
First test: Cohomology
In [BLO2] it is shown that the classifying
space |L|∧p of a p-local finite group (S,F ,L)
has cohomology

H∗(|L|∧p ) = H∗(F) := lim¾

O(F)

H∗(B(−)).

Fix a Frobenius transfer triple (f, t, X) over an
elementary abelian p-group S. If

F := FS,f(X)

is saturated, then (by the classification)

H∗(F) = H∗(BS)W ,

where W := AutF(S) ≤ Aut(S) has order prime
to p.

Necessary Condition 1 If X is the classify-
ing space of a p-local finite group over an
elementary abelian group S, then

H∗(X) = H∗(BS)W

for some subgroup W ≤ Aut(S) of order prime
to p.



Applying the cohomology functor H∗(−;Fp) to
a Frobenius transfer triple (f,t,X) we get maps

H∗(X)
f∗−→ H∗(BS)

t∗−→ H∗(X)

with the following properties:

CohI t∗ ◦ f∗ = id.

CohII t∗ is H∗(X)-linear by the Frobenius
reciprocity property.

CohIII t∗ is a morphism of unstable modules
over the Steenrod algebra.

CohIV f∗ is a morphism of unstable algebras
over the Steenrod algebra.

Hence H∗(X) is a direct summand of H∗(BS)
as a H∗(X)-module and as a module over the
Steenrod algebra.



Finiteness conditions:

Fact 1 If S is a finite p-group, then H∗(BS) is

Noetherian.

Lemma 1 Let S be a finite p-group and

(f, t, X) be a Frobenius transfer triple over S.

Then H∗(X) is Noetherian and in particular X

is of Fp-finite type.

Proof: Uses CohI, CohII and an algebraic

lemma of Dwyer-Wilkerson.

Lemma 2 Let S be a finite p-group and

(f, t, X) be a Frobenius transfer triple over S.

Then X is of Z(p)-finite type.

Proof: By the Universal coefficient theorem, it

suffices to prove this for Fp and Q-coefficients.

The former is done above. By a transfer argu-

ment, H∗(BS;Q) = Q, proving the latter.



Notation:

A∗ = mod p Steenrod Algebra.

U = category of unstable modules over A∗.
U ′ = full subcategory of U with evenly graded

objects.

K = category of unstable algebras over A∗.
K′ = full subcategory of K with evenly graded

objects.

In all cases, morphisms are of degree zero.

Unstable condition:

P k(x) =





xp if |x| = 2k,

0 if |x| < 2k.



In ‘‘Finite H-Spaces and Algebras”, Adams

and Wilkerson study the following category.

AW = full subcategory of K′ whose objects are

integral domains.

They make precise the notions of “algebraic

extension” and “algebraic closure” and prove

the following:

Proposition 1 (Adams-Wilkerson) Every

object R∗ in AW has an algebraic closure H∗
in AW. If R∗ has finite transcendence degree,

then so does H∗.

Theorem 1 (Adams-Wilkerson) The

objects H∗ in AW, that are algebraically

closed and of finite transcendence degree are

precisely the polynomial algebras Fp[x1, . . . , xn]

on generators xi of degree 2.



The theorem we wish to apply is the following.

Theorem 2 (Adams-Wilkerson) Let R∗ be

an algebra in AW of finite transcendence

degree and let H∗ = Fp[x1, . . . , xn] be the

algebraic closure in AW. In order that R∗
should admit an isomorphism

R∗ ∼= (H∗)W ,

for some group W of automorphisms of H∗,
the following two conditions are necessary and

sufficient:

AW1 The integral domain R∗ is integrally

closed in its field of fractions.

AW2 If y ∈ R2dp and Qry = 0 for each r ≥ 1,

then y = xp for some x ∈ R2d.



The second condition is really an “inseparably

closed” condition. The operation Qr is the

Milnor primitive of dimension 2pr − 2 in A∗.
(Not to be confused with Qr.)



Problem: When S elementary abelian,

H∗(BS) ∼= E[y1, . . . , yn]⊗ Fp[x1, . . . , xn],

where |yi| = 1 and |xi| = 2. Not evenly graded!

Solution: The forgetful functor θ: K′ → K has

a right adjoint θ̃: K → K′.

By Lannes-Zarati:

θ̃H∗(BS) ∼= Fp[x1, . . . , xn].

By Goerss-Smith-Zarati, when we restrict

ourselves to elements of K, whose images in

U are reduced injectives, we can move freely

between K and K′ via θ and θ̃. Simply put,

the reason is that morphisms between such

elements are determined on the even graded

part.

(An injective M in U is reduced if

HomU(ΣN, M) = 0 for every N in U.)



Furthermore, Lannes has shown that the

elements in K, whose image in U are reduced

injectives are precisely those that are iso-

morphic to direct summands of cohomology

rings of elementary abelian groups. In

particular, H∗(BS) and H∗(X) are reduced

injectives.



Proposition 2 (Goerss-Smith-Zarati) If K1

and K2 are two unstable Steenrod algebras,

whose images in U are reduced U-injectives,

then K1 is isomorphic to K2 in K if and only if

θ̃K1 is isomorphic to θ̃K2 in K′.

Lemma 3 Let S be a finite elementary abelian

p-group. Then there are isomorphisms

Aut(S)

H∗(−)

y∼=
AutK(H∗(BS))

θ̃

y∼=
AutK′(θ̃H∗(BS)).

Proof: The algebra automorphisms are deter-

mined on

H2(BS) = H2(θ̃H∗(BS)) = S.



Proposition 3 Let (f, t, X) be a Frobenius

transfer triple over an elementary abelian

p-group S and let W ≤ Aut(S) be the sub-

group of automorphisms acting on H∗(X) by

the identity. Then

H∗(X) = H∗(BS)W

and W has order prime to p.

Proof: Put

R∗ := θ̃H∗(X)

and

H∗ := θ̃H∗(BS) = Fp[x1, . . . , xn].

Then H∗ is the algebraic closure of R∗ in AW.

(Recall that R∗ → H∗ is a finite extension).

This allows us to apply Adams-Wilkerson.



Proof of AW1:

-Take an integral x ∈ Fr(R∗).
-Write x = a/b, with a, b ∈ R∗.
-x is also integral over H∗.
-Since H∗ is integrally closed, we get x ∈ H∗.
-Now have a = bx in H∗.
-Apply t∗ and use R∗-linearity (CohII):

a = t∗(a) = t∗(bx) = bt∗(x).

- Since H∗ is an integral domain, this implies

x = a/b = t∗(x) ∈ R∗.



Proof of AW2:

-Take y ∈ R2dp such that Qry = 0 for all r ≥ 1.

-H∗ = H{id} satisfies AW2.

-Therefore there is an x ∈ H2d such that

xp = y.

-Apply t∗ and preservation of Steenrod opera-

tions (CohIII):

y = t∗(y) = t∗(xp) = t∗(P dx) = P dt∗(x) = (t∗x)p.

-Since t∗(x) ∈ R2d we are done.



Have now shown that R∗ = (H∗)W for some

subgroup W of Aut(S). Since R∗ is a direct

summand of H∗ as unstable modules over the

Steenrod algebra, a result of Lannes (which

appears in the paper by Goerss-Smith-Zarati)

shows that W must have order prime to p.

The right adjoint θ̃ preserves inverse limits and

in particular rings of invariants. We can there-

fore carry our results back over to K and get

H∗(X) ∼= H∗(BS)W .

Finally, it is easy to see that W may be replaced

by the group of automorphisms of S acting on

H∗(X) by the identity. (A posteriori this step

is unnecessary).



Lannes’s theorem allows us to carry the coho-
mological information over to homotopy:

Theorem 3 (Lannes) Let X be a connected
space and V a finite elementary abelian p-
group. Suppose that X is nilpotent, that π1X
is finite and that H∗(X) is of finite type. Then
the natural map

[BV, X] → HomK(H∗(X), H∗(BV ))

is a bijection.

The case where H∗(X) = U(M) for a module
M is due to Miller.

Lannes’s theorem applies to Frobenius trans-
fer triples: Already know that π1(X) is finite
and that H∗(X) is of finite type. Since X is
also p-complete, π1(X) is a finite p-group and
therefore X is nilpotent.
Remark: The reasoning in the last sentence is false, al-

though the statement may still be true. In the worst

case, we will assume that X is nilpotent as part of the

definition of a Frobenius transfer triple.



Lemma 4 Let (f, t, X) be a Frobenius transfer

triple over a finite elementary abelian p-group

S and let W be the subgroup of Aut(S) acting

on H∗(X) by the identity. Then

AutFf,S(X)(S) = W

.

Proof: The map f induces the inclusion

H∗(BS)W ↪→ H∗(BS)

in cohomology. Now,

ϕ ∈ AutFf,S(X)(S)

m
f ◦Bϕ ' f

m
Bϕ∗ ◦ f∗ = f∗

m
ϕ ∈ W.



Proposition 4 Let (f, t, X) be a Frobenius

transfer triple over a finite elementary abelian

group S and put W := AutFf,S
(S). Then W

has order prime to p and Ff,S is equal to the

fusion system FS(W n S). In particular Ff,S is

saturated.

Proof: The maps f and θ : BS → B(W n S)∧p
both induce the inclusion

H∗(X) = H∗(BS)W ↪→ H∗(BS)

in cohomology.



Let V and V ′ be two subgroups in S. Then

ϕ ∈ HomFf,S(X)(V, V ′)
m

f ◦BιV ′ ◦Bϕ ' f ◦BιV

m
Bϕ∗ ◦Bι∗V ′ ◦ f∗ = Bι∗V ◦ f∗

m
Bϕ∗ ◦Bι∗V ′ ◦ θ∗ = Bι∗V ◦ θ∗

m
θ ◦BιV ′ ◦Bϕ ' θ ◦BιV

m
ϕ ∈ HomFθ,S(B(WnS)∧p )(V, V ′)
m

ϕ ∈ HomFθ,S(WnS)(V, V ′).



We have now shown that (f, t, X) induces a

saturated fusion system FS(W nS), which has

a classifying space B(W nS)∧p . It only remains

to show that X is equivalent to B(W n S)∧p ,

as objects under BS. This can be achieved

by applying Wojtkowiak’s obstruction theory,

presented here in a special case.

Theorem 4 (Wojtkowiak) Let S be a finite

abelian p-group and W a group of order prime

to p, that acts on S. For any nilpotent p-local

space X of Z(p)-finite type with trivial W -

action, the natural map

[B(W n S), X]
−◦BiS−→ [BS, X]W

is a bijection.



Proposition 5 Let (f, t, X), S and W be as

before. Let θ be the p-completed inclusion

θ: BS → B(W n S)∧p .

There is an equivalence

h: (θ, B(W n S)∧p ) → (f, X)

of spaces under BS.

Proof: By Wojtkowiak there is a bijection

[B(W n S), X]
−◦Bι−→ [BS, X]W ,

where Bι is the inclusion BS ↪→ B(W n S)

(before completion). Since f ∈ [BS, X]W by

definition of W , we get a map h fitting into

the following diagram.

BS

Bι
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B(W n S) ∃h //_________ X.



Applying the cohomology functor, we get

H∗(BS)

H∗(BS)W
::
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H∗(BS)W .
dd
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We conclude that h∗ must be an isomorphism.

Upon p-completion, we now get a homotopy

equivalence

h∧p : B(W n S)∧p
'→ X∧

p = X

fitting into the diagram

BS

f
||xxxxxxxxxxxxxxxxxx
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B(W n S)∧p
h∧p
'

// X.


