwise

Span{E
(ℓ)
1 , E

(ℓ)
2 , . . . , E

(ℓ)
⌊n

2
⌋+1} = Span{e

(ℓ)
0 , e

(ℓ)
1 , . . . , e

(ℓ)
⌊n

2
⌋}
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The double peak algebra

The double peak algebra is the multiplicative closure of the interior and left peak

algebras. It is a commutative, n-dimensional subalgebra of the group algebra. The

interior peak algebra is an ideal within the double peak algebra.

Multiplication rule:

ρ(y)ρ(ℓ)(x) = ρ(ℓ)(x)ρ(y) = ρ(xy)

Therefore we have multiplication of idempotents from before as well as

e
(ℓ)
i e′j =





e′i if i = j

0 otherwise

Span{E ′
1, E

′
2, . . . , E

′
⌊(n+1)/2⌋, E

(ℓ)
1 , E

(ℓ)
2 , . . . , E

(ℓ)
⌊n

2
⌋+1}

= Span{e′1, e
′
2, . . . , e

′
⌊(n+1)/2⌋, e

(ℓ)
0 , e

(ℓ)
1 , . . . , e

(ℓ)
⌊n

2
⌋}

with the relation
⌊(n+1)/2⌋∑

i=1

E ′
i =

∑

π∈Sn

π =

⌊n
2
⌋+1∑

i=1

E
(ℓ)
i
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Type B

Eulerian descent algebra

The Eulerian descent algebra of type B is the span of the Ei, where Ei is the sum

of all permutations with i − 1 descents. It is a commutative, (n + 1)-dimensional

subalgebra of the group algebra.

Order polynomial:

Ωπ(x) =

(
x+ n− des(π)

n

)

Structure polynomial:

φ(x) =
∑

π∈Bn

Ωπ((x− 1)/2)π

=
n+1∑

i=1

Ωi((x− 1)/2)Ei

=
n∑

i=0

eix
i

Multiplication rule:

φ(x)φ(y) = φ(xy)

Therefore we have orthogonal idempotents

eiej =





ei if i = j

0 otherwise

Span{E1, E2, . . . , En+1} = Span{e0, e1, . . . , en}
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Augmented descent algebra

The cyclic Eulerian descent algebra, or augmented descent algebra, is the span of

the E
(a)
i , where E

(a)
i is the sum of all permutations with i augmented descents. It is

a commutative, n-dimensional subalgebra of the group algebra.

Order polynomial:

Ωπ(x) =

(
x+ n− ades(π)

n

)

Structure polynomial:

ψ(x) =
∑

π∈Bn

Ωπ(x/2)π

=
n∑

i=1

Ωi(x/2)E
(a)
i

=
n∑

i=1

e
(a)
i xi

Multiplication rule:

ψ(x)ψ(y) = ψ(xy)

Therefore we have orthogonal idempotents

e
(a)
i e

(a)
j =





e
(a)
i if i = j

0 otherwise

Span{E
(a)
1 , E

(a)
2 , . . . , E(a)

n } = Span{e
(a)
1 , e

(a)
2 , . . . , e(a)

n }
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The double descent algebra

The double descent algebra is the sum of the type B Eulerian descent algebra

and the augmented descent algebra. It is a commutative, 2n-dimensional subalgebra

of the group algebra. The augmented descent algebra is an ideal within the double

descent algebra.

Multiplication rule:

ψ(y)φ(x) = φ(x)ψ(y) = ψ(xy)

Therefore we have multiplication of idempotents from before as well as

eie
(a)
j =





e
(a)
i if i = j

0 otherwise

Span{E1, E2, . . . , En+1, E
(a)
1 , E

(a)
2 , . . . , E(a)

n }

= Span{e0, e1, . . . , en, e
(a)
1 , e

(a)
2 , . . . , e(a)

n }

with the relation
n+1∑

i=1

Ei =
∑

π∈Bn

π =
n∑

i=1

E
(a)
i

xvii



The Eulerian peak algebra

The Eulerian peak algebra of type B is the span of the E±
i , where E+

i is the sum

of all signed permutations π with i peaks and π(1) > 0, E−
i is the sum of all signed

permutations π with i peaks and π(1) < 0. It is a commutative, (n+ 1)-dimensional

subalgebra of the group algebra.

Enriched order polynomial:

Ω′
π(x)

with generating function

∑

k≥0

Ω′
π(k)tk =

(1 + t)n

(1− t)n+1
·

(
2t

1 + t

)ς(π)

·

(
4t

(1 + t)2

)pk(π)

=

(
1

2

)ς(π)

·
(1 + t)n+ς(π)

(1− t)n+1
·

(
4t

(1 + t)2

)pk(π)+ς(π)

where ς(π) = 0 if π(1) > 0, ς(π) = 1 if π(1) < 0.

Structure polynomial:

ρ(x) =
∑

π∈Bn

Ω′
π((x− 1)/4)π

=

⌊n/2⌋∑

i=0

(
Ω′

i+((x− 1)/4)E+
i + Ω′

i−((x− 1)/4)E−
i

)

=
n∑

i=0

e′ix
i,

Multiplication rule:

ρ(x)ρ(y) = ρ(xy)
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Therefore we have orthogonal idempotents

e′ie
′
j =





e′i if i = j

0 otherwise

Span{E±
0 , E

±
1 , . . . , E

±
⌊n/2⌋} = Span{e′0, e

′
1, . . . , e

′
n}

xix



Contents

List of Figures xxii

Chapter 1. P -partitions and descent algebras of type A 1

1.1. Ordinary P -partitions 2

1.2. Descents of permutations 5

1.3. The Eulerian descent algebra 7

1.4. The P -partition approach 8

1.5. The cyclic descent algebra 17

Chapter 2. Descent algebras of type B 21

2.1. Type B posets, P -partitions of type B 22

2.2. Augmented descents and augmented P -partitions 28

2.3. The augmented descent algebra 31

Chapter 3. Enriched P -partitions and peak algebras of type A 43

3.1. Peaks of permutations 44

3.2. Enriched P -partitions 45

3.3. The interior peak algebra 51

3.4. Left enriched P -partitions 55

3.5. The left peak algebra 60

Chapter 4. The peak algebra of type B 64

4.1. Type B peaks 65

xx



4.2. Enriched P -partitions of type B 67

4.3. The peak algebra of type B 73

Bibliography 77

xxi



List of Figures

1.1 Linear extensions of a poset P . 4

1.2 Splitting solutions. 11

1.3 The “zig-zag” poset PI for I = {2, 3} ⊂ [5]. 11

2.1 Two B3 posets. 22

2.2 Linear extensions of a B2 poset P . 24

2.3 The augmented lexicographic order. 33

3.1 The up-down order for [l]′ × [k]′. 53

3.2 The up-down order for [l](ℓ) × [k](ℓ). 62

4.1 One realization of the total order on Z
′. 68

4.2 The up-down order on ±[l]′×±[k]′ with points greater than or equal to (0, 0). 75

xxii



CHAPTER 1

P -partitions and descent algebras of type A

In this chapter we will provide the basic definitions and primary examples that

will motivate our study of descents. Section 1.1 defines Richard Stanley’s P -partitions

and outlines their most basic properties. Sections 1.2 and 1.3 give some background

on our primary object of study: descents and descent algebras. Section 1.4 is devoted

to showing the how P -partitions can be used to study descent algebras in the simplest

case, followed by q-analogs.

Section 1.5 examines another “Eulerian” descent algebra for the symmetric group.

This one differs from the ordinary one in its definition of a descent. We call this other

type of descent a cyclic descent. Paola Cellini studied cyclic descents more generally

in the papers [Cel98], [Cel95a], and [Cel95b]. She proved the existence of the cyclic

descent algebra we study in this chapter and generalized her result to any Coxeter

group that has an affine extension. While the existence of the cyclic descent algebra

is now a foregone conclusion, using the P -partition approach is novel. In particular,

the formulas we derive describe its structure in a new way.
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CHAPTER 1. P -PARTITIONS AND DESCENT ALGEBRAS OF TYPE A

1.1. Ordinary P -partitions

Let P denote a partially ordered set, or poset, defined by a set of elements, E =

{e1, e2, . . .}, and a partial order, <P , among the elements. Until otherwise specified

we will only consider labeled posets with a finite number of elements labeled by the

integers 1, 2, . . . , n. We will then refer to an element of a poset by its label, so

for practical purposes we can assume E = {1, 2, . . . , n}, denoted [n]. We generally

represent a partially ordered set by its Hasse diagram.1 An example of a partially

ordered set is given by 1 >P 3 <P 2; its Hasse diagram is shown in Figure 1.1.

Definition 1.1.1. Let X = {x1, x2, . . .} be a countable, totally ordered set. For

a given poset P , a P -partition is an order-preserving map f : [n]→ X such that:

• f(i) ≤ f(j) if i <P j

• f(i) < f(j) if i <P j and i > j in Z

We should note that Stanley [Sta97] actually refers to this as a reverse P -

partition. We choose this definition mainly for ease of notation later on. For our

purposes we usually think of X as a subset of the positive integers. Let A(P ) denote

the set of all P -partitions. When X has a finite number of elements, the number of

P -partitions is finite. In this case, if |X| = k, define the order polynomial, denoted

ΩP (k), to be the number of P -partitions f : [n] → X. With the example of a poset

from before, 1 >P 3 <P 2, the set A(P ) is all functions f : {1, 2, 3} → X such that

f(3) < f(1) and f(3) < f(2).

These partitions of partially ordered sets are not the same as integer partitions,

but there is a connection. Consider the q-variant of the order polynomial, or q-order

1See Stanley’s book [Sta97] for the formal definition of Hasse diagram and other terms related to
partially ordered sets.

2



CHAPTER 1. P -PARTITIONS AND DESCENT ALGEBRAS OF TYPE A

polynomial,2 where X = {0, 1, . . . , k − 1}:

ΩP (q; k) =
∑

f∈A(P )

(
n∏

i=1

qf(i)

)
.

If P is the chain 1 <P 2 <P · · · <P n then the q-order polynomial counts certain

integer partitions. Specifically, the coefficient of qr is the number of integer partitions

of r with at most n parts of size at most k − 1. This fact is of some interest, and

there are similar results related to P -partitions, many of which we will not discuss

here. See chapters 3 and 4 of [Sta97] for a broad treatment, including all the facts

presented in this section. Our main interest will be in applying P -partitions to the

study of permutations.

We will consider any permutation π ∈ Sn to be a poset with the total or-

der π(s) <π π(s + 1), s = 1, 2, . . . , n − 1. For example, the permutation π =

(π(1), π(2), π(3), π(4)) = (3, 2, 1, 4) has 3 <π 2 <π 1 <π 4 as a poset. With this

convention, the set of all π-partitions is easily characterized. The set A(π) is the set

of all functions f : [n]→ X such that

f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)),

and whenever π(s) > π(s + 1), then f(π(s)) < f(π(s + 1)), s = 1, 2, . . . , n − 1. The

set of all π-partitions where π = (3, 2, 1, 4) is all maps f such that

f(3) < f(2) < f(1) ≤ f(4).

For any poset P with n elements, let L(P ) denote the Jordan-Hölder set, the

set of all permutations of n which extend P to a total order. This set is sometimes

2Properly speaking, this q-analog of the order polynomial is not a polynomial in k. However, we will
refer to it as the “q-order polynomial,” even if it might be more appropriate to call it the “q-analog
of the order polynomial.”
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CHAPTER 1. P -PARTITIONS AND DESCENT ALGEBRAS OF TYPE A

P : L(P ):

3

2

1

3

1

2

3

1 2

Figure 1.1. Linear extensions of a poset P .

called the set of “linear extensions” of P . For example, let P be the poset defined by

1 >P 3 <P 2. In “linearizing” P we form a total order by retaining all the relations of

P but introducing new relations so that every element is comparable to every other.

In this case, 1 and 2 are not comparable, so we have exactly two ways of linearizing

P : 3 < 2 < 1 and 3 < 1 < 2. These correspond to the permutations (3, 2, 1) and

(3, 1, 2). Let us make the following observation.

Observation 1.1.1. A permutation π is in L(P ) if and only if i <P j implies

π−1(i) < π−1(j).

In other words, if i is “below” j in the Hasse diagram of the poset P , it had better

be below j in any linear extension of the poset. We also now prove what is sometimes

called the fundamental theorem of P -partitions.

Theorem 1.1.1 (FTPP). The set of all P -partitions of a poset P is the disjoint

union of the set of π-partitions of all linear extensions π of P :

A(P ) =
∐

π∈L(P )

A(π).

Proof. The proof follows from induction on the number of incomparable pairs

of elements of P . If there are no incomparable pairs, then P has a total order and

already represents a permutation. Suppose i and j are incomparable in P . Let Pij

4
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be the poset formed from P by introducing the relation i < j. Then it is clear that

A(P ) = A(Pij)
∐
A(Pji). We continue to split these posets (each with strictly fewer

incomparable pairs) until we have a collection of totally ordered chains corresponding

to distinct linear extensions of P . �

Corollary 1.1.1.

ΩP (k) =
∑

π∈L(P )

Ωπ(k).

We have shown that the study of P -partitions boils down to the study of π-

partitions. With this framework, we are ready to begin our main discussion.

1.2. Descents of permutations

A classical problem in enumerative combinatorics is to count permutations ac-

cording to the number of descents: the study of Eulerian numbers. We can generalize

this notion by considering which permutations have prescribed descents, and how

these permutations interact in the group algebra.

For any permutation π ∈ Sn, we say π has a descent in position i if π(i) > π(i+1).

Define the set Des(π) = { i | 1 ≤ i ≤ n − 1, π(i) > π(i + 1) } and let des(π) denote

the number of elements in Des(π). We call Des(π) the descent set of π, and des(π)

the descent number of π. For example, the permutation π = (1, 4, 3, 2) has descent

set {2, 3} and descent number 2. The number of permutations of n with descent

number k is denoted by the Eulerian number An,k+1, and we recall that the Eulerian

polynomial is defined as

An(t) =
∑

π∈Sn

tdes(π)+1 =
n∑

i=1

An,it
i.

5
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The Eulerian polynomials can be obtained by using P -partitions. Consider the

generating function for the order polynomial (we take the formula from [Sta97] with-

out proof):
∑

k≥0

ΩP (k)tk =

∑
π∈L(P ) t

des(π)+1

(1− t)|P |+1

where |P | = n is the number of elements in P . Let P be an antichain—that is, a poset

with no relations—of n elements. Then ΩP (k) = kn since each of the n elements of

P is free to be mapped to any of k places. Furthermore, L(P ) = Sn, so we get the

following equation,
∑

k≥0

kntk =
An(t)

(1− t)n+1
.

The Eulerian polynomials are interesting and well-studied objects, but we will not

devote much more attention to them for now. We conclude this section with a nice

formula for computing the order polynomial of a permutation.

Notice that for any permutation π and any positive integer k

(
k + n− 1− des(π)

n

)
=

((
k − des(π)

n

))
,

where
((

a
b

))
denotes the “multi-choose” function—the number of ways to choose b

objects from a set of a objects with repetitions. Another interpretation of
((

a
b

))
is the

number of integer solutions to the set of inequalities

1 ≤ i1 ≤ i2 ≤ · · · ≤ ib ≤ a.

With this in mind,
(

k+n−1−des(π)
n

)
is the same as the number of solutions to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k − des(π).

6
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Better still, we can say it is the number of solutions (though not in general the same

set of solutions) to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k,

where is < is+1 if s ∈ Des(π). (For example, the number of solutions to 1 ≤ i < j < 4

is the same as the number of solutions to 1 ≤ i ≤ j − 1 ≤ 2 or the solutions to

1 ≤ i ≤ j′ ≤ 2.) Now if we take f(π(s)) = is it is clear that

Ωπ(k) =

(
k + n− 1− des(π)

n

)
.

1.3. The Eulerian descent algebra

For each subset I of {1, 2, . . . , n− 1}, let

uI :=
∑

Des(π)=I

π,

the sum, in the group algebra of Sn, of all permutations with descent set I. Louis

Solomon [Sol76] showed that the linear span of the uI forms a subalgebra of the group

algebra, called the descent algebra. The concept of descent generalizes naturally, and

in fact Solomon defined a descent algebra for any finite Coxeter group.

For now consider the descent algebra of the symmetric group. This descent al-

gebra has is presented in great detail in the work of Adriano Garsia and Christophe

Reutenauer [GR89]. It has a commutative subalgebra, sometimes called the “Euler-

ian subalgebra,” defined as follows. For 1 ≤ i ≤ n, let

Ei :=
∑

des(π)=i−1

π,

7
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the sum of all permutations in Sn with descent number i− 1. Let

φ(x) =
∑

π∈Sn

(
x+ n− 1− des(π)

n

)
π =

n∑

i=1

(
x+ n− i

n

)
Ei.

Then the structure of the Eulerian subalgebra is described by the following:

Theorem 1.3.1. As polynomials in x and y with coefficients in the group algebra,

we have

(1) φ(x)φ(y) = φ(xy).

Define elements ei in the group algebra (in fact they are in the span of the Ei)

by φ(x) =
n∑

i=1

eix
i. By (1) it is clear that the ei are orthogonal idempotents: e2i = ei

and eiej = 0 if i 6= j. This shows immediately that the Eulerian descent algebra

is commutative of dimension n. Theorem 1.3.1 can be proved in several ways, but

we will focus on one that employs Richard Stanley’s theory of P -partitions. More

specifically, the approach we take follows from work of Ira Gessel—the formula (1) is in

fact an easy corollary of Theorem 11 from [Ges84]. In section 1.4 we will give a proof

of Theorem 1.3.1 that derives from Gessel’s work. Throughout the rest of this work

we will mimic this method to prove similar formulas related to different notions of

descents and peaks, both in the symmetric group algebra and in the hyperoctahedral

group algebra.

1.4. The P -partition approach

Before presenting the P -partition proof of Theorem 1.3.1, let us point out that

in order to prove that the formula holds as polynomials in x and y, it will suffice to

prove that it holds for all pairs of positive integers. It is not hard to prove this fact,

and we rely on it throughout this work.

8
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Proof of Theorem 1.3.1. If we write out φ(xy) = φ(x)φ(y) using the defini-

tion, we have

∑

π∈Sn

(
xy + n− 1− des(π)

n

)
π =

∑

σ∈Sn

(
x+ n− 1− des(σ)

n

)
σ
∑

τ∈Sn

(
y + n− 1− des(τ)

n

)
τ

=
∑

σ,τ∈Sn

(
x+ n− 1− des(σ)

n

)(
y + n− 1− des(τ)

n

)
στ

If we equate the coefficients of π we have

(2)

(
xy + n− 1− des(π)

n

)
=
∑

στ=π

(
x+ n− 1− des(σ)

n

)(
y + n− 1− des(τ)

n

)
.

Clearly, if formula (2) holds for all π, then formula (1) is true. Let us interpret the

left hand side of this equation.

Let x = k, and y = l be positive integers. Then the left hand side of equation (2) is

just the order polynomial Ωπ(kl). To compute this order polynomial we need to count

the number of π-partitions f : [n]→ X, where X is some totally ordered set with kl

elements. But instead of using [kl] as our image set, we will use a different totally

ordered set of the same cardinality. Let us count the π-partitions f : [n] → [l]× [k].

This is equal to the number of solutions to

(3) (1, 1) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k)

where (is, js) < (is+1, js+1) if s ∈ Des(π). Here we take the lexicographic ordering on

pairs of integers. Specifically, (i, j) < (i′, j′) if i < i′ or else if i = i′ and j < j′.

To get the result we desire, we will sort the set of all solutions to (3) into distinct

cases indexed by subsets I ⊂ [n−1]. The sorting depends on π and proceeds as follows.

Let F = ((i1, j1), . . . , (in, jn)) be any solution to (3). For any s = 1, 2, . . . , n − 1, if

π(s) < π(s + 1), then (is, js) ≤ (is+1, js+1), which falls into one of two mutually

9
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exclusive cases:

is ≤ is+1 and js ≤ js+1, or(4)

is < is+1 and js > js+1.(5)

If π(s) > π(s+ 1), then (is, js) < (is+1, js+1), which means either:

is ≤ is+1 and js < js+1, or(6)

is < is+1 and js ≥ js+1,(7)

also mutually exclusive. Define IF = {s ∈ [n−1]\Des(π) | js > js+1}∪{s ∈ Des(π) |

js ≥ js+1}. Then IF is the set of all s such that either (5) or (7) holds for F . Notice

that in both cases, is < is+1. Now for any I ⊂ [n−1], let SI be the set of all solutions

F to (3) satisfying IF = I. We have split the solutions of (3) into 2n−1 distinct cases

indexed by all the different subsets I of [n− 1].

Say π = (2, 1, 3). Then we want to count the number of solutions to

(1, 1) ≤ (i1, j1) < (i2, j2) ≤ (i3, j3) ≤ (l, k),

which splits into four distinct cases, indexed by the subsets I ⊂ {1, 2}.

We now want to count all the solutions contained in each of these cases and

add them up. For a fixed subset I we will use the theory of P -partitions to count

the number of solutions for the set of inequalities first for the js’s and then for

the is’s. Multiplying will give us the number of solutions in SI ; we do the same

for the remaining subsets and sum to obtain the final result. For I = { 1 } in the

example above, we would count first the number of integer solutions to j1 ≥ j2 ≤ j3,

with 1 ≤ js ≤ k, and then we multiply this number by the number of solutions to

10
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I

∅

{1}

{2}

{1, 2}

is

i1 ≤ i2 ≤ i3

i1 < i2 ≤ i3

i1 ≤ i2 < i3

i1 < i2 < i3

js

j1 < j2 ≤ j3

j1 ≥ j2 ≤ j3

j1 < j2 > j3

j1 ≥ j2 > j3

PI

2

1

3

2

1

3

2

1

3

2

1

3

Figure 1.2. Splitting solutions.

1 ≤ i1 < i2 ≤ i3 ≤ l to obtain the cardinality of S{1}. We will now carry out the

computation in general.

For any particular I ⊂ [n − 1], form the poset PI of the elements 1, 2, . . . , n

by π(s) <PI
π(s + 1) if s /∈ I, π(s) >PI

π(s + 1) if s ∈ I. We form a “zig-zag”

poset of n elements labeled consecutively by π(1), π(2), . . . , π(n), with downward zigs

corresponding to the elements of I. For example, if I = {2, 3} for n = 5, then PI has

π(1) < π(2) > π(3) > π(4) < π(5).

PI :

π(1)

π(2)

π(3)

π(4)

π(5)

Figure 1.3. The “zig-zag” poset PI for I = {2, 3} ⊂ [5].

For any solution in SI , let f : [n]→ [k] be defined by f(π(s)) = js for 1 ≤ s ≤ n.

We will show that f is a PI-partition. If π(s) <PI
π(s + 1) and π(s) < π(s + 1) in

11
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Z, then (4) tells us that f(π(s)) = js ≤ js+1 = f(π(s + 1)). If π(s) <PI
π(s + 1)

and π(s) > π(s + 1) in Z, then (6) tells us that f(π(s)) = js < js+1 = f(π(s + 1)).

If π(s) >PI
π(s + 1) and π(s) < π(s + 1) in Z, then (5) gives us that f(π(s)) =

js > js+1 = f(π(s + 1)). If π(s) >PI
π(s + 1) and π(s) > π(s + 1) in Z, then (7)

gives us that f(π(s)) = js ≥ js+1 = f(π(s + 1)). In other words, we have verified

that f is a PI-partition. So for any particular solution in SI , the js’s can be thought

of as a PI-partition. Conversely, any PI-partition f gives a solution in SI since if

js = f(π(s)), then ((i1, j1), . . . , (in, jn)) ∈ SI if and only if 1 ≤ i1 ≤ · · · ≤ in ≤ l and

is < is+1 for all i ∈ I. We can therefore turn our attention to counting PI-partitions.

Let σ ∈ L(PI). Then for any σ-partition f , we get a chain

1 ≤ f(σ(1)) ≤ f(σ(2)) ≤ · · · ≤ f(σ(n)) ≤ k

with f(σ(s)) < f(σ(s + 1)) if s ∈ Des(σ). The number of solutions to this set of

inequalities is

Ωσ(k) =

(
k + n− 1− des(σ)

n

)
.

Recall by Observation 1.1.1 that σ−1π(s) < σ−1π(s+ 1) if π(s) <PI
π(s+ 1), i.e.,

if s /∈ I. If π(s) >PI
π(s + 1) then σ−1π(s) > σ−1π(s + 1) and s ∈ I. We get that

Des(σ−1π) = I if and only if σ ∈ L(PI). Set τ = σ−1π. The number of solutions to

1 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 if s ∈ Des(τ)

is given by

Ωτ (l) =

(
l + n− 1− des(τ)

n

)
.

12
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Now for a given I, the number of solutions in SI is

∑

σ∈L(PI)
στ=π

(
k + n− 1− des(σ)

n

)(
l + n− 1− des(τ)

n

)
.

Summing over all subsets I ⊂ [n− 1], we can write the number of all solutions to (3)

as
∑

στ=π

(
k + n− 1− des(σ)

n

)(
l + n− 1− des(τ)

n

)
,

and so we have derived formula (2). �

Earlier we introduced the q-order polynomial ΩP (q; k) as a refinement of the ordi-

nary order polynomial that allowed us to be able to say something about the relation-

ship between integer partitions and P -partitions. We can obtain similar refinements

for formulas like (1). In later chapters we will present a q-analog of our formulas

whenever possible.

Let nq! := (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1) and define the q-binomial

coefficent
(

a
b

)
q

in the natural way:

(
a

b

)

q

:=
aq!

bq!(a− b)q!

An equivalent way to interpret the q-binomial coefficient is as the coefficient of xbya−b

in (x + y)a where x and y “q-commute” via the relation yx = qxy. These interpre-

tations are good for some purposes, but we will use a third point of view. We will

define the q-multi-choose function
((

a
b

))
q

=
(

a+b−1
b

)
q

as the following:

∑

0≤i1≤···≤ib≤a−1

(
n∏

s=1

qis

)
.

One might recognize this formula as the q-order polynomial ΩP (q; a) where P is the

chain 1 <P 2 <P · · · <P b. Let us build on this notion.
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For any permutation π ∈ Sn, the q-order polynomial may be expressed as

Ωπ(q; k) =
∑

0≤i1≤···≤in≤k−1
s∈Des(π)⇒is<is+1

(
n∏

s=1

qis

)
.

When we computed the ordinary order polynomial we only cared about the number

of solutions, rather than the set of solutions to the inequalities

0 ≤ i1 ≤ · · · ≤ in ≤ k − 1,

where is < is+1 if s ∈ Des(π). Since we only cared how many solutions there were

and not what the solutions were, we could count solutions to a system where all

the inequalities were weak. We will still follow the same basic procedure, but as

we manipulate our system of inequalities we need to keep track of how we modify

the set of solutions. The q-order polynomial will be seen to be simply a power of q

(depending on π) times a q-binomial coefficient.

Consider the set of solutions to

0 ≤ i1 ≤ · · · ≤ in ≤ k − 1,

where is < is+1 if s ∈ Des(π). We can form a new system of inequalities that has the

same number of solutions, but in which every inequality is weak:

0 ≤ i′1 ≤ · · · ≤ i′n ≤ k − 1− des(π).

There is a bijection between these sets of solutions given by i′s = is− a(s) where a(s)

is the number of descents to the left of s. Therefore the q-order polynomial is given

14
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by

Ωπ(q; k) =
∑

0≤i1≤···≤in≤k−1
s∈Des(π)⇒is<is+1

(
n∏

s=1

qis

)

=
∑

0≤i′1≤···≤i′n≤k−1−des(π)

(
n∏

s=1

qi′s+a(s)

)

= q
Pn

s=1 a(s) ·




∑

0≤i′1≤···≤i′n≤k−1−des(π)

(
n∏

s=1

qi′s

)
 .

The sum of all a(s) can be expressed as
∑

s∈Des(π)

(n − s), which is sometimes referred

to as the comajor index, denoted comaj(π).3 The rest of the sum is now recognizable

as a q-binomial coefficient. In summary, we have

(8) Ωπ(q; k) = qcomaj(π)

(
k + n− 1− des(π)

n

)

q

Now we will prove a formula for the group algebra expressed in terms of q-binomial

coefficients. Define

φ(q;x) =
∑

π∈Sn

qcomaj(π)

(
x+ n− 1− des(π)

n

)

q

π

Theorem 1.4.1. As polynomials in x and y (and q) with coefficients in the group

algebra we have

φ(q;x)φ(qx; y) = φ(q;xy).

Proof. The proof will follow nearly identical lines of reasoning as in the ordinary

(q = 1) case. See section 1.4 for more details. Here we sketch the proof with emphasis

3The major index of a permutation is
∑

s∈Des(π)

s. Indeed, had we adopted Stanley’s original definition

of a P -partition, we would have gotten qmaj(π) rather than comaj above.
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on the major differences. Again, we will decompose the coefficient of π:

qcomaj(π)

(
kl + n− 1− des(π)

n

)

q

By (8), we have that the coefficient of π is the order polynomial Ωπ(q; kl) so we will

examine the π-partitions f : [n]→ {0, 1, . . . , l− 1}×{0, 1, . . . , k− 1}. Notice that we

are still mapping into a set with kl elements. As before we impose the lexicographic

ordering on this image set. To ensure that we keep the proper powers of q, we think

of the order polynomial now as:

Ωπ(q; kl) =
∑

(0,0)≤(i1,j1)≤···≤(in,jn)≤(l−1,k−1)
s∈Des(π)⇒(is,js)<(is+1,js+1)

(
n∏

s=1

qkis+js

)
.

We give each point (i, j) the weight ki+j so that the weight corresponds to the position

of the point in the lexicographic ordering on {0, 1, . . . , l − 1} × {0, 1, . . . , k − 1}. We

now proceed exactly as in the proof of Theorem 1.3.1.

Ωπ(q; kl) =
∑

(0,0)≤(i1,j1)≤···≤(in,jn)≤(l−1,k−1)
s∈Des(π)⇒(is,js)<(is+1,js+1)

(
n∏

s=1

qkis+js

)

=
∑

I⊂[n−1]




∑

0≤i1≤···≤in≤l−1
s∈I⇒is<is+1

qkis






∑

σ∈L(PI)

Ωσ(q; k)




=
∑

στ=π

Ωσ(q; k)Ωτ (q
k; l),

as desired.

�
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1.5. The cyclic descent algebra

We now modify the notion of descent and explore some consequences. For a

permutation π ∈ Sn we define a cyclic descent at position i if π(i) > π(i + 1), or

if i = n and π(n) > π(1). Define cDes(π) to be the set of cyclic descent positions

of π, called the cyclic descent set. Let the cyclic descent number, cdes(π), be the

number of cyclic descents. The number of cyclic descents is between 1 and n − 1.

One can observe that a permutation π has the same number of cyclic descents as πωi

for i = 0, 1, . . . , n− 1, where ω is the n-cycle (1 2 · · · n). Define the cyclic Eulerian

polynomial to be

A(c)
n (t) =

∑

π∈Sn

tcdes(π).

We can make the following

Proposition 1.5.1. The cyclic Eulerian polynomial is expressible in terms of the

ordinary Eulerian polynomial:

A(c)
n (t) = nAn−1(t).

Proof. We will compare the coefficient of td on each side of the equation to show

A
(c)
n,d = nAn−1,d. Let π ∈ Sn−1 be any permutation of [n−1] such that des(π)+1 = d.

Let π̃ ∈ Sn be the permutation defined by π̃(i) = π(i) for i = 1, 2, . . . , n − 1 and

π̃(n) = n. Then we have des(π̃) = des(π) and cdes(π̃) = d. Let 〈π̃〉 = { π̃ωi | i =

0, 1, . . . , n−1 }, the set consisting of all n cyclic permutations of π̃. Every permutation

in the set has exactly d cyclic descents. There is a bijection between permutations of

Sn−1 and such subsets of Sn given by the map

π 7→ 〈π̃〉,
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and so the proposition follows. �

In this section we describe the structure of the cyclic descent algebra by way of a

formula for the group algebra similar to equation (1). Let

E
(c)
i :=

∑

cdes(π)=i

π,

the sum in the group algebra of all those permutations with i cyclic descents. Then

we define

ϕ(x) =
1

n

∑

π∈Sn

(
x+ n− 1− cdes(π)

n− 1

)
π =

1

n

n−1∑

i=1

(
x+ n− 1− i

n− 1

)
E

(c)
i .

Theorem 1.5.1. As polynomials in x and y with coefficients in the group algebra

of the symmetric group we have

ϕ(x)ϕ(y) = ϕ(xy).

Now if we define elements e
(c)
i by ϕ(x) =

n−1∑

i=1

e
(c)
i xi, we see that

(
e
(c)
i

)2

= e
(c)
i and

e
(c)
i e

(c)
j = 0 if i 6= j. Therefore the elements e

(c)
i are orthogonal idempotents, showing

that the cyclic descent algebra is commutative of dimension n − 1. Similar to the

bijection given in the proof of Proposition 1.5.1, the map

π 7→
∑

σ∈〈eπ〉
σ

gives an isomorphism between the ordinary Eulerian descent algebra of Sn−1 and the

cyclic descent algebra of Sn. We will prove Theorem 1.5.1 using formula (2).

Proof of Theorem 1.5.1. If we write out the definition for ϕ(x) in the state-

ment of Theorem 1.5.1, multiply both sides by n2, and equate coefficients, we have

18
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for any π ∈ Sn,

n

(
xy + n− 1− cdes(π)

n− 1

)
=
∑

στ=π

(
x+ n− 1− cdes(σ)

n− 1

)(
y + n− 1− cdes(τ)

n− 1

)
.

For some i, we can write π = νωi where ω is the n-cycle ( 1 2 · · · n ) and ν =

(n, ν(2), . . . , ν(n)). Observe that cdes(π) = cdes(ν) = des(ν). Form the permutation

ν̂ ∈ Sn−1 by ν̂(s) = ν(s + 1), s = 1, 2, . . . , n − 1. Then we can see that cdes(π) =

des(ν̂) + 1. We have

(
xy + n− 1− cdes(π)

n− 1

)
=

(
xy + (n− 1)− 1− des(ν̂)

n− 1

)
.

Now we can apply equation (2) to give us

(
xy + (n− 1)− 1− des(ν̂)

n− 1

)
(9)

=
∑

στ=bν

(
x+ (n− 1)− 1− des(σ)

n− 1

)
·

(
y + (n− 1)− 1− des(τ)

n− 1

)
.

For each pair of permutations σ, τ ∈ Sn−1 such that στ = ν̂, define the permutations

σ̃, τ̃ ∈ Sn as follows. For s = 1, 2, . . . , n − 1, let σ̃(s) = σ(s) and τ̃(s + 1) = τ(s).

Let σ̃(n) = n and τ̃(1) = n. Then by construction we have σ̃τ̃ = ν and a quick

observation tells us that cdes(σ̃) = des(σ) + 1 and cdes(τ̃) = des(τ) + 1. On the

other hand, from any pair of permutations σ̃, τ̃ ∈ Sn such that σ̃τ̃ = ν, σ̃(n) = n,

we can construct a pair of permutations σ, τ ∈ Sn−1 such that στ = ν̂ by reversing

the process. Observe now that if σ̃(n) = n and σ̃τ̃ = ν, then τ̃(1) = n. Therefore we
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have that (9) is equal to

∑

eσeτ=ν
eσ(n)=n

(
x+ n− 1− cdes(σ̃)

n− 1

)(
y + n− 1− cdes(τ̃)

n− 1

)

=
∑

eσ(eτωi)=π
eσ(n)=n

(
x+ n− 1− cdes(σ̃)

n− 1

)(
y + n− 1− cdes(τ̃ωi)

n− 1

)

=
∑

(eσωn−j)(ωj eτωi)=π
eσ(n)=n

(
x+ n− 1− cdes(σ̃ωn−j)

n− 1

)(
y + n− 1− cdes(ωj τ̃ωi)

n− 1

)

=
∑

στ=π
σ(j)=n

(
x+ n− 1− cdes(σ)

n− 1

)(
y + n− 1− cdes(τ)

n− 1

)
,

where the last two formulas hold for any j ∈ [n]. Notice that the number of cyclic

descents of τ = ωj τ̃ωi is still the same as the number of cyclic descents of τ̃ . We take

the sum over all j = 1, . . . , n, yielding

n

(
xy + n− 1− cdes(π)

n− 1

)
=
∑

στ=π

(
x+ n− 1− cdes(σ)

n− 1

)(
y + n− 1− cdes(τ)

n− 1

)

as desired. �
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CHAPTER 2

Descent algebras of type B

In this chapter we move from the symmetric group to the hyperoctahedral group,

the group of signed permutations. In Section 2.1 we will present some of the definitions

and results for the hyperoctahedral group that mirror the results for the symmetric

group presented in Chapter 1. Many of these results are due to Chak-On Chow

[Cho01].

In what remains of the chapter we introduce type B cyclic descents, or augmented

descents. While the basic idea for cyclic descents is the same in the hyperoctahedral

group as in the symmetric group, the algebraic structure related to type B cyclic

descents seems to be richer. For example, as will be seen in Chapter 3, they are

related to peak algebras of the symmetric group. We will prove a group algebra

formula that gives the structure for the type B cyclic descent algebra, as well as a

formula that combines both ordinary and cyclic descents of type B.

As with type A, the existence of the type B cyclic descent algebra is proven by

Cellini, [Cel95a], [Cel95b]. The algebraic structure implied by our Theorem 2.3.2 is

given in her paper [Cel98], as well as the paper [ABN04] of Marcelo Aguiar, Nantel

Bergeron, and Kathryn Nyman. Interesting variations of Theorem 2.3.1 can be found

in work of Jason Fulman [Ful01]. His techniques employ card shuffling and seem

very interesting. Also noteworthy is work on the descent algebra of the hyperoctahe-

dral group carried out in detail by Francois Bergeron and Nantel Bergeron, [Ber92],

[BB92a], [BB92b]. In particular, [BB92b] points to some possible applications of

the formulas derived in our main theorems.
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CHAPTER 2. DESCENT ALGEBRAS OF TYPE B

2.1. Type B posets, P -partitions of type B

Let ±[n] denote the set {−n,−n+1, . . . ,−1, 0, 1, . . . , n−1, n}. Let Bn denote the

hyperoctahedral group, the group of all bijections π : ±[n]→ ±[n] with the property

that π(−s) = −π(s), for s = 0, 1, . . . , n (note that π(0) = 0 as a consequence).

Since the elements of the hyperoctahedral group are uniquely determined by where

they map 1, 2, . . . , n, we can think of them as signed permutations. For a signed

permutation π ∈ Bn we will write π = (π(1), π(2), . . . , π(n)).

The definition of signed permutations necessitates the definition of a new type of

partially ordered set. What is desired is a poset whose linear extensions are given

by signed permutations. The following definitions are taken from Chak-On Chow’s

Ph.D. thesis [Cho01], though they derive from earlier work by Victor Reiner [Rei93].

In [Rei92], Reiner extends the concept of poset and P -partition to any finite Coxeter

group.

Definition 2.1.1. A Bn poset is a poset P whose elements are 0,±1,±2, . . . ,±n

such that if i <P j then −j <P −i.

Note that if we are given a poset with n+1 elements labeled by 0, a1, . . . , an where

ai = i or −i, then we can extend it to a Bn poset of 2n+ 1 elements.

1

−2

2

−1

−3

0

3

3

−1

2

0

−2

1

−3

Figure 2.1. Two B3 posets.

Let X = {x0, x1, x2, . . .} be a countable, totally ordered set with total order

x0 < x1 < x2 < · · · .
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Then define ±X to be the set {. . . ,−x1, x0, x1, . . .} with total order

· · · < −x2 < −x1 < x0 < x1 < x2 < · · · .

Definition 2.1.2. For any Bn poset P , a P -partition of type B is an order

preserving map f : ±[n]→ ±X such that:

• f(i) ≤ f(j) if i <P j

• f(i) < f(j) if i <P j and i > j in Z

• f(−i) = −f(i)

Note that type B P -partitions differ from ordinary P -partitions only in the ad-

dition of the property f(−i) = −f(i). Let A(P ) denote the set of all type B P -

partitions. We usually think of X as a subset of the nonnegative integers, and when

X has finite cardinality k + 1, then the type B order polynomial, denoted ΩP (k), is

the number of P -partitions f : ±[n] → ±X. We use the same notation as in the

ordinary case, but the context will make clear which definition we are using.

As before, we can think of any signed permutation π ∈ Bn as a Bn poset with

the total order π(s) <π π(s+1), 0 ≤ s ≤ n−1. For example, the signed permutation

(−2, 1) has −1 <π 2 <π 0 <π −2 <π 1 as a poset. Note that A(π) is the set of all

functions f : ±[n]→ ±X such that for 0 ≤ s ≤ n, f(−s) = −f(s) and

x0 = f(π(0)) ≤ f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)),

where if π(s) > π(s+ 1), then f(π(s)) < f(π(s+ 1)), s = 0, 1, . . . , n− 1. The type B

π-partitions where π = (−2, 1) are all maps f such that x0 < f(−2) ≤ f(1).

For a Bn poset P , let L(P ) denote the set of all signed permutations of n extending

P to a total order. For example let P be the B2 poset defined by 0 > 1 < −2

(and hence 2 < −1 > 0 as well). Then linearizing gives 2 < 1 < 0 < −1 < −2,
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2

−1

0

1

−2

P : L(P ):

2

1

0

-1

-2

1

-2

0

2

-1

1

2

0

-2

-1

Figure 2.2. Linear extensions of a B2 poset P .

1 < −2 < 0 < 2 < −1, or 1 < 2 < 0 < −2 < −1, corresponding to signed

permutations (−1,−2), (2, 1), and (−2,−1). Proofs of some of the basic facts of

type B P -partitions are identical to the proofs of analogous statements for ordinary

P -partitions and may be omitted.

Observation 2.1.1. A signed permutation π is in L(P ) if and only if i <P j

implies π−1(i) < π−1(j).

We have a fundamental theorem for P -partitions of type B.

Theorem 2.1.1 (FTPPB). The set of all type B P -partitions of a Bn poset P is

the disjoint union of the set of π-partitions of all linear extensions π of P :

A(P ) =
∐

π∈L(P )

A(π).

Corollary 2.1.1.

ΩP (k) =
∑

π∈L(P )

Ωπ(k).
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In moving from the symmetric group to the hyperoctahedral group, we vary the

definition of descent slightly. Define the descent set Des(π) of a signed permutation

π ∈ Bn to be the set of all i ∈ {0, 1, 2, . . . , n− 1} such that π(i) > π(i+ 1), where we

always take π(0) = 0. The descent number of π is again denoted des(π) and is equal

to the cardinality of Des(π). As a simple example, the signed permutation (−2, 3, 1)

has descent set {0, 2} and descent number 2. For any permutation π ∈ Bn, it is

easy to compute the order polynomial Ωπ(k). Any π-partition f : ±[n] → ±[k] is

determined by where we map π(1), π(2), . . . , π(n). To count them we can look at the

number of integer solutions to the set of inequalities

0 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k,

where des(π) of the inequalities are strict. This is the same as the number of solutions

to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k + 1− des(π),

which we know to be
((

k+1−des(π)
n

))
. We have

Ωπ(k) =

(
k + n− des(π)

n

)
.

There is an Eulerian descent algebra of the hyperoctahedral group. For 1 ≤ i ≤

n+ 1 let Ei be the sum of all permutations in Bn with i− 1 descents. Define

φ(x) =
∑

π∈Bn

(
(x− 1)/2 + n− des(π)

n

)
π =

n+1∑

i=1

(
(x− 1)/2 + n+ 1− i

n

)
Ei.

We can prove the following using an argument nearly identical to that for Theorem

1.3.1. See [Cho01], where the following formula can be found as Proposition 2.4.2, a

specialization of one of his theorems for type B quasisymmetric functions.
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Theorem 2.1.2. As polynomials in x and y with coefficients in the group algebra

of the hyperoctahedral group,

φ(x)φ(y) = φ(xy).

We therefore have orthogonal idempotents ei defined by φ(x) =
n∑

i=0

eix
i, telling

us that the Eulerian descent algebra of the hyperoctahedral group is commutative of

dimension n+ 1.

Proof. The main difference between this proof and the proof in the case of the

symmetric group (Theorem 1.3.1) is that we want to count π-partitions f : ±[n] →

±[l] × ±[k]. We notice that because of the property f(−s) = −f(s) of type B P -

partitions this is just like counting all f : [n]→ {0, 1, . . . , l}×{−k, . . . ,−1, 0, 1, . . . , k}

where for s = 1, 2, . . . , n, f(π(s)) = (is, js) with (0, 0) ≤ (is, js) ≤ (l, k) in the

lexicographic order. The image set of f then has 2kl+ k + l+ 1 elements, and so for

each π we can count all these maps with Ωπ(2kl + k + l) =
(
2kl+k+l−des(π)

n

)
. We use

similar arguments to those of Theorem 1.3.1 for splitting the lexicographic solutions

to

(0, 0) ≤ (i1, j1) ≤ · · · ≤ (in, jn) ≤ (l, k),

where (is, js) < (is+1, js+1) if s ∈ Des(π). Once we have properly grouped the set of

solutions it is not much more work to obtain the crucial formula:

Ωπ(2kl + k + l) =
∑

στ=π

Ωσ(k)Ωτ (l).

�
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There is also a q-analog of Theorem 2.1.2. We can define the q-order polynomial

for a signed permutation π as

Ωπ(q; k) =
∑

0≤i1≤···≤in≤k
s∈Des(π)⇒is<is+1

(
n∏

s=1

qis

)
= qcomaj(π)

(
k + n− des(π)

n

)

q

.

Let

φ(q;x) =
∑

π∈Bn

qcomaj(π)

(
(x− 1)/2 + n− des(π)

n

)

q

π.

Theorem 2.1.3. The following relation holds as polynomials in x and y (and q)

with coefficients in the group algebra of the hyperoctahedral group:

φ(q;x)φ(qx; y) = φ(q;xy).

Proof. We will omit most of the details, but the crucial step is to keep the proper

exponent on q. We convert each point (i, j) to the weight (2k + 1)i + j so that the

weight corresponds to the position of the point in the lexicographic order on the set

{0, 1, . . . , l}×{−k, . . . ,−1, 0, 1, . . . , k}. The proof is outlined in two steps below. For

any π and any pair of positive integers k, l,

Ωπ(q; 2kl + k + l) =
∑

(0,0)≤(i1,j1)≤···≤(in,jn)≤(l,k)
s∈Des(π)⇒(is,js)<(is+1,js+1)

(
n∏

s=1

q(2k+1)is+js

)

=
∑

στ=π

Ωσ(q; k)Ωτ (q
2k+1; l).

�
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2.2. Augmented descents and augmented P -partitions

For a permutation π ∈ Bn, position i is an augmented descent (or type B cyclic

descent1) if π(i) > π(i+1) or if i = n and π(n) > 0 = π(0). If we consider that signed

permutations always begin with 0, then augmented descents are the natural choice

for a type B version of cyclic descents.2 The set of all augmented descent positions

is denoted aDes(π), the augmented descent set. It is the ordinary descent set of π

along with n if π(n) > 0. The augmented descent number, ades(π), is the number

of augmented descents. With these definitions, (−2, 3, 1) has augmented descent set

{0, 2, 3} and augmented descent number 3. Note that while aDes(π) ⊂ {0, 1, . . . , n},

aDes(π) 6= ∅, and aDes(π) 6= {0, 1, . . . , n}. Denote the number of signed permutations

with k augmented descents by A
(a)
n,k and define the augmented Eulerian polynomial as

A(a)
n (t) =

∑

π∈Bn

tades(π) =
n∑

i=1

A
(a)
n,it

i.

After we introduce a new type of P -partition, we will prove the following observation.

Proposition 2.2.1. The number of signed permutations with i + 1 augmented

descents is 2n times the number of unsigned permutations with i descents, 0 ≤ i ≤

n− 1:

A(a)
n (t) = 2nAn(t).

We now give the definition of an augmented P -partition and basic tools related

to their study. Let X = {x0, x1, . . . , x∞} be a countable, totally ordered set with a

1The term cyclic descent seems appropriate for this definition, but Gessel has also used the term
augmented. We will also adopt this term to avoid confusion with type A cyclic descents.
2Most generally, Cellini [Cel95a] uses the term “descent in zero” to represent this concept for any
Weyl group.
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maximal element x∞. The total ordering on X is given by

x0 < x1 < x2 < · · · < x∞.

Define ±X to be {−x∞, . . . ,−x1, x0, x1, . . . , x∞} with the total order

−x∞ < · · · < −x1 < x0 < x1 < · · · < x∞.

Definition 2.2.1. For any Bn poset P , an augmented P -partition is a function

f : ±[n]→ ±X such that:

• f(i) ≤ f(j) if i <P j

• f(i) < f(j) if i <P j and i > j in Z

• f(−i) = −f(i)

• if 0 < i in Z, then f(i) < x∞.

Note that augmented P -partitions differ from P -partitions of type B only in the

addition of maximal and minimal elements of the image set ±X and in the last

criterion. Let A(a)(P ) denote the set of all augmented P -partitions. When X has

finite cardinality k+1 (and so ±X has cardinality 2k+1), then the augmented order

polynomial, denoted Ω
(a)
P (k), is the number of augmented P -partitions.

For any signed permutation π ∈ Bn, note that A(a)(π) is the set of all functions

f : ±[n]→ ±X such that for 0 ≤ s ≤ n, f(−s) = −f(s) and

x0 = f(π(0)) ≤ f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)) ≤ x∞.

Whenever π(s) > π(s+1), then f(π(s)) < f(π(s+1)), s = 0, 1, . . . , n−1. In addition,

we have f(π(n)) < x∞ whenever π(n) > 0. The set of all augmented π-partitions

where π = (−2, 1) is all maps f such that x0 < f(−2) ≤ f(1) < x∞.

29



CHAPTER 2. DESCENT ALGEBRAS OF TYPE B

The proof of the fundamental theorem of augmented P -partitions is similar that

of ordinary or type B P -partitions.

Theorem 2.2.1 (FTAPP). The set of all augmented P -partitions of a Bn poset

P is the disjoint union of the set of π-partitions of all linear extensions π of P :

A(a)(P ) =
∐

π∈L(P )

A(a)(π).

Corollary 2.2.1.

Ω
(a)
P (k) =

∑

π∈L(P )

Ω(a)
π (k).

It is fairly easy to compute the augmented order polynomial for a signed permu-

tation. The number of augmented π-permutations f : ±[n] → ±[k] is equal to the

number of integer solutions to the set of inequalities

0 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k,

where ades(π) of the inequalities are strict. This is the same as the number of solutions

to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k + 1− ades(π),

which we know to be
((

k+1−ades(π)
n

))
. In other words,

Ω(a)
π (k) =

(
k + n− ades(π)

n

)
.

We conclude this section with the proof of Proposition 2.2.1.
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Proof of Proposition 2.2.1. Recall from Section 1.2 that we have the follow-

ing formula for the ordinary Eulerian polynomials:

∑

k≥0

kntk =
An(t)

(1− t)n+1
.

Now let P be the poset given by an antichain of 2n + 1 elements labeled 0,±1,

±2,. . ., ±n. The number of augmented P -partitions f : ±[n] → ±[k] is determined

by the choices for f(1), f(2), . . . , f(n), which can take any of the 2k different values

in the set {−k,−k+ 1, . . . , k− 1}. Therefore Ω
(a)
P (k) = (2k)n. For Bn posets P , it is

not difficult to show that we have the identity

∑

k≥0

Ω
(a)
P (k)tk =

∑
π∈L(P ) t

ades(π)

(1− t)n+1
,

similarly to the ordinary case. For our antichain we have L(P ) = Bn, and therefore

A
(a)
n (t)

(1− t)n+1
=
∑

k≥0

(2k)ntk = 2n
∑

k≥0

kntk =
2nAn(t)

(1− t)n+1
,

so the theorem is proved. �

2.3. The augmented descent algebra

The theorems that we prove in this section establish the existence of the aug-

mented descent algebra. We will also show that the augmented descent algebra and

the Eulerian descent algebra are related in a nice way, and actually can be taken to-

gether to form another subalgebra of the group algebra. We will state both theorems

before the proof of either.

Let

E
(a)
i :=

∑

ades(π)=i

π,
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the sum in the group algebra of all permutations with i augmented descents. Define

ψ(x) =
∑

π∈Bn

(
x/2 + n− ades(π)

n

)
π =

n∑

i=1

(
x/2 + n− i

n

)
E

(a)
i .

Theorem 2.3.1. As polynomials in x and y with coefficients in the group algebra

of the hyperoctahedral group we have

ψ(x)ψ(y) = ψ(xy).

We get orthogonal idempotents e
(a)
i defined by ψ(x) =

n∑

i=1

e
(a)
i xi.

Theorem 2.3.2. As polynomials in x and y with coefficients in the group algebra

of the hyperoctahedral group we have

φ(y)ψ(x) = ψ(x)φ(y) = ψ(xy).

Theorem 2.3.2 implies that e
(a)
i ei = eie

(a)
i = e

(a)
i and that e

(a)
i ej = 0 if i 6= j. We

can take the span of the ei and the e
(a)
i to form a subalgebra of the group algebra

of dimension 2n in which the augmented Eulerian descent algebra is an ideal. This

relationship shows up again in the case of peak algebras of type A. See Chapter 3 as

well as the paper of Aguiar, Bergeron, and Nyman [ABN04] for more.

The dimension of this subalgebra is 2n and not 2n+ 1 since the only dependency

relation between the sets {Ei} and {E
(a)
i } is

n+1∑

i=1

Ei =
∑

π∈Sn

π =
n∑

i=1

E
(a)
i . Alterna-

tively, for i = 1, 2, . . . , n, let F−
i be the sum of all permutations with i augmented

descents and π(n) < 0, let F+
i be the sum of all permutations with i augmented

descents and π(n) > 0. Then

E1 = F+
1 ,

En+1 = F−
n ,
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Ei = F−
i−1 + F+

i for 1 < i < n+ 1,

and E
(a)
i = F−

i + F+
i for 1 ≤ i ≤ n.

Then we see that the F+
i , F−

i , which are obviously linearly independent, span the Ei,

E
(a)
i .

The proofs of Theorems 2.3.1 and 2.3.2 will follow the same basic structure as the

proof of Theorem 1.3.1, but with some important changes in detail. In both cases we

will rely on a slightly different total ordering on the integer points (i, j), where i and

j are bounded both above and below. Let us now define the augmented lexicographic

order.

(0, 0)

(l, k)(i, k)

(i + 1,−k)

= = = = =

Figure 2.3. The augmented lexicographic order.

Consider all points (i, j) with 0 ≤ i ≤ l, −k ≤ j ≤ k. We have (i, j) < (i′, j′) if

i < i′ or else if i = i′ and j < j′ as before, except in the important special case that

follows. We now say (i, j) = (i′, j′) in one of two situations. Either

i = i′ and j = j′
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or

i+ 1 = i′ and j = k = −j′.

If we have 0 ≤ i ≤ l, −2 ≤ j ≤ 2, then in the augmented lexicographic order, the

first few points (0, 0) ≤ (i, j) ≤ (l, 2) are:

(0, 0) < (0, 1) < (0, 2) = (1,−2) < (1,−1) < (1, 0) < (1, 1) < (1, 2)

= (2,−2) < (2,−1) < (2, 0) · · ·

To be more precise, what we have done is to form equivalence classes of points

and to introduce a total order on these equivalence classes. If j 6= ±k, then the class

represented by (i, j) is just the point itself. Otherwise, the classes consist of the two

points (i, k) and (i + 1,−k). When we write (i, j) = (i′, j′), what we mean is that

the two points are in the same equivalence class. In the proofs that follow, it will be

important to remember the original points as well as the equivalence classes to which

they belong. This special ordering will be very apparent in deriving the q-analogs of

Theorem 2.3.1 and Theorem 2.3.2. We will now prove the theorems.

Proof of Theorem 2.3.1. As before, we equate coefficients and prove that a

simpler formula,

(
2kl + n− ades(π)

n

)
=
∑

στ=π

(
k + n− ades(σ)

n

)(
l + n− ades(τ)

n

)
,(10)

holds for any π ∈ Bn.

We recognize the left-hand side of equation (10) as Ω
(a)
π (2kl), so we want to count

augmented P -partitions f : ±[n] → ±X, where X is a totally ordered set of order
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2kl+1. We interpret this as the number of solutions, in the augmented lexicographic

ordering, to

(11) (0, 0) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, 0),

where we have

• 0 ≤ is ≤ l,

• −k < js ≤ k if π(s) < 0,

• −k ≤ js < k if π(s) > 0, and

• (is, js) < (is+1, js+1) if s ∈ aDes(π).

Let us clarify. There are 2kl + l + 1 points (i, j) with 0 ≤ i ≤ l and −k ≤ j ≤ k,

not including the points (0, j) with j < 0, or the points (l, j) with j > 0. Under the

augmented lexicographic ordering, l of these points are identified: points of the form

(i, k) = (i+ 1,−k), for i = 0, 1, . . . , l− 1. Any particular (is, js) can only occupy one

of (i, k) or (i + 1,−k), but not both. So there are truly 2kl + 1 distinct classes in

which the n points can fall. This confirms our interpretation of the order polynomial.

Now as before, we will split the solutions to the inequalities into distinct cases. Let

π(0) = π(n+1) = 0, i0 = j0 = 0, in+1 = l, and jn+1 = 0. Let F = ((i1, j1), . . . , (in, jn))

be any solution to (11). If π(s) < π(s+1), then (is, js) ≤ (is+1, js+1), which falls into

one of two mutually exclusive cases:

is ≤ is+1 and js ≤ js+1, or(12)

is < is+1 and js > js+1.(13)
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If π(s) > π(s+ 1), then (is, js) < (is+1, js+1), which we split as:

is ≤ is+1 and js < js+1, or(14)

is < is+1 and js ≥ js+1,(15)

also mutually exclusive. Define IF = {s ∈ {0, 1, . . . , n} \ aDes(π) | js > js+1} ∪ {s ∈

aDes(π) | js ≥ js+1}. Then IF is the set of all s such that either (13) or (15) holds

for F . Now for any I ⊂ {0, 1, . . . , n}, let SI be the set of all solutions F to (11)

satisfying IF = I. We have split the solutions of (11) into 2n+1 distinct cases indexed

by all the different subsets I of {0, 1, . . . , n}.

However, S∅ is empty, since

0 ≤ i1 ≤ · · · ≤ in ≤ l

yields

0 ≤ j1 ≤ · · · ≤ jn ≤ 0 with js < js+1 if s ∈ aDes(π).

As discussed before, the augmented descent set of a signed permutation is never

empty, so we would get 0 < 0, a contradiction. At the other extreme, the set S{0,1,...,n}

has no solutions either. Here we get

0 < i1 < · · · < in < l

and consequently

0 ≥ j1 ≥ · · · ≥ jn ≥ 0 with js > js+1 if s /∈ aDes(π).

But aDes(π) cannot equal {0, 1, . . . , n}, so we get the contradiction 0 > 0.
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Now let I be any nonempty, proper subset of {0, 1, . . . , n}. Form the poset PI

by π(s) >PI
π(s + 1) if s ∈ I, π(s) <PI

π(s + 1) otherwise. The poset PI looks like

a zig-zag, labeled consecutively by 0 = π(0), π(1), π(2), . . . , π(n), 0 = π(n + 1) with

downward zigs corresponding to the elements of I. Because I is neither empty nor

full, we never have 0 <PI
0, so PI is a well-defined, nontrivial type B poset.

For a given F ∈ SI , let f : ±[n]→ ±[k] be defined by f(π(s)) = js and f(−s) =

−f(s) for s = 0, 1, . . . , n. We will show that f is an augmented PI partition. If

π(s) <PI
π(s + 1) and π(s) < π(s + 1) in Z, then (12) tells us that f(π(s)) = js ≤

js+1 = f(π(s+ 1)). If π(s) <PI
π(s+ 1) and π(s) > π(s+ 1) in Z, then (14) tells us

that f(π(s)) = js < js+1 = f(π(s + 1)). If π(s) >PI
π(s + 1) and π(s) < π(s + 1) in

Z, then (13) gives us that f(π(s)) = js > js+1 = f(π(s + 1)). If π(s) >PI
π(s + 1)

and π(s) > π(s+ 1) in Z, then (15) gives us that f(π(s)) = js ≥ js+1 = f(π(s+ 1)).

Since we required that −k < js ≤ k if π(s) < 0 and −k ≤ js < k if π(s) > 0, we have

that for any particular solution in SI , the js’s can be thought of as an augmented

PI-partition. Conversely, any augmented PI-partition f gives a solution in SI since if

js = f(π(s)), then ((i1, j1), . . . , (in, jn)) ∈ SI if and only if 0 ≤ i1 ≤ · · · ≤ in ≤ l and

is < is+1 for all i ∈ I. We can therefore turn our attention to counting augmented

PI-partitions.

Let σ ∈ L(PI). Then we get for any σ-partition f ,

0 ≤ f(σ(1)) ≤ f(σ(2)) ≤ · · · ≤ f(σ(n)) ≤ k,

and f(σ(s)) < f(σ(s + 1)) whenever s ∈ aDes(σ), where we take f(σ(n + 1)) = k.

The number of solutions to this set of inequalities is

Ω(a)
σ (k) =

(
k + n− ades(σ)

n

)
.
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Recall by Observation 2.1.1 that σ−1π(s) < σ−1π(s+ 1) if π(s) <PI
π(s+ 1), i.e.,

if s /∈ I. If π(s) >PI
π(s + 1) then σ−1π(s) > σ−1π(s + 1) and s ∈ I. We get that

aDes(σ−1π) = I if and only if σ ∈ L(PI). Set τ = σ−1π. The number of solutions to

0 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 if s ∈ aDes(τ)

is given by

Ωτ (l) =

(
l + n− ades(τ)

n

)
.

Now for a given I, the number of solutions to (11) is

∑

σ∈L(PI)
στ=π

(
k + n− ades(σ)

n

)(
l + n− ades(τ)

n

)
.

Summing over all subsets I ⊂ {0, 1, . . . , n}, we can write the number of all solutions

to (11) as
∑

στ=π

(
k + n− ades(σ)

n

)(
l + n− ades(τ)

n

)
,

and so the theorem is proved.

�

The proof of Theorem 2.3.2 is very similar, so we will omit unimportant details

in the proof below.

Proof of Theorem 2.3.2. We equate coefficients and prove that

(
2kl + k + n− ades(π)

n

)
=
∑

στ=π

(
k + n− ades(σ)

n

)(
l + n− des(τ)

n

)
,(16)

holds for any π ∈ Bn.

We recognize the left-hand side of equation (16) as Ω
(a)
π (2kl + k), so we want to

count augmented P -partitions f : ±[n] → ±X, where X is a totally ordered set of
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order 2kl + k + 1. We interpret this as the number of solutions, in the augmented

lexicographic ordering, to

(17) (0, 0) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k),

where we have

• 0 ≤ is ≤ l,

• −k < js ≤ k if π(s) < 0,

• −k ≤ js < k if π(s) > 0, and

• (is, js) < (is+1, js+1) if s ∈ aDes(π).

With these restrictions, we split the solutions to (17) by our prior rules. Let F =

((i1, j1), . . . , (in, jn)) be any particular solution. If π(s) < π(s + 1), then (is, js) ≤

(is+1, js+1), which falls into one of two mutually exclusive cases:

is ≤ is+1 and js ≤ js+1, or

is < is+1 and js > js+1.

If π(s) > π(s+ 1), then (is, js) < (is+1, js+1), giving:

is ≤ is+1 and js < js+1, or

is < is+1 and js ≥ js+1,

also mutually exclusive. With (in, jn), there is only one case, depending on π. If

π(n) > 0, then (in, jn) < (l, k) and in ≤ l and −k ≤ jn < k. Similarly, if π(n) < 0,

then (in, jn) ≤ (l, k) and we have in ≤ l and −k < jn ≤ k. Define IF and SI as

before. We get 2n mutually exclusive sets SI indexed by subsets I ⊂ {0, 1, . . . , n− 1}

(these subsets will correspond to ordinary descent sets).
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Now for any I ⊂ {0, 1, . . . , n − 1}, define the Bn poset PI to be the poset given

by π(s) >PI
π(s + 1) if s ∈ I, and π(s) <PI

π(s + 1) if s /∈ I, for s = 0, 1, . . . , n− 1.

We form a zig-zag poset labeled consecutively by π(0) = 0, π(1), π(2), . . . , π(n).

For a given solution F ∈ SI , let f : ±[n] → ±[k] be defined by f(π(s)) = js for

0 ≤ s ≤ n, with f(−s) = −f(s). It is not too difficult to check that f is an augmented

PI-partition, and that any augmented PI-partition corresponds to a solution in SI .

Let σ ∈ L(PI). Then for any σ-partition f we get

f(σ(0)) = 0 ≤ f(σ(1)) ≤ · · · ≤ f(σ(n)) ≤ k,

with f(σ(s)) < f(σ(s + 1)) whenever s ∈ aDes(σ). The number of solutions to this

set of inequalities is

Ω(a)
σ (k) =

(
k + n− ades(σ)

n

)
.

We see that for s = 0, 1, . . . , n − 1, σ−1π(s) < σ−1π(s + 1) if π(s) <PI
π(s + 1),

i.e., if s /∈ I. Also, if π(s) >PI
π(s+ 1) then σ−1π(s) > σ−1π(s+ 1) and s ∈ I. This

time we get that Des(σ−1π) = I, an ordinary descent set, if and only if σ ∈ LPI
. Set

τ = σ−1π. The number of solutions to

0 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 if s ∈ Des(τ)

is given by

Ωτ (l) =

(
l + n− des(τ)

n

)
.

We take the sum over all subsets I to show the number of solutions to (16) is

∑

στ=π

(
k + n− ades(σ)

n

)(
l + n− des(τ)

n

)
,

and the theorem is proved. �
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There is an augmented version of the q-order polynomial. We can write it quite

nicely for a signed permutation π. We have

Ω(a)
π (q; k) =

∑

0≤i1≤···≤in≤k
s∈aDes(π)⇒is<is+1

(
n∏

s=1

qis

)

=
∑

0≤i1≤···≤in≤k−ades(π)

(
n∏

s=1

qis+a(s)

)

= qacomaj(π)

(
k + n− ades(π)

n

)

q

.

Here again a(s) is the number of descents of π to the left of s and the augmented

comajor index, acomaj(π), is the sum over all s of the numbers a(s). There are also

q-analogs of Theorems 2.3.1 and 2.3.2, which we will now state. The proofs of the

q-analogs are very similar to the proofs of the theorems themselves, so we only sketch

them. Define

ψ(q;x) =
∑

π∈Bn

qacomaj(π)

(
x/2 + n− ades(π)

n

)

q

π.

Theorem 2.3.3. As polynomials in x and y (and q) with coefficients in the group

algebra of the hyperoctahedral group we have

ψ(q;x)ψ(qx; y) = ψ(q;xy).

Proof. The crucial step is that we want to give the integer pairs (i, j) the proper

weight in the augmented lexicographic ordering. If we take 2ki + j as the weight

of the point (i, j) then we get that the points (i, k) and (i + 1,−k) have the same

weight. As desired, the weight corresponds to the position of (i, j) in the augmented

lexicographic ordering. Everything else follows as in the proof of Theorem 2.3.1. For
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any π and any pair of positive integers k, l,

Ω(a)
π (q; 2kl) =

∑

(0,0)≤(i1,j1)≤···≤(in,jn)≤(l+1,0)
s∈aDes(π)⇒(is,js)<(is+1,js+1)

(
n∏

s=1

q2kis+js

)

=
∑

στ=π

Ω(a)
σ (q; k)Ω(a)

τ (q2k; l).

�

Theorem 2.3.4. As polynomials in x and y (and q) with coefficients in the group

algebra of the hyperoctahedral group we have

ψ(q;x)φ(qx; y) = ψ(q;xy).

Proof. Because we exploit the augmented lexicographic order in the proof of

Theorem 2.3.2 (the q = 1 case), we will use the same weighting scheme as in the

proof of Theorem 2.3.3 for the points (i, j). We have:

Ω(a)
π (q; 2kl + k) =

∑

(0,0)≤(i1,j1)≤···≤(in,jn)≤(l+1,k+1)
s∈Des(π)⇒(is,js)<(is+1,js+1)

(
n∏

s=1

q2kis+js

)

=
∑

στ=π

Ω(a)
σ (q; k)Ωτ (q

2k; l).

�
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CHAPTER 3

Enriched P -partitions and peak algebras of type A

In this chapter we begin the investigation of different commutative subalgebras

of the group algebra of the symmetric group, called (Eulerian) peak algebras. We

will introduce two definitions of peaks, “interior” and “left,” each giving rise to a

different subalgebra. Taking the closure of both the interior and left peak algebras

gives another subalgebra in which the interior peak algebra is an ideal. This situation

closely resembles the relationship between the Eulerian and the augmented descent

algebras of the hyperoctahedral group algebra. See the work of Aguiar, Bergeron,

and Nyman [ABN04] for more on this relationship.

To study peaks, we begin by following the work of John Stembridge [Ste97].

We first survey Stembridge’s enriched P -partitions, which will be useful for studying

interior peaks, and a variation of Stembridge’s maps called left enriched P -partitions

for the study of left peaks.
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3.1. Peaks of permutations

A peak of a permutation π ∈ Sn is a position i such that π(i−1) < π(i) > π(i+1).

The only difference between interior peaks and left peaks is the values of i that we

allow. The notion of peak that Stembridge [Ste97] defines is that of an interior peak.

An interior peak is any i ∈ {2, 3, . . . , n − 1} such that π(i − 1) < π(i) > π(i + 1).

We define the interior peak set, Pk(π) ⊂ {2, 3, . . . , n − 1}, to be the set of all such

i. The number of interior peaks is denoted pk(π). For example, the permutation

π = (2, 1, 4, 3, 5) has Pk(π) = {3} and pk(π) = 1. Notice that we always have

0 ≤ pk(π) ≤ ⌊n−1
2
⌋.

Aguiar, Bergeron, and Nyman [ABN04] study another type of peak, which we

call a left peak. A left peak of a permutation is any position i ∈ [n − 1] such that

π(i−1) < π(i) > π(i+1), where we take π(0) = 0. This definition of peak varies from

the prior one only in allowing a peak in the first position if π(1) > π(2). We denote

the left peak set by Pk(ℓ)(π) ⊂ [n−1], and the number of left peaks by pk(ℓ)(π). With

π = (2, 1, 4, 3, 5) as above, Pk(ℓ)(π) = {1, 3} and pk(ℓ)(π) = 2. The number of left

peaks always falls in the range 0 ≤ pk(ℓ)(π) ≤ ⌊n/2⌋.

Just as there are Eulerian numbers, counting the number of permutations with

the same descent number, we also have peak numbers, counting the number of permu-

tations with the same number of peaks. We will not devote much time to this topic,

but state only those properties that are easy observations given the theory of enriched

P -partitions developed in this chapter. We denote the number of permutations of n

with k left peaks by P
(ℓ)
n,k. We define the interior peak polynomial as

Wn(t) =
∑

π∈Sn

tpk(π)+1 =

⌊n+1
2

⌋∑

i=1

Pn,it
i.
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Similarly, we define the left peak polynomial as

W (ℓ)
n (t) =

∑

π∈Sn

tpk(ℓ)(π) =

⌊n
2
⌋∑

i=0

P
(ℓ)
n,i t

i.

Later in the chapter we will have the tools to prove the following observations

relating peak polynomials to Eulerian polynomials. The first observation appears in

Remark 4.8 of [Ste97]. In both cases, the second equality follows from Proposition

2.2.1.

Observation 3.1.1. We have the following relation between the interior peak

polynomial, the Eulerian polynomial, and the augmented Eulerian polynomial:

Wn

(
4t

(1 + t)2

)
=

2n+1

(1 + t)n+1
An(t) =

2

(1 + t)n+1
A(a)

n (t).

Observation 3.1.2. We have the following relation between the left peak polyno-

mial, the Eulerian polynomial, and the augmented Eulerian polynomial:

W (ℓ)
n

(
4t

(1 + t)2

)
=

1

(1 + t)n

n∑

i=0

(
n

i

)
(1− t)n−i2iAi(t)

=
1

(1 + t)n

n∑

i=0

(
n

i

)
(1− t)n−iA

(a)
i (t).

3.2. Enriched P -partitions

We now introduce much of Stembridge’s basic theory of enriched P -partitions. For

a more detailed treatment see [Ste97]. We only provide proofs where our method is

new, or where the old proof is enlightening. As in the first chapter, we will assume

that all of our posets P are finite and labeled with the positive integers 1, 2, . . . , n.

Throughout this section, by “peaks” we mean interior peaks.
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To begin, Stembridge defines P
′ to be the set of nonzero integers with the following

total order:

−1 < 1 < −2 < 2 < −3 < 3 < · · ·

In general, we can define X ′ for any totally ordered set X = {x1, x2, . . .} to be the

set {−x1, x1,−x2, x2, . . .} with total order

−x1 < x1 < −x2 < x2 < · · ·

(which we can think of as two interwoven copies of X). In particular, for any positive

integer k, [k]′ is the set

−1 < 1 < −2 < 2 < · · · < −k < k.

For any x ∈ X, we say x > 0, or x is positive. On the other hand, we say −x < 0 and

−x is negative. The absolute value forgets any minus signs: |±x| = x for any x ∈ X.

Definition 3.2.1. An enriched P -partition is a map f : P → X ′ such that for

all i <P j in P ,

• f(i) ≤ f(j)

• f(i) = f(j) > 0 only if i < j in Z

• f(i) = f(j) < 0 only if i > j in Z

We let E(P ) denote the set of all enriched P -partitions. When X has a finite

number of elements, k, then the number of enriched P -partitions is finite. In this case,

define the enriched order polynomial, denoted Ω′
P (k), to be the number of enriched

P -partitions f : P → X ′.

Just as with ordinary P -partitions, we have what Stembridge calls the fundamental

lemma of enriched P-partitions (or what Gessel would call the fundamental theorem).
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Lemma 3.2.1 (FLEPP). For any poset P , the set of all enriched P -partitions is

the disjoint union of all enriched π-partitions for linear extensions π of P . Or,

E(P ) =
∐

π∈L(P )

E(π)

The proof of the lemma is identical to the proof of the analogous statement for

ordinary P -partitions, and the following corollary is immediate.

Corollary 3.2.1.

Ω′
P (k) =

∑

π∈L(P )

Ω′
π(k).

Therefore when studying enriched P -partitions it is enough (as before) to consider

the case where P is a permutation. It is easy to describe the set of all enriched π-

partitions in terms of descent sets. For any π ∈ Sn we have

E(π) = { f : [n]→ X ′ | f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)),

f(π(i)) = f(π(i+ 1)) > 0⇒ i /∈ Des(π),

f(π(i)) = f(π(i+ 1)) < 0⇒ i ∈ Des(π) }

To try to simplify notation, and perhaps make this characterization more closely

resemble the case of ordinary P -partitions, let i ≤+ j mean that i < j in X ′ or

i = j > 0. Similarly define i ≤− j to mean that i < j in X ′ or i = j < 0. The set of

all enriched π-partitions f : [n]→ X ′ is all solutions to

(18) f(π(1)) ≤± f(π(2)) ≤± · · · ≤± f(π(n))

where f(π(s)) ≤− f(π(s+ 1)) if s ∈ Des(π) and f(π(s)) ≤+ f(π(s+ 1)) otherwise.

Counting the number of solutions to a set of inequalities like (18) is not so sim-

ple as counting integers with ordinary inequalities as was the case with ordinary
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P -partitions—we are not going to derive a nice binomial coefficient for the order

polynomial. However, Stembridge provides us some characterizations of use.

Let cl(P ) denote the number of enriched P -partitions f such that { |f(i)| : i =

1, 2, . . . , n } = [l] as sets. Then we have the following formula for the enriched order

polynomial:

Ω′
P (k) =

n∑

l=1

(
k

l

)
cl(P ).

This formula quickly shows that the enriched order polynomial has degree n. Though

it may not be obvious in this formulation, Stembridge observes ([Ste97], Proposition

4.2) that enriched order polynomials satisfy a reciprocity relation:

Ω′
P (−x) = (−1)nΩ′

P (x).

In fact, we can combine these facts to be precise:

Observation 3.2.1. For n even, Ω′
P (x) is a polynomial of degree n/2 in x2. For

n odd, xΩ′
P (x) is a polynomial of degree (n+ 1)/2 in x2.

Before we get too far ahead of the story, we have yet to say why enriched or-

der polynomials are useful for studying peaks of permutations. Clearly enriched

π-partitions depend on the descent set of π. In fact they depend only on the number

of peaks, as seen in Stembridge’s formulation of the generating function for the order

polynomial ([Ste97], Theorem 4.1). Here we give only the generating function for

enriched order polynomials of permutations, and remark that by the fundamental

Lemma 3.2.1, we can obtain the order polynomial generating function for any poset

by summing the generating functions for its linear extensions.
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Theorem 3.2.1. We have the following generating function for enriched π-partitions:

∑

k≥0

Ω′
π(k)tk =

1

2

(1 + t)n+1

(1− t)n+1
·

(
4t

(1 + t)2

)pk(π)+1

Notice that this formula implies that Ω′
π(x) has no constant term. We will sketch

Stembridge’s proof since it will be useful for dealing with both the left peaks case and

the type B case.

Proof. Fix any permutation π ∈ Sn. As seen in Chapter 1, we have the following

formula for the generating function of ordinary order polynomials:

∑

k≥0

Ωπ(k)tk =
tdes(π)+1

(1− t)n+1

For any set of integers D, let D+1 denote the set {d+1 | d ∈ D}. From Stembridge’s

Proposition 3.5 [Ste97], we see that an enriched order polynomial can be written as

a sum of ordinary order polynomials:

Ω′
π(k) = 2pk(π)+1 ·

∑

D⊂[n−1] and
Pk(π)⊂D△(D+1)

ΩD(k),

where ΩD(k) denotes the ordinary order polynomial of any permutation with descent

set D, and △ denotes the symmetric difference of sets: A △ B = (A ∪ B)\(A ∩ B).
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Putting these two facts together, we get:

∑

k≥0

Ω′
π(k)tk =

∑

k≥0

2pk(π)+1 ·
∑

D⊂[n−1] and
Pk(π)⊂D△(D+1)

ΩD(k)tk

= 2pk(π)+1 ·
∑

D⊂[n−1] and
Pk(π)⊂D△(D+1)

∑

k≥0

ΩD(k)tk

=
2pk(π)+1

(1− t)n+1
· t

∑

D⊂[n−1] and
Pk(π)⊂D△(D+1)

t|D|

It is not hard to write down the generating function for the sets D by size. We have,

for any j ∈ Pk(π), exactly one of j or j − 1 will be in D. There are n− 2 pk(π)− 1

remaining elements of [n− 1], and they can be included in D or not:

∑

D⊂[n−1] and
Pk(π)⊂D△(D+1)

t|D| = (t+ t)(t+ t) · · · (t+ t)︸ ︷︷ ︸
pk(π)

(1 + t)(1 + t) · · · (1 + t)︸ ︷︷ ︸
n−2 pk(π)−1

= (2t)pk(π)(1 + t)n−2 pk(π)−1

Putting everything together, we get

∑

k≥0

Ω′
π(k)tk =

1

2

(1 + t)n+1

(1− t)n+1
·

(
4t

(1 + t)2

)pk(π)+1

as desired. �

So while we may not have the order polynomial given by a simple binomial co-

efficient as in the earlier cases, we do know that we have polynomials that depend

only on the number of peaks, and that have as many terms as there are realizable

peak numbers. Recall that this is very similar to the case of descents, where we knew

that our ordinary order polynomials depended on the number of descents, and that

the number of terms in these polynomials corresponded to the number of realizable
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descent numbers. We are ready to discuss the application of enriched order polyno-

mials to the interior peak algebra. We conclude the section with proof of Observation

3.1.1.

Proof of Observation 3.1.1. Recall from Section 1.2 that we have the fol-

lowing formula for the ordinary Eulerian polynomials:

∑

k≥0

kntk =
An(t)

(1− t)n+1
.

Now let P be an antichain of n elements labeled 1, 2, . . . , n. The number of

enriched P -partitions f : [n] → [k]′ is (2k)n since there are 2k elements in [k]′ and

there are no relations among the elements of the antichain. Therefore Ω′
P (k) = (2k)n,

and since we have L(P ) = Sn, Theorem 3.2.1 gives

1

2

(1 + t)n+1

(1− t)n+1
Wn

(
4t

(1 + t)2

)
=
∑

k≥0

(2k)ntk = 2n
∑

k≥0

kntk =
2nAn(t)

(1− t)n+1
.

Rearranging terms gives the desired result:

Wn

(
4t

(1 + t)2

)
=

2n+1

(1 + t)n+1
An(t).

�

3.3. The interior peak algebra

In this section we will prove the existence of the interior peak algebra by describing

a set of orthogonal idempotents as coefficients of certain “structure” polynomials. Let

ρ(x) =
∑

π∈Sn

Ω′
π(x/2)π =

⌊n+1
2

⌋∑

i=1

Ω′
i(x/2)E ′

i,

51



CHAPTER 3. ENRICHED P -PARTITIONS AND PEAK ALGEBRAS OF TYPE A

where E ′
i is the sum of all permutations with i − 1 peaks and Ω′

i(x) is the enriched

order polynomial for any permutation with i− 1 peaks.

Theorem 3.3.1. As polynomials in x and y with coefficients in the group algebra

of the symmetric group, we have

(19) ρ(x)ρ(y) = ρ(xy).

As in the case of descents, this formula gives us orthogonal idempotents for a

subalgebra of the group algebra. If we let e′i be the coefficient of x2i for n even

(the coefficient of x2i−1 for n odd), in ρ(x) =

⌊(n+1)/2⌋∑

i=1

e′ix
2i, then e′ie

′
j = 0 if i 6= j

and (e′i)
2 = e′i. So we get that the interior peak algebra of the symmetric group is

commutative of dimension ⌊(n+ 1)/2⌋.

Proof. We will try to imitate the proofs from earlier chapters, making adjust-

ments only when necessary. By equating the coefficient of π on both sides of equation

(19) we know that we need only prove the following claim: For any permutation

π ∈ Sn and positive integers k, l we have

Ω′
π(2kl) =

∑

στ=π

Ω′
σ(k)Ω′

τ (l).

We will interpret the left-hand side of the equation in such a way that we can

split it apart to form the right hand side. Rather than considering Ω′(π; 2kl) to count

maps f : π → [2kl]′, we will understand it to count maps f : π → [l]′ × [k]′, where

we take the up-down order on [l]′× [k]′. The up-down order is defined as follows (see

Figure 3.1): (i, j) < (i′, j′) if and only if

(1) i < i′, or

(2) i = i′ > 0 and j < j′, or
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(3) i = i′ < 0 and j > j′.

So if the horizontal coordinate is negative, we read the columns from the top down,

if the horizontal coordinate is positive, we read from the bottom up. Then Ω′(π; 2kl)

is the number of solutions to

(20) (−1, k) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k)

where (is, js) ≤
− (is+1, js+1) if s ∈ Des(π) and (is, js) ≤

+ (is+1, js+1) otherwise. For

example, if π = (1, 3, 2), we will count the number of points

(−1, k) ≤ (i1, j1) ≤
+ (i2, j2) ≤

− (i3, j3) ≤ (l, k).

Here we write (i, j) ≤+ (i′, j′) in one of three cases: if i < i′, or if i = i′ > 0 and

j ≤+ j′, or if i = i′ < 0 and j ≥− j′. Similarly, (i, j) ≤− (i′, j′) if i < i′, or if i = i′ > 0

and j ≤− j′, or if i = i′ < 0 and j ≥+ j′.

(−1,−1)

(−1, k)

(−1,−k)

(1,−1)

(l, k)

(l,−k)

(i,−1)

(i, k)

< < < <

< < <

Figure 3.1. The up-down order for [l]′ × [k]′.
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To get the result we desire, we will sort the set of all solutions to (20) into distinct

cases indexed by subsets I ⊂ [n−1]. The sorting depends on π and proceeds as follows.

Let F = ((i1, j1), . . . , (in, jn)) be any solution to (20). For any s = 1, 2, . . . , n − 1,

if π(s) < π(s + 1), then (is, js) ≤
+ (is+1, js+1), which falls into one of two mutually

exclusive cases:

is ≤
+ is+1 and js ≤

+ js+1, or(21)

is ≤
− is+1 and js ≥

− js+1.(22)

If π(s) > π(s+ 1), then (is, js) ≤
− (is+1, js+1), which we split as:

is ≤
+ is+1 and js ≤

− js+1, or(23)

is ≤
− is+1 and js ≥

+ js+1,(24)

also mutually exclusive. Define IF to be the set of all s such that either (22) or (24)

holds for F . Notice that in both cases, is ≤
− is+1. Now for any I ⊂ [n − 1], let SI

be the set of all solutions F to (20) satisfying IF = I. We have split the solutions of

(20) into 2n−1 distinct cases indexed by all the different subsets I of [n− 1].

For any particular I ⊂ [n − 1], form the poset PI of the elements 1, 2, . . . , n by

π(s) <PI
π(s + 1) if s /∈ I, π(s) >PI

π(s + 1) if s ∈ I. We form a zig-zag poset (see

Figure 1.4) of n elements labeled consecutively by π(1), π(2), . . . , π(n) with downward

zigs corresponding to the elements of I.

For any solution F in SI , let f : [n] → [k]′ be defined by f(π(s)) = js. We will

show that f is an enriched PI-partition. If π(s) <PI
π(s+ 1) and π(s) < π(s+ 1) in

Z, then (21) tells us that f(π(s)) = js ≤
+ js+1 = f(π(s + 1)). If π(s) <PI

π(s + 1)

and π(s) > π(s+ 1) in Z, then (23) tells us that f(π(s)) = js ≤
− js+1 = f(π(s+ 1)).

If π(s) >PI
π(s+1) and π(s) < π(s+1) in Z, then (22) gives us that f(π(s)) = js ≥

−
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js+1 = f(π(s+ 1)). If π(s) >PI
π(s+ 1) and π(s) > π(s+ 1) in Z, then (24) gives us

that f(π(s)) = js ≥
+ js+1 = f(π(s + 1)). In other words, we have verified that f is

a PI-partition. So for any particular solution in SI , the js’s can be thought of as an

enriched PI-partition.

Conversely, any enriched PI-partition f gives a solution in SI since if js = f(π(s)),

then

((i1, j1), . . . , (in, jn)) ∈ SI

if and only if 1 ≤ i1 ≤ · · · ≤ in ≤ l and is ≤
− is+1 for all s ∈ I, is ≤

+ is+1 for s /∈ I.

We can therefore turn our attention to counting enriched PI-partitions.

The remainder of the argument is identical to the latter half of the proof of

Theorem 1.3.1. �

Note that the up-down order used in the proof is not immediately amenable to a

q-analog for Theorem 3.3.1, though there may exist such a formula.

3.4. Left enriched P -partitions

In this section we modify the definition of enriched P -partitions in order to study

the left peak algebra. Throughout this section, by “peaks” we mean left peaks unless

otherwise noted.

Define P
(ℓ) to be the integers with the following total order:

0 < −1 < 1 < −2 < 2 < −3 < 3 < · · ·

In general, we can define X(ℓ) for any totally ordered set X = {x0, x1, x2, . . .} to be

the set {x0,−x1, x1,−x2, x2, . . .} with total order

x0 < −x1 < x1 < −x2 < x2 < · · ·
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In particular, for any positive integer k, [k](ℓ) is the set

0 < −1 < 1 < −2 < 2 < · · · < −k < k.

For any xi ∈ X, we say xi ≥ 0, or xi is nonnegative. On the other hand, if i 6= 0 we

say −xi < 0 and −xi is negative. The absolute value loses any minus signs: |±x| = x

for any x ∈ X.

Definition 3.4.1. A left enriched P -partition is a map f : P → X(ℓ) such that

for all i <P j in P ,

• f(i) ≤ f(j)

• f(i) = f(j) ≥ 0 only if i < j in Z

• f(i) = f(j) < 0 only if i > j in Z

We let E (ℓ)(P ) denote the set of all left enriched P -partitions. When X has a finite

number of elements, k, then the number of left enriched P -partitions is finite. In this

case, define the left enriched order polynomial, denoted Ω
(ℓ)
P (k), to be the number of

left enriched P -partitions f : P → X(ℓ).

We have the fundamental lemma and its corollary.

Lemma 3.4.1 (FLLEPP). For any poset P , the set of all left enriched P -partitions

is the disjoint union of all left enriched π-partitions for linear extensions π of P . In

other words,

E (ℓ)(P ) =
∐

π∈L(P )

E (ℓ)(π)

Corollary 3.4.1.

Ω
(ℓ)
P (k) =

∑

π∈L(P )

Ω(ℓ)
π (k).
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The set of all left enriched π-partitions can be described in terms of descent sets.

For any π ∈ Sn we have

E (ℓ)(π) = { f : [n]→ X(ℓ) | f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)),

f(π(i)) = f(π(i+ 1)) ≥ 0⇒ i /∈ Des(π),

f(π(i)) = f(π(i+ 1)) < 0⇒ i ∈ Des(π) }

Using different notation, we can write the set of all left enriched π-partitions f : [n]→

X(ℓ) as all solutions to

(25) f(π(1)) ≤± f(π(2)) ≤± · · · ≤± f(π(n))

where f(π(s)) ≤− f(π(s+ 1)) if s ∈ Des(π) and f(π(s)) ≤+ f(π(s+ 1)) otherwise.

Let c
(ℓ)
m (P ) denote the number of left enriched P -partitions f such that { |f(i)| :

i = 1, 2, . . . , n } = [m] as sets. Let c
(ℓ)
m,0(P ) denote the number of left enriched P -

partitions f such that { |f(i)| : i = 1, 2, . . . , n } = {0} ∪ [m]. Then we have the

following formula for the left enriched order polynomial:

Ω
(ℓ)
P (k) =

n∑

m=1

(
k

m

)
c
(ℓ)
l (P ) +

n−1∑

m=0

(
k

m

)
c
(ℓ)
m,0(P ).

This formula shows that the left enriched order polynomial has degree n. The left

enriched order polynomials also satisfy a reciprocity relation, though not quite the

same as the interior case.

Observation 3.4.1. We have

Ω
(ℓ)
P (−x) = (−1)nΩ

(ℓ)
P (x− 1),
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or by substituting x← x+ 1/2,

Ω
(ℓ)
P (−x− 1/2) = (−1)nΩ

(ℓ)
P (x− 1/2).

The proof of this observation is omitted, though we will say it is straightforward

given the generating function in Theorem 3.4.1 below. Since these order polynomials

are even or odd, we have the following.

Observation 3.4.2. For n even, Ω
(ℓ)
P (x − 1/2) is a polynomial of degree n/2 in

x2. For n odd, xΩ
(ℓ)
P (x− 1/2) is a polynomial of degree (n+ 1)/2 in x2.

It remains to show that left enriched order polynomials are somehow related to

peaks. From the definition it is immediate that they depend on descents, but we will

derive the generating function for these polynomials to show they depend only on the

number of peaks. As before, we write down the case where the poset is a permutation.

Theorem 3.4.1. We have the following generating function for left enriched order

polynomials:
∑

k≥0

Ω(ℓ)
π (k)tk =

(1 + t)n

(1− t)n+1
·

(
4t

(1 + t)2

)pk(ℓ)(π)

Notice that this formula implies that left enriched order polynomials depend only

on the number of left peaks.

Proof. Fix any permutation π ∈ Sn. The key fact, proved in [Pet], is the

following:

Ω(ℓ)
π (k) = 2pk(ℓ)(π) ·

∑

D⊂{0}∪[n−1] and

Pk(ℓ)(π)⊂D△(D+1)

Ω(B;D)(k),

where Ω(B;D)(k) denotes the type B order polynomial of any signed permutation with

descent set D. It may seem strange to express a type A polynomial related to peaks
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in terms of type B polynomials related to descents, but as may be more clear in the

next chapter, left peaks are basically a special case of type B peaks, which are quite

naturally related to type B descents. The paper of Aguiar, Bergeron, and Nyman

[ABN04] points out some connections between type B descents and type A peaks

more formally than we will here.

The generating function for type B order polynomials is (see Reiner [Rei93] for

example)
∑

k≥0

Ω(B;π)(k)t
k =

tdes(π)

(1− t)n+1

Similarly to the interior enriched order polynomial case, we put these two facts to-

gether to get:

∑

k≥0

Ω(ℓ)
π (k)tk =

2pk(ℓ)(π)

(1− t)n+1
·

∑

D⊂{0}∪[n−1] and

Pk(ℓ)(π)⊂D△(D+1)

t|D|

=
2pk(ℓ)(π)

(1− t)n+1
· (2t)pk(ℓ)(π)(1 + t)n−2 pk(ℓ)(π)

By rearranging terms, we get

∑

k≥0

Ω(ℓ)
π (k)tk =

(1 + t)n

(1− t)n+1
·

(
4t

(1 + t)2

)pk(ℓ)(π)

as desired. �

Now that we have our left enriched order polynomials, Ω
(ℓ)
π (x− 1/2), that depend

only on left peak numbers, and with the property that they have as many terms as

realizable left peak numbers, we can use them to find orthogonal idempotents for the

left peak subalgebra. We finish this section with proof of Observation 3.1.2.

Proof of Observation 3.1.2. If we let P be an antichain of n elements, the

number of left enriched P -partitions f : [n]→ [k](ℓ) is (2k+1)n since there are 2k+1
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elements in [k](ℓ) and there are no relations among the elements of the antichain.

Therefore Ω
(ℓ)
P (k) = (2k + 1)n, and since we have L(P ) = Sn, Theorem 3.4.1 gives

(1 + t)n

(1− t)n+1
W (ℓ)

n

(
4t

(1 + t)2

)
=
∑

k≥0

(2k + 1)ntk =
n∑

i=0

(
n

i

)
2i
∑

k≥0

kitk

=
n∑

i=0

(
n

i

)
2iAi(t)

(1− t)i+1
.

Rearranging terms gives the desired result:

W (ℓ)
n

(
4t

(1 + t)2

)
=

1

(1 + t)n

n∑

i=0

(
n

i

)
(1− t)n−i2iAi(t)

=
1

(1 + t)n

n∑

i=0

(
n

i

)
(1− t)n−iA

(a)
i (t).

�

3.5. The left peak algebra

In this section we use the theory of left enriched P -partitions to prove the existence

of the left peak algebra. Let

ρ(ℓ)(x) =
∑

π∈Sn

Ω(ℓ)
π ((x− 1)/2)π =

⌊n
2
⌋+1∑

i=1

Ω
(ℓ)
i ((x− 1)/2)E

(ℓ)
i ,

where E
(ℓ)
i is the sum of all permutations with i− 1 left peaks and Ω

(ℓ)
i (x) is the left

enriched order polynomial for any permutation with i− 1 left peaks.

Theorem 3.5.1. As polynomials in x and y with coefficients in the group algebra

of the symmetric group, we have

(26) ρ(ℓ)(x)ρ(ℓ)(y) = ρ(ℓ)(xy).
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This formula gives us orthogonal idempotents for another commutative subalgebra

of the group algebra. If we let e
(ℓ)
i be the coefficient of x2i for n even (the coefficient

of x2i+1 for n odd), in

ρ(ℓ)(x) =





n/2∑

i=0

e
(ℓ)
i x2i if n is even,

(n−1)/2∑

i=0

e
(ℓ)
i x2i+1 if n is odd,

then e
(ℓ)
i e

(ℓ)
j = 0 if i 6= j and (e

(ℓ)
i )2 = e

(ℓ)
i . So we get that the left peak algebra of the

symmetric group is commutative of dimension ⌊n/2⌋ + 1 (there is no constant term

for n odd by Observation 3.4.1. The fact that there is a constant term for n even

follows from a partial fraction decomposition of the generating function for Ω
(ℓ)
π (x)).

Proof. By equating the coefficient of π on both sides of equation (26) we know

that we need only prove

Ω(ℓ)(π; 2kl + k + l) =
∑

στ=π

Ω(ℓ)(σ; k) Ω(ℓ)(τ ; l).

We will think of the left-hand side of the equation as counting maps f : π → [l](ℓ) ×

[k](ℓ), where, as in the proof of Theorem 3.3.1, we take the up-down order on [l](ℓ) ×

[k](ℓ).

Then Ω(ℓ)(π; 2kl + k + l) is the number of solutions to

(0, 0) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k)

where (is, js) ≤
− (is+1, js+1) if s ∈ Des(π) and (is, js) ≤

+ (is+1, js+1) otherwise. Recall

that in the up-down order we write (i, j) ≤+ (i′, j′) in one of three cases: if i < i′, or

if i = i′ ≥ 0 and j ≤+ j′, or if i = i′ < 0 and j ≥− j′. Similarly, (i, j) ≤− (i′, j′) if

i < i′, or if i = i′ ≥ 0 and j ≤− j′, or if i = i′ < 0 and j ≥+ j′. See Figure 3.2.
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(0, 0)

(0, k)
(l, k)

(l,−k)

(i, 0)

(i, k)

< < <

< < <

Figure 3.2. The up-down order for [l](ℓ) × [k](ℓ).

The rest of the proof is identical to that of Theorem 3.3.1. �

We also have the following way to combine interior and left peaks.

Theorem 3.5.2. As polynomials in x and y with coefficients in the group algebra

of the symmetric group,

ρ(y)ρ(ℓ)(x) = ρ(ℓ)(x)ρ(y) = ρ(xy).

Proof. This proof varies from the previous proof only slightly. For any π ∈ Sn

we show that:

Ω′(π; 2kl + l) =
∑

στ=π

Ω(ℓ)(σ; k)Ω′(τ ; l),(27)

=
∑

στ=π

Ω′(σ; l) Ω(ℓ)(τ ; k).(28)

For equation (27), the key is to think of the left-hand side of the equation as counting

maps f : π → [l]′ × [k](ℓ), with the up-down order on [l]′ × [k](ℓ).

For (28), we count enriched π-partitions f : π → [k](ℓ) × [l]′ with the up-down

order, and the theorem follows. �
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The consequence of Theorem 3.5.2 is the multiplication for the two sets of idem-

potents found in this chapter. We have e
(ℓ)
i e′i = e′i and e

(ℓ)
i e′j = 0 if i 6= j. So

if we take both sets of idempotents, they span a subalgebra of the group alge-

bra of dimension n (rather than n + 1 since these subalgebras have the relation
⌊n/2⌋+1∑

i=1

E
(ℓ)
i =

∑

π∈Sn

π =

⌊(n+1)/2⌋∑

i=1

E ′
i, see [ABN04]). It is also clear from these relations

that the interior peak algebra is an ideal, just as in the case of augmented descents.

The reader is referred to [ABN04] for more about the relationships between descents

and peaks.
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CHAPTER 4

The peak algebra of type B

We now move to the (Eulerian) peak algebra of type B. Recent work of Schocker

[Sch05] suggests that there should be a “peak-like” subalgebra of any finite Coxeter

group formed by something like the sums of permutations with the same peak set.

His result claims to be analogous to Solomon’s result for descent algebras (formed by

sums of permutations with the same peak set). As in the case of descents, we will not

examine this problem at the level of the set of peaks, but rather the number of peaks.

However, the linear span of sums of signed permutations with the same number of

peaks does not give a subalgebra of the group algebra. The linear span of sums of

signed permutations with the same number of peaks and the same sign on π(1) does.
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4.1. Type B peaks

We say a signed permutation π has a peak in position i = 1, 2, . . . , n − 1 if

π(i−1) < π(i) > π(i+1), where, as in our earlier dealings with signed permutations,

we require that π(0) = 0. As before, we will denote the set of peaks by Pk(π), and

the number of peaks by pk(π). For example, the permutation π = (−2, 4,−5, 3, 1)

has Pk(π) = {2, 4} and pk(π) = 2. Note that the number of peaks of a signed

permutation is between zero and ⌊n/2⌋.

A natural guess at the structure of an Eulerian peak algebra of type B might be

the span of sums of permutations with the same number of peaks. However, this

definition simply does not work. The following definition does work. Define the

elements E+
i , E

−
i in the group algebra of the hyperoctahedral group by:

E+
i =

∑

pk(π)=i
π(1)>0

π

E−
i =

∑

pk(π)=i
π(1)<0

π

We will show that the linear span of these elements forms a subalgebra of the group

algebra. These elements split the collection of permutations with the same number of

peaks into two groups: those that begin with a positive number and those that begin

with a negative number. This splitting of cases is similar to splitting left peaks apart

from interior peaks, and once we introduce type B enriched order polynomials we will

see that the generating functions for type B and type A enriched order polynomials

are closely related. It is not hard to check that E+
i and E−

i are nonzero for all

0 ≤ i < ⌊n/2⌋. If n is odd, E+
n−1

2

and E−
n−1

2

are both nonzero, but if n is even, E+
n/2 is
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nonzero while E−
n/2 = 0. In other words, the set {E±

i } has cardinality n + 1 for any

n.

We can define type B peak numbers and type B peak polynomials. We will denote

the number of signed permutations of n with k peaks and π(1) > 0 by P+
n,k. We denote

the number of signed permutations of n with k peaks by P−
n,k+1. We define the type

B peak polynomials by

W+
n (t) =

∑

π∈Bn

π(1)>0

tpk(π) =

⌊n
2
⌋∑

i=0

P+
n,it

i

W−
n (t) =

∑

π∈Bn

π(1)<0

tpk(π)+1 =

⌊n
2
⌋+1∑

i=1

P−
n,it

i.

Later in the chapter we will have the tools to prove the following observations

relating type B peak polynomials to type A peak polynomials.

Observation 4.1.1. We have the following relation between type B peak polyno-

mials and the interior peak polynomial:

W+
n

(
4t

(1 + t)2

)
+

1 + t

2
·W−

n

(
4t

(1 + t)2

)

=
n∑

i=0

(
n

i

)
(1− t)n−i

(1 + t)n−i−1
2i−1Wi

(
4t

(1 + t)2

)
.

Observation 4.1.2. We have the following relation between type B peak polyno-

mials and the left peak polynomial:

W+
n

(
4t

(1 + t)2

)
+

1 + t

2
·W−

n

(
4t

(1 + t)2

)

= (−1)n

n∑

i=0

(
n

i

)
(1− t)n−i

(1 + t)n−i
(−2)iW

(ℓ)
i

(
4t

(1 + t)2

)
.
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We omit the formal proofs of these observations, since they follow the approach

taken in proving Observations 3.1.1 and 3.1.2. We will only mention that once we

have the generating function for enriched order polynomials of type B, all that is

needed is to notice is that we can expand (4k + 1)n in the following two ways:

n∑

i=0

(
n

i

)
2i · (2k)i and (−1)n

n∑

i=0

(
n

i

)
(−2)i(2k + 1)i

4.2. Enriched P -partitions of type B

We will slightly modify the notation for the set X ′ introduced in the previous

chapter. Let X = {x1, x2, . . .} be any totally ordered set. Then we define the totally

ordered set X ′ to be the set {x−1
1 , x1, x

−1
2 , x2, . . .} with total order

x−1
1 < x1 < x−1

2 < x2 < · · ·

We introduce this new notation because now we would like to define the set Z
′ =

{. . . ,−2,−2−1,−1,−1−1, 0, 1−1, 1, 2−1, 2, . . .}, with the total order

· · · − 2 < −2−1 < −1 < −1−1 < 0 < 1−1 < 1 < 2−1 < 2 < · · ·

In general, if we recall the definition of ±X from Chapter 3, we have the total order

on ±X ′ given by

· · · − x2 < −x
−1
2 < −x1 < −x

−1
1 < x0 < x−1

1 < x1 < x−1
2 < x2 < · · ·

In practice, however, we will usually refer only to Z
′ rather than the slightly more

abstract ±X ′. We also have the special case for any positive integer k, ±[k]′ has total

order

−k < −k−1 < · · · < −1 < −1−1 < 0 < 1−1 < 1 < · · · < k−1 < k.
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For any x ∈ ±X ′, let ε(x) be the exponent on x, and let |x| be a map from ±X ′ →

X that forgets signs and exponents. For example, if x = −x−1
i , then ε(x) = −1 < 0

and |x| = xi, while if x = xi, then ε(x) = 1 > 0 and |x| = xi. For i = 0, we require

ε(x0) = 1 > 0, |x0| = x0, and −x0 = x0.

Another way to think of Z
′ is as a total ordering of the integer points on the axes

in Z× Z:

· · · (0,−2) < (−1, 0) < (0,−1) < (0, 0) < (0, 1) < (1, 0) < (0, 2) · · ·

In particular, we have (k, l) < (k′, l′) in Z
′ if k+ l < k′ + l′ (in Z), if k = l′ < 0 (in Z),

or if l = k′ > 0 (also in Z). We have ε((k, 0)) = 1, ε((0, k)) = −1, and |(k, l)| = |k+ l|.

To negate a point we simply reflect across the perpendicular axis. Note that we could

also use this model to understand P
′ from the previous chapter as all those points

(i, j) with i+ j > 0.

+

−

(−1, 0)

(0,−1)

(0,−2)

(−2, 0)

(0, 0) (1, 0)

(0, 1)

(2, 0)

(0, 2)

Figure 4.1. One realization of the total order on Z
′.
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Now we will introduce our tool for studying the type B peak algebra.

Definition 4.2.1. For any Bn poset P , an enriched P -partition of type B is a

map f : ±[n]→ ±X ′ such that for every i <P j,

• f(i) ≤ f(j)

• f(i) = f(j) and ε(f(i)) > 0 only if i < j in Z

• f(i) = f(j) and ε(f(i)) < 0 only if i > j in Z

• f(−i) = −f(i)

As in the case of ordinary type B P -partitions, this definition varies from type A

enriched P -partitions only in the last condition. Let E(P ) denote the set of all type

B enriched P -partitions. If we take X to have finite cardinality k, then define the

enriched order polynomial of type B, denoted Ω′
P (k), to be the number of enriched

P -partitions f : P → ±X ′.

Theorem 4.2.1. The set of all type B enriched P -partitions is the disjoint union

of all type B enriched π-partitions where π ranges over all linear extensions of P .

E(P ) =
∐

π∈L(P )

E(π).

Corollary 4.2.1.

Ω′
P (k) =

∑

π∈L(P )

Ω′
π(k).

Notice that we can easily characterize the type B enriched π-partitions in terms

of descent sets, keeping in mind that if we know where to map π(i), then we know

where to map π(−i) = −π(i) by the reflexive property: f(π(i)) = −f(−π(i)). For
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any signed permutation π ∈ Bn we have

E(π) = { f : [n]→ ±X ′ | x0 ≤ f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)),

f(π(i)) = f(π(i+ 1)), ε(f(π(i))) > 0,⇒ i /∈ Des(π),

f(π(i)) = f(π(i+ 1)), ε(f(π(i))) < 0,⇒ i ∈ Des(π) }

As with type A enriched P -partitions, we will rephrase the classification above to

look more like the case of ordinary P -partitions. Let i ≤+ j mean that i < j in ±X ′

or i = j and ε(i) > 0. Similarly define i ≤− j to mean that i < j in ±X ′ or i = j and

ε(i) < 0. The set of all type B enriched π-partitions f : π → ±X ′ is all solutions to

(29) x0 ≤
± f(π(1)) ≤± f(π(2)) ≤± · · · ≤± f(π(n))

where f(π(s)) ≤− f(π(s + 1)) if s ∈ Des(π) and f(π(s)) ≤+ f(π(s + 1)) otherwise.

Notice that since ε(x0) = 1, then x0 ≤
− f(π(1)) is the same as saying x0 < f(π(1)),

and x0 ≤
+ f(π(1)) is the same as x0 ≤ f(π(1)).

While we have in some sense already said precisely what type B enriched order

polynomials are, we need to give a few more properties of them. First of all, let

cl(P ) denote the number of type B enriched P -partitions f such that { |f(i)| : i =

1, 2, . . . , n } = [l] as sets, and let c0l (P ) denote the number of type B enriched P -

partitions f such that { |f(i)| : i = 1, 2, . . . , n } = {0} ∪ [l]. Then we have the

following formula for the type B enriched order polynomial:

Ω′
P (k) =

n∑

l=1

(
k

l

)
cl(P ) +

n−1∑

l=0

(
k

l

)
c0l (P ).

This formula quickly shows that the enriched order polynomial has degree n. Notice

also that if P = π, a signed permutation with π(1) < 0, the second term vanishes
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since c0l (π) = 0 for all l. Notice also the similarity between this formula and that of

the left order polynomial in the type A case.

We can derive the generating function for type B enriched order polynomials in

much the same way as the type A case. It should be clear that type B enriched

π-partitions depend only on the descent set of π. We will see that they depend

precisely on the number of peaks and the sign of π(1). We remark that while we are

only concerned with the generating function for order polynomials of permutations,

we can obtain the order polynomial generating function for any poset by summing

the generating functions for its linear extensions. Let

ς(π) =
1− π(1)

|π(1)|

2

so that ς(π) = 0 if π(1) is positive, ς(π) = 1 if π(1) is negative.

Theorem 4.2.2. We have the following generating function for enriched P -partitions:

∑

k≥0

Ω′
π(k)tk =

(1 + t)n

(1− t)n+1
·

(
2t

1 + t

)ς(π)

·

(
4t

(1 + t)2

)pk(π)

(30)

=

(
1

2

)ς(π)

·
(1 + t)n+ς(π)

(1− t)n+1
·

(
4t

(1 + t)2

)pk(π)+ς(π)

Notice that this formula implies that Ω′
π(x) on both the number of peaks and

the sign of π(1). Notice also the similarity between this generating function and the

generating functions for type A enriched order polynomials:

(Interior peaks)
∑

k≥0 Ω′
(A;π)(k)t

k =
1

2

(1 + t)n+1

(1− t)n+1
·

(
4t

(1 + t)2

)pk(π)+1

(left peaks)
∑

k≥0 Ω
(ℓ)
(A;π)(k)t

k =
(1 + t)n

(1− t)n+1
·

(
4t

(1 + t)2

)pk(ℓ)(π)

The proof that follows is understandably very similar to that of the type A case.
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Proof. Fix any permutation π ∈ Bn. We have the following formula for the gen-

erating function of ordinary order polynomials of type B (see, e.g., Reiner [Rei93]):

∑

k≥0

Ωπ(k)tk =
tdes(π)

(1− t)n+1

From [Pet], we see that

Ω′
π(k) = 2(pk(π)+ς(π)) ·

∑

D⊂{0}∪[n−1]
Pk(π)⊂D△(D+1)
and 0∈D if π(1)<0

ΩD(k),

where ΩD(k) denotes the ordinary type B order polynomial of any signed permutation

with descent set D. Putting these two facts together, we get:

∑

k≥0

Ω′
π(k)tk =

2pk(π)+ς(π)

(1− t)n+1
·

∑

D⊂{0}∪[n−1]
Pk(π)⊂D△(D+1)
and 0∈D if π(1)<0

t|D|

To obtain the generating function for the sets D by size, we proceed in two cases. If

we don’t require that 0 is in D, that is, if π(1) is positive, then we get (2t)pk(π)(1 +

t)n−2 pk(π) exactly as in the type A case. If π(1) < 0, we have that 0 is always in D

(and hence |D| > 0), while for any j ∈ Pk(π), j must be greater than 1 and exactly

one of j or j − 1 will be in D. There are n − 2 pk(π) − 1 remaining elements of

{0} ∪ [n− 1], and they can be included in D or not:

∑

D⊂{0}∪[n−1]
Pk(π)⊂D△(D+1)
and 0∈D if π(1)<0

t|D| = t (t+ t)(t+ t) · · · (t+ t)︸ ︷︷ ︸
pk(π)

(1 + t)(1 + t) · · · (1 + t)︸ ︷︷ ︸
n−2 pk(π)−1

= t(2t)pk(π)(1 + t)n−2 pk(π)−1
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Taking the two cases together, we can write

∑

D⊂{0}∪[n−1]
Pk(π)⊂D△(D+1)
and 0∈D if π(1)<0

t|D| = tς(π)(2t)pk(π)(1 + t)n−2 pk(π)−ς(π)

Finally, we get

∑

k≥0

Ω′
π(k)tk =

(1 + t)n

(1− t)n+1
·

(
2t

1 + t

)ς(π)

·

(
4t

(1 + t)2

)pk(π)

as desired. �

4.3. The peak algebra of type B

We now move on to find orthogonal idempotents for the Eulerian peak algebra of

the hyperoctahedral group. Let

ρ(x) =
∑

π∈Bn

Ω′
π((x− 1)/4)π =

⌊n/2⌋∑

i=0

Ω′
i,+((x− 1)/4)E+

i + Ω′
i,−((x− 1)/4)E−

i

where Ω′
i,+(x) is the order polynomial for any permutation π with i peaks and π(1) >

0, Ω′
i,−(x) is defined similarly for π such that π(1) < 0.

Theorem 4.3.1. As polynomials in x and y with coefficients in the group algebra

of the hyperoctahedral group, we have

(31) ρ(x)ρ(y) = ρ(xy).

We can let e′i, i = 0, 1, 2, . . . , n be the coefficient of xi in ρ((x− 1)/4) =
n∑

i=0

e′ix
i.

Then we get a set of n+1 orthogonal idempotents since Theorem 4.3.1 gives (e′i)
2 = e′i

and e′ie
′
j = 0 if i 6= j. Therefore the Eulerian peak algebra of type B is a commutative

subalgebra of dimension n+ 1.
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Proof. This proof is nearly identical to the proofs of the analogous Theorem

3.3.1. By equating the coefficient of π on both sides of equation (31) it suffices to

prove that for any permutation π ∈ Bn and positive integers k, l, we have

Ω′
B(π; 4kl + k + l) =

∑

στ=π

Ω′
B(σ; k)Ω′

B(τ ; l).

We will interpret Ω′
B(π; 4kl+ k+ l) as counting maps f : π → ±[l]′×±[k]′, where

we take the up-down order on ±[l]′ × ±[k]′. We count up the columns that have

positive exponent and down columns with negative exponent. Notice that we can

restrict our attention to all the points greater than or equal to (0, 0), since everything

else is determined by the symmetry property of type B enriched P -partitions: f(−i) =

−f(i). We consider Ω′
B(π; 4kl + k + l) to be the number of solutions to

(32) (0, 0) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k)

where (is, js) ≤
− (is+1, js+1) if s ∈ Des(π) and (is, js) ≤

+ (is+1, js+1) otherwise. For

example, if π = (−3, 1,−2), we will count the number of points ((i1, j1), (i2, j2), (i3, j3))

such that

(0, 0) ≤− (i1, j1) ≤
+ (i2, j2) ≤

− (i3, j3) ≤ (l, k).

Here (i, j) ≤+ (i′, j′) means i < i′, or if i = i′ with ε(i) > 0 and j ≤+ j′, or if i = i′

with ε(i) < 0 and j ≥− j′. Similarly, (i, j) ≤− (i′, j′) if i < i′, or if i = i′ with ε(i) > 0

and j ≤− j′, or if i = i′ with ε(i) < 0 and j ≥+ j′.

Just as with the type A case, we will want to group the solutions to (32) into cases

that we will count using enriched order polynomials. Here there are are 2n cases,

indexed by subsets of [0, n− 1]. The grouping depends on π and proceeds as follows.

Let F = ((i1, j1), . . . , (in, jn)) be any solution to (32), and fix π(0) = i0 = j0 = 0. For

any s = 0, 1, 2, . . . , n − 1, if π(s) < π(s + 1), then (is, js) ≤
+ (is+1, js+1), which falls
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(0, 0)

(0, 1−1)

(0, 1)

(1−1,−k−1) (l,−k−1)

(l, k)(l−1, k)

(l, k−1)

(l, 0)

< < <

< < <

Figure 4.2. The up-down order on ±[l]′ × ±[k]′ with points greater
than or equal to (0, 0).

into one of two mutually exclusive cases:

is ≤
+ is+1 and js ≤

+ js+1 or,(33)

is ≤
− is+1 and js ≥

− js+1.(34)

If π(s) > π(s+ 1), then (is, js) ≤
− (is+1, js+1), which we split into cases:

is ≤
+ is+1 and js ≤

− js+1 or,(35)

is ≤
− is+1 and js ≥

+ js+1.(36)

We define IF to be the set of all s such that either (34) or (36) holds for F . Notice

that in both cases, is ≤
− is+1. Now for any I ⊂ [0, n − 1], let SI be the set of all

solutions F to (32) satisfying IF = I.
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For any particular I ⊂ [0, n−1], form the poset PI of the elements 0,±1,±2, . . . ,±n

by π(s) <PI
π(s + 1) if s /∈ I, π(s) >PI

π(s + 1) if s ∈ I, where we extend all our

relations by the symmetry property of type B posets. We form a zig-zag poset of

n elements labeled consecutively by 0, π(1), π(2), . . . , π(n) with downward zigs corre-

sponding to the elements of I. So if π = (−3, 1,−2) and I = {0, 2}, then our type B

poset PI is

2 >PI
−1 <PI

3 >PI
0 >PI

−3 <PI
1 >PI

−2.

For any solution F in SI , let f : [n]→ ±[k]′ be defined by f(π(s)) = js. We will

show that f is an enriched PI-partition. If π(s) <PI
π(s+ 1) and π(s) < π(s+ 1) in

Z, then (33) tells us that f(π(s)) = js ≤
+ js+1 = f(π(s + 1)). If π(s) <PI

π(s + 1)

and π(s) > π(s+ 1) in Z, then (35) tells us that f(π(s)) = js ≤
− js+1 = f(π(s+ 1)).

If π(s) >PI
π(s+1) and π(s) < π(s+1) in Z, then (34) gives us that f(π(s)) = js ≥

−

js+1 = f(π(s + 1)). If π(s) >PI
π(s + 1) and π(s) > π(s + 1) in Z, then (36) gives

us that f(π(s)) = js ≥
+ js+1 = f(π(s + 1)). In other words, we have verified that f

is a PI-partition. So for any particular solution in SI , the n-tuple (j1, . . . , jn) can be

thought of as an enriched PI-partition.

Conversely, any enriched PI-partition f gives a solution in SI since if js = f(π(s)),

then

((i1, j1), . . . , (in, jn)) ∈ SI

if and only if 0 ≤ i1 ≤ · · · ≤ in ≤ l and is ≤
− is+1 for all s ∈ I, is ≤

+ is+1 for

s /∈ I. We can therefore turn our attention to counting enriched PI-partitions, and

the remainder of the argument follows the proof of Theorem 2.1.2. �
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