First test: Cohomology

In [BLO2] it is shown that the classifying
space |L|, of a p-local finite group (S,F,L)
has cohomology

H*(|£]) = H*(F) := lim H*(B(-)).
O(F)

Fix a Frobenius transfer triple (f,¢, X) over an
elementary abelian p-group S. If

F = f&f(X)
is saturated, then (by the classification)
H*(F) = H*(BS)Y,

where W := Aut£(S) < Aut(S) has order prime
to p.

Necessary Condition 1 If X s the classify-
ing space of a p-local finite group over an
elementary abelian group S, then

H*(X) = H*(BS)W

for some subgroup W < Aut(S) of order prime
to p.



Applying the cohomology functor H*(—; F)) to
a Frobenius transfer triple (f,t,X) we get maps

H*(X) H*(BS) H*(X)
with the following properties:

Cohl t*o f*=1d

CohlIl t* is H*(X)-linear by the Frobenius
reciprocity property.

CohlIII t* is a morphism of unstable modules
over the Steenrod algebra.

CohlV f* is a morphism of unstable algebras
over the Steenrod algebra.

Hence H*(X) is a direct summand of H*(BS)
as a H*(X)-module and as a module over the
Steenrod algebra.



Finiteness conditions:

Fact 1 If S is a finite p-group, then H*(BS) is
Noetherian.

Lemma 1l Let S be a finite p-group and
(f,t,X) be a Frobenius transfer triple over S.
Then H*(X) is Noetherian and in particular X
is of Fp-finite type.

Proof:. Uses Cohl, Cohll and an algebraic
lemma of Dwyer-Wilkerson.

Lemma 2 Let S be a finite p-group and
(f,t,X) be a Frobenius transfer triple over S.
Then X is of Z(p)-finite type.

Proof:. By the Universal coefficient theorem, it
suffices to prove this for I, and Q-coefficients.
The former is done above. By a transfer argu-
ment, H*(BS; Q) = Q, proving the latter.



Notation:
A* = mod p Steenrod Algebra.

U = category of unstable modules over A*.

U' = full subcategory of U with evenly graded
objects.

IC = category of unstable algebras over A*.

K = full subcategory of K with evenly graded
objects.

In all cases, morphisms are of degree zero.

Unstable condition:

0 if |z| < 2k.



In ““Finite H-Spaces and Algebras’, Adams
and Wilkerson study the following category.
AW = full subcategory of K’ whose objects are
integral domains.

They make precise the notions of “algebraic
extension” and "algebraic closure” and prove
the following:

Proposition 1 (Adams-Wilkerson) Every
object R* in AW has an algebraic closure H*
in AW. If R* has finite transcendence degree,
then so does H*.

Theorem 1 (Adams-Wilkerson) The
objects H* in AW, that are algebraically
closed and of finite transcendence degree are
precisely the polynomial algebras Fp|x1,...,zn]
on generators x; of degree 2.



The theorem we wish to apply is the following.

Theorem 2 (Adams-Wilkerson) Let R* be
an algebra in AW of finite transcendence
degree and let H* =Fyplzq,...,2n] be the
algebraic closure in AW. In order that R*
should admit an isomorphism

for some group W of automorphisms of H*,
the following two conditions are necessary and
sufficient:

AW1 The integral domain R* is integrally
closed in its field of fractions.

AW?2 If y € R?% and Q"y = 0 for each r > 1,
then y = zP for some x € R?4.



The second condition is really an ‘“inseparably
closed” condition. The operation Q" is the
Milnor primitive of dimension 2p" — 2 in A*.
(Not to be confused with Qy.)



Problem: When S elementary abelian,

H*(BS) g E[ylaayn] ®Fp[3717'~75’3n]7

where |y;| = 1 and |z;| = 2. Not evenly graded!

Solution: The forgetful functor 0: K’ — K has
a right adjoint 0: K — K'.

By Lannes-Zarati:

By Goerss-Smith-Zarati, when we restrict
ourselves to elements of K, whose images in
U are reduced injectives, we can move freely
between K and K’ via 6 and 8. Simply put,
the reason is that morphisms between such
elements are determined on the even graded
part.

(An injective M in U is reduced if
Homy (XN, M) =0 for every N in U.)



Furthermore, Lannes has shown that the
elements in IC, whose image in U are reduced
injectives are precisely those that are iso-
morphic to direct summands of cohomology
rings of elementary abelian groups. In
particular, H*(BS) and H*(X) are reduced
injectives.



Proposition 2 (Goerss-Smith-Zarati) If Ky
and K, are two unstable Steenrod algebras,
whose images in U are reduced U-injectives,
then Ky is isomorphic to Ko in IC if and only if
0K is isomorphic to 0K in K'.

Lemma 3 Let S be a finite elementary abelian
p-group. Then there are isomorphisms

Aut(S)
o2
Autic(H*(BS))

e

Autie(OH*(BS)).

Proof:. The algebra automorphisms are deter-
mined on

H?(BS) = H?(JH*(BS)) = 8S.



Proposition 3 Let (f,t,X) be a Frobenius
transfer triple over an elementary abelian
p-group S and let W < Aut(S) be the sub-
group of automorphisms acting on H*(X) by
the identity. Then

H*(X) = H*(BS)W

and W has order prime to p.

Proof: Put
R* == 0H*(X)
and

H* :=0H*(BS) = Fplz1,...,7n].

Then H* is the algebraic closure of R* in AW.
(Recall that R* — H™ is a finite extension).
T his allows us to apply Adams-Wilkerson.



Proof of AW1.:

-Take an integral z € Fr(R*).

-Write x = a/b, with a,b € R*.

-z is also integral over H*.

-Since H™* is integrally closed, we get x € H*.
-Now have a = bx in H*.

-Apply t* and use R*-linearity (CohlIl):

a=t"(a) =t*(bx) = bt"(x).
- Since H* is an integral domain, this implies

r=a/b=1t"(z) € R



Proof of AW?2:

-Take y € R29% such that Q"y = 0 for all r > 1.
-H* = H4} satisfies AW?2.

-Therefore there is an z € H2?% such that
xP = y.

-Apply t* and preservation of Steenrod opera-
tions (Cohlll):

y = t*(y) = t*(aP) = t*(P%) = PU*(z) = (t*z)P.

-Since t*(z) € R?? we are done.



Have now shown that R* = (H*)W for some
subgroup W of Aut(S). Since R* is a direct
summand of H* as unstable modules over the
Steenrod algebra, a result of Lannes (which
appears in the paper by Goerss-Smith-Zarati)
shows that W must have order prime to p.

The right adjoint 0 preserves inverse limits and
in particular rings of invariants. We can there-
fore carry our results back over to I and get

H*(X) = H*(BS)".

Finally, it is easy to see that W may be replaced
by the group of automorphisms of S acting on
H*(X) by the identity. (A posteriori this step
iS unnecessary).



Lannes’'s theorem allows us to carry the coho-
mological information over to homotopy:

Theorem 3 (Lannes) Let X be a connected
space and V a finite elementary abelian p-
group. Suppose that X is nilpotent, that w1 X
is finite and that H*(X) is of finite type. Then
the natural map

[BV, X] — Hom,C(H*(X),H*(BV))
is a bijection.

The case where H*(X) = U(M) for a module
M is due to Miller.

Lannes’'s theorem applies to Frobenius trans-
fer triples: Already know that 71(X) is finite
and that H*(X) is of finite type. Since X is
also p-complete, 7w1(X) is a finite p-group and
therefore X is nilpotent.

Remark: The reasoning in the last sentence is false, al-
though the statement may still be true. In the worst
case, we will assume that X is nilpotent as part of the
definition of a Frobenius transfer triple.



Lemma 4 Let (f,t,X) be a Frobenius transfer
triple over a finite elementary abelian p-group
S and let W be the subgroup of Aut(S) acting
on H*(X) by the identity. Then

Proof: The map f induces the inclusion
H*(BS)W — H*(BS)

in cohomology. Now,

Y € Aut}-ﬁs(X)(S)
)
foBp~f
)
Bo*o f* = f*
)

p e W.



Proposition 4 Let (f,t,X) be a Frobenius
transfer triple over a finite elementary abelian
group S and put W = A’U,tj_‘f’S(S). Then W
has order prime to p and ]—“f,S Is equal to the
fusion system Fg(W x S). In particular Fy g is
saturated.

Proof: The maps f and #: BS — B(W x S))
both induce the inclusion

H*(X) = H*(BS)"Y — H*(BS)

in cohomology.



Let V and V/ be two subgroups in S. Then

© € Hom}—f,S(X)(V, 178
)
foBuyoByp >~ foBuy
)
By™ o By o f* = By o f*
)
By® o Bij, 06" = Buy, 00"

)

0 o Biyro B ~ 0o Buy

)
@ € Hompg, ((pwws)y(V: V)
)

Y € Homfg,s(W[XS)(V7 V/)



We have now shown that (f,t,X) induces a
saturated fusion system Fq(W x S), which has
a classifying space B(W x 5)1/9\' It only remains
to show that X is equivalent to B(W x S)]Q\,
as objects under BS. This can be achieved
by applying Wojtkowiak’s obstruction theory,
presented here in a special case.

Theorem 4 (Wojtkowiak) Let S be a finite
abelian p-group and W a group of order prime
to p, that acts on S. For any nilpotent p-local
space X of Z(p)—finite type with trivial W-
action, the natural map

(BOW x 8), x] 225 1Bs, x]W

is a bijection.



Proposition 5 Let (f,t,X), S and W be as
before. Let 6 be the p-completed inclusion

0: BS — B(W x S),.
T here is an equivalence
h: (6, B(W x S))) — (f, X)

of spaces under BS.

Proof: By Wojtkowiak there is a bijection

[B(W x S), X] =5 BS, x]V,

where B: is the inclusion BS — B(W x S)
(before completion). Since f € [BS,X]W by
definition of W, we get a map h fitting into
the following diagram.

BS



Applying the cohomology functor, we get

H*(BS)

N

H*(BS)W H*(BSYW.

We conclude that A™ must be an isomorphism.
Upon p-completion, we now get a homotopy
equivalence

A. AN A
hp.B(WxS)p —>Xp = X
fitting into the diagram




