Algebraic approach to *p*-local structure of a finite group:

Definition 1 (Puig?) Let G be a finite group and S be a Sylow subgroup of G. The fusion system of G is the category $\mathcal{F}_S(G)$, whose objects are the subgroups of S,

 $ob\mathcal{F} = \{P \le S\},\$

and whose morphism sets are given by

$$Hom_{\mathcal{F}(G)}(P,Q) = Hom_G(P,Q)$$

for all *p*-subgroups $P, Q \leq S$.

Topological approach: BG_p^{\wedge}

By the Martino-Priddy conjecture, these two approaches are equivalent.

Theorem 1 (Martino-Priddy,Oliver) Let Gand G' be finite groups with p-Sylow subgroups S and S', respectively. Then

 $\mathcal{F}_S(G) \cong \mathcal{F}_{S'}(G') \Leftrightarrow BG_p^{\wedge} \simeq BG_p'^{\wedge}.$

Proof: "⇐:" Proved by Martino and Priddy ('96) using homotopy theoretic construction.

" \Rightarrow :" Proved by Oliver ('01/'02) by showing vanishing of obstructions to uniqueness of classifying spaces. Uses classification of finite simple groups.

Puig formalized fusion systems as follows:

Definition 2 (Puig) Let S be a finite p-group. A fusion system over S is a category \mathcal{F} , whose objects are the subgroups of S,

$$ob\mathcal{F} = \{P \le S\},\$$

and whose morphism sets satisfy the following conditions

- (a) $Hom_S(P,Q) \subseteq Hom_{\mathcal{F}}(P,Q) \subseteq Inj(P,Q)$ for all $P,Q \leq S$.
- (b) Every morphism in \mathcal{F} factors as an isomorphism in \mathcal{F} followed by an inclusion.

Terminology: Let $P \leq S$.

- Say P' is *F*-conjugate to P if P' is isomorphic to P in *F*.
- Say P is fully centralized in \mathcal{F} if $|C_S(P)| \ge |C_S(P')|$ for every $P' \le S$ which is \mathcal{F} -conjugate to P.
- Say P is fully normalized in \mathcal{F} if $|N_S(P)| \ge |N_S(P')|$ for every $P' \le S$ which is \mathcal{F} -conjugate to P.
- Say P is centric in \mathcal{F} if $C_S P' \leq P'$ for every P' which is \mathcal{F} -conjugate to P.

Definition 3 (Puig) A fusion system \mathcal{F} over a *p*-group *S* is saturated if the following two conditions hold:

- (I) If $P \leq S$ is fully normalized in \mathcal{F} , then P is also fully centralized and $Aut_S(P)$ is a Sylow subgroup of $(Aut_{\mathcal{F}}(P))$.
- (II) If $P \leq S$ and $\varphi \in Hom_{\mathcal{F}}(P,S)$ are such that φP is fully centralized, then φ extends to $\bar{\varphi} \in Hom_{\mathcal{F}}(N_{\varphi},S)$, where

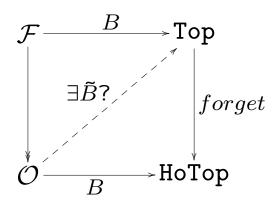
 $N_{\varphi} = \{ g \in N_S(P) \mid \varphi \circ c_g \circ \varphi^{-1} \in Aut_S(\varphi P) \}.$

Condition (I) is a "prime-to-*p* condition". Condition (II) is a "maximum extension" condition. We would like to form classifying spaces for arbitrary saturated fusion systems. Need to quotient out inner automorphisms of S before taking homotopy colimit.

Definition 4 (BLO) The orbit category of a fusion system \mathcal{F} over a *p*-group *S* is the category $\mathcal{O}(\mathcal{F})$ whose objects are the subgroups of *S* and whose morphisms are defined by

 $Mor_{\mathcal{O}(\mathcal{F})}(P,Q) := Inn(Q) \setminus Hom_{\mathcal{F}}(P,Q).$

We need a lifting $\tilde{B}: \mathcal{O}(\mathcal{F}) \to \text{Top}$ of the homotopy functor $B: \mathcal{O}(\mathcal{F}) \to \text{HoTop}$ in the following diagram:



Then $\underbrace{\operatorname{Holim}}_{\mathcal{O}(\mathcal{F})} \widetilde{B}$ is a classifying space for \mathcal{F} .

Definition 5 (BLO) Let \mathcal{F} be a fusion system over the *p*-group *S*. A centric linking system associated to \mathcal{F} is a category \mathcal{L} , whose objects are the \mathcal{F} -centric subgroups of *S*, together with a functor

$$\pi: \mathcal{L} \to \mathcal{F}^c,$$

and distinguished monomorphisms $P \xrightarrow{\delta_P} Aut_{\mathcal{L}}(P)$ for each \mathcal{F} -centric subgroup $P \leq S$, which satisfy the following conditions.

(A) The functor π is the identity on objects and surjective on morphisms. More precisely, for each pair of objects $P, Q \in \mathcal{L}$, the center Z(P) acts freely on $Mor_{\mathcal{L}}(P,Q)$ by composition (upon identifying Z(P) with $\delta_P(Z(P)) \leq Aut_{\mathcal{L}}(P)$), and π induces a bijection

$$Mor_{\mathcal{L}}(P,Q)/Z(P) \xrightarrow{\cong} Hom_{\mathcal{F}}(P,Q).$$

- (B) For each \mathcal{F} -centric subgroup $P \leq S$ and each $g \in P$, π sends $\delta_P(g) \in Aut_{\mathcal{L}}(P)$ to $c_g \in Aut_{\mathcal{F}}(P)$.
- (C) For each $f \in Mor_{\mathcal{L}}(P,Q)$ and each $g \in P$, the following square commutes in \mathcal{L} :

$$egin{array}{ccc} P & \stackrel{f}{\longrightarrow} & Q \ & & & & \downarrow \delta_{Q}(\pi(f)(g)) \ & & & & f \ & & & & Q. \end{array}$$

Definition 6 (BLO) A p-local finite group is a triple $(S, \mathcal{F}, \mathcal{L})$, where \mathcal{F} is a saturated fusion system over a finite p-group S and \mathcal{L} is a centric linking system associated to \mathcal{F} .

The classifying space of the *p*-local finite group is the *p*-completed geometric realization $|\mathcal{L}|_p^{\wedge}$.

A p-local finite group comes equipped with a natural inclusion

$$\theta \colon BS \longrightarrow |\mathcal{L}|_p^{\wedge}.$$

Let \mathcal{F} be a saturated fusion system over S. Define a functor

$$\mathcal{Z} = \mathcal{Z}_{\mathcal{F}} : \mathcal{O}^{c}(\mathcal{F})^{op} \longrightarrow \operatorname{Ab},$$

by setting $\mathcal{Z}_{\mathcal{F}}(P) = Z(P)$ and

 $\mathcal{Z}_{\mathcal{F}}(P \xrightarrow{\varphi} Q) = (Z(Q) \xrightarrow{incl} Z(\varphi(P)) \xrightarrow{\varphi^{-1}} Z(P)).$

Proposition 1 (BLO) There is an obstruction class $\eta(\mathcal{F}) \in \underset{\mathcal{O}^{c}(\mathcal{F})}{\lim^{3}}(\mathcal{Z})$ to the existence of a centric linking system associated to \mathcal{F} .

The group $\lim_{\mathcal{O}^c(\mathcal{F})} (\mathcal{Z})$ acts freely and transitively on the set of isomorphism classes of centric linking systems associated to \mathcal{F} (if any exist). **Exercise:** Let S be a finite abelian p-group.

1. Classify all saturated fusion systems over S

2. Classify all p-local finite groups over S

Part 1. should be accessible to anyone with a basic knowledge of group theory. Part 2. requires some, albeit simple, methods from group cohomology.