First test: Cohomology

In [BLO2] it is shown that the classifying space $|\mathcal{L}|_p^{\wedge}$ of a p-local finite group $(S, \mathcal{F}, \mathcal{L})$ has cohomology

$$H^*(|\mathcal{L}|_p^{\wedge}) = H^*(\mathcal{F}) := \varprojlim_{\mathcal{O}(\mathcal{F})} H^*(B(-)).$$

Fix a Frobenius transfer triple (f, t, X) over an elementary abelian p-group S. If

$$\mathcal{F} := \mathcal{F}_{S,f}(X)$$

is saturated, then (by the classification)

$$H^*(\mathcal{F}) = H^*(BS)^W,$$

where $W := Aut_{\mathcal{F}}(S) \leq Aut(S)$ has order prime to p.

Necessary Condition 1 If X is the classifying space of a p-local finite group over an elementary abelian group S, then

$$H^*(X) = H^*(BS)^W$$

for some subgroup $W \leq Aut(S)$ of order prime to p.

Applying the cohomology functor $H^*(-; \mathbf{F}_p)$ to a Frobenius transfer triple (f,t,X) we get maps

$$H^*(X) \xrightarrow{f^*} H^*(BS) \xrightarrow{t^*} H^*(X)$$

with the following properties:

$$\mathbf{Cohl} \quad t^* \circ f^* = id.$$

CohII t^* is $H^*(X)$ -linear by the Frobenius reciprocity property.

CohIII t^* is a morphism of unstable modules over the Steenrod algebra.

CohIV f^* is a morphism of unstable algebras over the Steenrod algebra.

Hence $H^*(X)$ is a direct summand of $H^*(BS)$ as a $H^*(X)$ -module and as a module over the Steenrod algebra.

Finiteness conditions:

Fact 1 If S is a finite p-group, then $H^*(BS)$ is Noetherian.

Lemma 1 Let S be a finite p-group and (f,t,X) be a Frobenius transfer triple over S. Then $H^*(X)$ is Noetherian and in particular X is of \mathbf{F}_p -finite type.

Proof: Uses CohI, CohII and an algebraic lemma of Dwyer-Wilkerson.

Lemma 2 Let S be a finite p-group and (f,t,X) be a Frobenius transfer triple over S. Then X is of $\mathbf{Z}_{(p)}$ -finite type.

Proof: By the Universal coefficient theorem, it suffices to prove this for \mathbf{F}_p and \mathbf{Q} -coefficients. The former is done above. By a transfer argument, $H^*(BS; \mathbf{Q}) = \mathbf{Q}$, proving the latter.

Notation:

 $A^* = mod p$ Steenrod Algebra.

 $\mathcal{U} = \text{category of unstable modules over } \mathcal{A}^*.$

 $\mathcal{U}'=$ full subcategory of \mathcal{U} with evenly graded objects.

 $\mathcal{K} = \text{category of unstable algebras over } \mathcal{A}^*.$

 $\mathcal{K}'=$ full subcategory of \mathcal{K} with evenly graded objects.

In all cases, morphisms are of degree zero.

Unstable condition:

$$P^k(x) = \begin{cases} x^p & \text{if } |x| = 2k, \\ 0 & \text{if } |x| < 2k. \end{cases}$$

In "Finite H-Spaces and Algebras", Adams and Wilkerson study the following category. $\mathcal{AW} = \text{full subcategory of } \mathcal{K}' \text{ whose objects are integral domains.}$

They make precise the notions of "algebraic extension" and "algebraic closure" and prove the following:

Proposition 1 (Adams-Wilkerson) Every object R^* in \mathcal{AW} has an algebraic closure H^* in \mathcal{AW} . If R^* has finite transcendence degree, then so does H^* .

Theorem 1 (Adams-Wilkerson) The objects H^* in \mathcal{AW} , that are algebraically closed and of finite transcendence degree are precisely the polynomial algebras $\mathbf{F}_p[x_1,\ldots,x_n]$ on generators x_i of degree 2.

The theorem we wish to apply is the following.

Theorem 2 (Adams-Wilkerson) Let R^* be an algebra in \mathcal{AW} of finite transcendence degree and let $H^* = \mathbf{F}_p[x_1, \dots, x_n]$ be the algebraic closure in \mathcal{AW} . In order that R^* should admit an isomorphism

$$R^* \cong (H^*)^W,$$

for some group W of automorphisms of H^* , the following two conditions are necessary and sufficient:

- **AW1** The integral domain R^* is integrally closed in its field of fractions.
- **AW2** If $y \in R^{2dp}$ and $Q^ry = 0$ for each $r \ge 1$, then $y = x^p$ for some $x \in R^{2d}$.

The second condition is really an "inseparably closed" condition. The operation Q^r is the Milnor primitive of dimension $2p^r-2$ in \mathcal{A}^* . (Not to be confused with Q_r .)

Problem: When S elementary abelian,

$$H^*(BS) \cong E[y_1, \dots, y_n] \otimes \mathbf{F}_p[x_1, \dots, x_n],$$
 where $|y_i| = 1$ and $|x_i| = 2$. Not evenly graded!

Solution: The forgetful functor $\theta: \mathcal{K}' \to \mathcal{K}$ has a right adjoint $\tilde{\theta}: \mathcal{K} \to \mathcal{K}'$.

By Lannes-Zarati:

$$\tilde{\theta}H^*(BS) \cong \mathbf{F}_p[x_1,\ldots,x_n].$$

By Goerss-Smith-Zarati, when we restrict ourselves to elements of \mathcal{K} , whose images in \mathcal{U} are reduced injectives, we can move freely between \mathcal{K} and \mathcal{K}' via θ and $\tilde{\theta}$. Simply put, the reason is that morphisms between such elements are determined on the even graded part.

(An injective M in \mathcal{U} is reduced if $Hom_{\mathcal{U}}(\Sigma N, M) = 0$ for every N in \mathcal{U} .)

Furthermore, Lannes has shown that the elements in \mathcal{K} , whose image in \mathcal{U} are reduced injectives are precisely those that are isomorphic to direct summands of cohomology rings of elementary abelian groups. In particular, $H^*(BS)$ and $H^*(X)$ are reduced injectives.

Proposition 2 (Goerss-Smith-Zarati) If K_1 and K_2 are two unstable Steenrod algebras, whose images in \mathcal{U} are reduced \mathcal{U} -injectives, then K_1 is isomorphic to K_2 in \mathcal{K} if and only if $\tilde{\theta}K_1$ is isomorphic to $\tilde{\theta}K_2$ in \mathcal{K}' .

Lemma 3 Let S be a finite elementary abelian p-group. Then there are isomorphisms

$$Aut(S)$$

$$H^*(-) \downarrow \cong$$

$$Aut_{\mathcal{K}}(H^*(BS))$$

$$\tilde{\theta} \downarrow \cong$$

$$Aut_{\mathcal{K}'}(\tilde{\theta}H^*(BS)).$$

Proof: The algebra automorphisms are determined on

$$H^{2}(BS) = H^{2}(\tilde{\theta}H^{*}(BS)) = S.$$

Proposition 3 Let (f,t,X) be a Frobenius transfer triple over an elementary abelian p-group S and let $W \leq Aut(S)$ be the subgroup of automorphisms acting on $H^*(X)$ by the identity. Then

$$H^*(X) = H^*(BS)^W$$

and W has order prime to p.

Proof: Put

$$R^* := \tilde{\theta}H^*(X)$$

and

$$H^* := \tilde{\theta}H^*(BS) = \mathbf{F}_p[x_1, \dots, x_n].$$

Then H^* is the algebraic closure of R^* in \mathcal{AW} . (Recall that $R^* \to H^*$ is a finite extension). This allows us to apply Adams-Wilkerson.

Proof of AW1:

- -Take an integral $x \in Fr(R^*)$.
- -Write x = a/b, with $a, b \in R^*$.
- -x is also integral over H^* .
- -Since H^* is integrally closed, we get $x \in H^*$.
- -Now have a = bx in H^* .
- -Apply t^* and use R^* -linearity (CohII):

$$a = t^*(a) = t^*(bx) = bt^*(x).$$

- Since H^* is an integral domain, this implies

$$x = a/b = t^*(x) \in R^*.$$

Proof of AW2:

- -Take $y \in R^{2dp}$ such that $Q^r y = 0$ for all $r \ge 1$.
- $-H^* = H^{\{id\}}$ satisfies AW2.
- -Therefore there is an $x \in H^{2d}$ such that $x^p = y$.
- -Apply t^* and preservation of Steenrod operations (CohIII):

$$y = t^*(y) = t^*(x^p) = t^*(P^d x) = P^d t^*(x) = (t^* x)^p.$$

-Since $t^*(x) \in \mathbb{R}^{2d}$ we are done.

Have now shown that $R^* = (H^*)^W$ for some subgroup W of Aut(S). Since R^* is a direct summand of H^* as unstable modules over the Steenrod algebra, a result of Lannes (which appears in the paper by Goerss-Smith-Zarati) shows that W must have order prime to p.

The right adjoint $\tilde{\theta}$ preserves inverse limits and in particular rings of invariants. We can therefore carry our results back over to \mathcal{K} and get

$$H^*(X) \cong H^*(BS)^W$$
.

Finally, it is easy to see that W may be replaced by the group of automorphisms of S acting on $H^*(X)$ by the identity. (A posteriori this step is unnecessary).

Lannes's theorem allows us to carry the cohomological information over to homotopy:

Theorem 3 (Lannes) Let X be a connected space and V a finite elementary abelian p-group. Suppose that X is nilpotent, that $\pi_1 X$ is finite and that $H^*(X)$ is of finite type. Then the natural map

$$[BV,X] \to Hom_{\mathcal{K}}(H^*(X),H^*(BV))$$
 is a bijection.

The case where $H^*(X) = U(M)$ for a module M is due to Miller.

Lannes's theorem applies to Frobenius transfer triples: Already know that $\pi_1(X)$ is finite and that $H^*(X)$ is of finite type. Since X is also p-complete, $\pi_1(X)$ is a finite p-group and therefore X is nilpotent.

Remark: The reasoning in the last sentence is false, although the statement may still be true. In the worst case, we will assume that X is nilpotent as part of the definition of a Frobenius transfer triple.

Lemma 4 Let (f,t,X) be a Frobenius transfer triple over a finite elementary abelian p-group S and let W be the subgroup of Aut(S) acting on $H^*(X)$ by the identity. Then

$$Aut_{\mathcal{F}_{f,S}(X)}(S) = W$$

.

Proof: The map f induces the inclusion

$$H^*(BS)^W \hookrightarrow H^*(BS)$$

in cohomology. Now,

$$\varphi \in Aut_{\mathcal{F}_{f,S}(X)}(S)$$

$$\updownarrow$$

$$f \circ B\varphi \simeq f$$

$$\updownarrow$$

$$B\varphi^* \circ f^* = f^*$$

$$\updownarrow$$

$$\varphi \in W.$$

Proposition 4 Let (f,t,X) be a Frobenius transfer triple over a finite elementary abelian group S and put $W := Aut_{\mathcal{F}_{f,S}}(S)$. Then W has order prime to p and $\mathcal{F}_{f,S}$ is equal to the fusion system $\mathcal{F}_{S}(W \ltimes S)$. In particular $\mathcal{F}_{f,S}$ is saturated.

Proof: The maps f and $\theta \colon BS \to B(W \ltimes S)_p^{\wedge}$ both induce the inclusion

$$H^*(X) = H^*(BS)^W \hookrightarrow H^*(BS)$$

in cohomology.

Let V and V' be two subgroups in S. Then

$$\varphi \in Hom_{\mathcal{F}_{f,S}(X)}(V,V')$$

$$\updownarrow$$

$$f \circ B\iota_{V'} \circ B\varphi \simeq f \circ B\iota_{V}$$

$$\updownarrow$$

$$B\varphi^* \circ B\iota_{V'}^* \circ f^* = B\iota_{V}^* \circ f^*$$

$$\updownarrow$$

$$B\varphi^* \circ B\iota_{V'}^* \circ \theta^* = B\iota_{V}^* \circ \theta^*$$

$$\updownarrow$$

$$\theta \circ B\iota_{V'} \circ B\varphi \simeq \theta \circ B\iota_{V}$$

$$\updownarrow$$

$$\varphi \in Hom_{\mathcal{F}_{\theta,S}(B(W \ltimes S)_{p}^{\wedge})}(V,V')$$

$$\updownarrow$$

$$\varphi \in Hom_{\mathcal{F}_{\theta,S}(W \ltimes S)}(V,V').$$

We have now shown that (f,t,X) induces a saturated fusion system $\mathcal{F}_S(W \ltimes S)$, which has a classifying space $B(W \ltimes S)_p^{\wedge}$. It only remains to show that X is equivalent to $B(W \ltimes S)_p^{\wedge}$, as objects under BS. This can be achieved by applying Wojtkowiak's obstruction theory, presented here in a special case.

Theorem 4 (Wojtkowiak) Let S be a finite abelian p-group and W a group of order prime to p, that acts on S. For any nilpotent p-local space X of $\mathbf{Z}_{(p)}$ -finite type with trivial W-action, the natural map

$$[B(W \ltimes S), X] \xrightarrow{-\circ Bi_S} [BS, X]^W$$

is a bijection.

Proposition 5 Let (f,t,X), S and W be as before. Let θ be the p-completed inclusion

$$\theta \colon BS \to B(W \ltimes S)_p^{\wedge}.$$

There is an equivalence

$$h: (\theta, B(W \ltimes S)_p^{\wedge}) \to (f, X)$$

of spaces under BS.

Proof: By Wojtkowiak there is a bijection

$$[B(W \ltimes S), X] \stackrel{-\circ B\iota}{\longrightarrow} [BS, X]^W,$$

where $B\iota$ is the inclusion $BS \hookrightarrow B(W \ltimes S)$ (before completion). Since $f \in [BS, X]^W$ by definition of W, we get a map h fitting into the following diagram.

$$BS$$

$$B(W \ltimes S) \longrightarrow A$$

Applying the cohomology functor, we get

We conclude that h^{*} must be an isomorphism. Upon p-completion, we now get a homotopy equivalence

$$h_p^{\wedge} \colon B(W \ltimes S)_p^{\wedge} \stackrel{\cong}{\to} X_p^{\wedge} = X$$

fitting into the diagram

