We have proved that a Frobenius transfer triple over an elementary abelian group S induces a p-local finite group over S.

Conversely we will now show that for a p-local finite group $(S, \mathcal{F}, \mathcal{L})$ over any finite p-group S, the natural inclusion $\theta \colon BS \to |\mathcal{L}|_p^{\wedge}$ has a Frobenius transfer t, which makes $(\theta, t, |\mathcal{L}|_p^{\wedge})$ a Frobenius transfer triple over S.

In the process of doing so we develop tools which allows us to prove properties of classifying spectra for saturated fusion systems, as defined in [BLO2], which are probably of greater interest than our original goal.

Given a saturated fusion system \mathcal{F} over a finite p-group S, it is shown in [BLO2] how to associate a summand $\mathbb{B}\mathcal{F}$ of $\Sigma^{\infty}_{+}BS$ to \mathcal{F} . Furthermore, it is shown that if \mathcal{F} has an associated linking system \mathcal{L} , then

$$\mathbb{B}\mathcal{F}\simeq \Sigma^{\infty}_{+}|\mathcal{L}|_{p}^{\wedge}.$$

Therefore Broto-Levi-Oliver refer to $\mathbb{B}\mathcal{F}$ as the *classifying spectrum* of \mathcal{F} .

We will enrich the classifying spectrum with a *structure map*

$$\sigma_{\mathcal{F}} \colon \Sigma_{+}^{\infty} BS \longrightarrow \mathbb{B}\mathcal{F}$$

and a transfer

$$t_{\mathcal{F}} \colon \mathbb{B}\mathcal{F} \longrightarrow \Sigma_{+}^{\infty} BS$$

such that

$$\sigma_{\mathcal{F}} \circ t_{\mathcal{F}} \simeq id_{\mathbb{B}\mathcal{F}}.$$

(Interlude:)

Let \mathcal{F}_1 and \mathcal{F}_2 be fusion systems over finite p-groups S_1 and S_2 , respectively.

Definition. A group homomorphism

$$\gamma \colon S_1 \longrightarrow S_2$$

is $(\mathcal{F}_1, \mathcal{F}_2)$ -fusion-preserving if there exists a functor

$$F_{\gamma} \colon \mathcal{F}_1 \longrightarrow \mathcal{F}_2$$

such that

$$F_{\gamma}(P) = \gamma(P)$$

for all $P \leq S$ and

$$\gamma|_Q \circ \varphi = F_{\gamma}(\varphi) \circ \gamma|_P$$

for all $\varphi \in Hom_{\mathcal{F}_1}(P,Q)$.

We will prove that classifying spectra of saturated fusion systems have the following properties:

- (A) $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ if and only if $\sigma_{\mathcal{F}} \circ \Sigma_{+}^{\infty} B \iota_{Q} \circ \Sigma_{+}^{\infty} B \varphi \simeq \sigma_{\mathcal{F}} \circ \Sigma_{+}^{\infty} B \iota_{P}.$
- (B) A $(\mathcal{F}_1, \mathcal{F}_2)$ -fusion-preserving homomorphism $\gamma \colon S_1 \to S_2$ induces a map $\mathbb{B}\gamma_{\mathcal{F}_1}^{\mathcal{F}_2}$ making the following diagram commute up to homotopy:

$$BS_1 \xrightarrow{B\gamma} BS_2$$

$$\downarrow^{\sigma_{\mathcal{F}_1}} \qquad \downarrow^{\sigma_{\mathcal{F}_2}}$$

$$\mathbb{B}\mathcal{F}_1 \xrightarrow{\mathbb{B}\gamma} \mathbb{B}\mathcal{F}_2.$$

This assignment is functorial and extends the group-theoretic case.

(C) Fusion-preserving monomorphisms admit transfers, which behave like transfers between groups in cohomology.

We reach our original goal by the following:

(D) When \mathcal{F} has an associated centric linking system \mathcal{L} , the natural inclusion

$$\theta \colon BS \to |\mathcal{L}|_p^{\wedge}$$

suspends to the structure map

$$\sigma_{\mathcal{F}}: \Sigma_{+}^{\infty} BS \to \mathbb{B}\mathcal{F}$$

and $t_{\mathcal{F}}$ is a Frobenius transfer for θ .

Finally, we will also give an explicit basis for the \mathbf{Z}_p^{\wedge} -modules $[\mathbb{B}\mathcal{F}_1,\mathbb{B}\mathcal{F}_2]$.

Preliminaries on the Segal conjecture

We need to have a good understanding of the group $\{BS_{1+},BS_{2+}\}$ of homotopy classes of stable maps $\Sigma^{\infty}_{+}BS_{1} \to \Sigma^{\infty}_{+}BS_{2}$ for finite p-groups.

The Segal conjecture relates stable maps $\Sigma_+^{\infty}BG_1 \to \Sigma_+^{\infty}BG_2$ to (G_1,G_2) -bisets for finite groups.

 $\mathcal{M}or(G_1,G_2) := \text{Set of isomorphism classes}$ of finite sets with right G_1 -action and free left G_2 -action such that the actions commute.

 $\mathcal{M}or(G_1,G_2)$ is a monoid under disjoint union.

 $A(G_1, G_2) :=$ Grothendieck group completion of $\mathcal{M}or(G_1, G_2)$.

We describe a "natural" homomorphism

$$\alpha \colon A(G_1, G_2) \longrightarrow \{BG_{1+}, BG_{2+}\}.$$

Take a representative Ω of an element in $\mathcal{M}or(G_1,G_2)$ and put

$$\Lambda := \Omega/G_2.$$

The projection map

$$EG_1 \times_{G_1} \Lambda \to BG_1$$

is a finite covering (the fibre is Λ) and we get a transfer

$$\tau \colon \Sigma_+^{\infty} BG_1 \to \Sigma_+^{\infty} BG_2.$$

We also have a principal G_2 -fibre sequence

$$G_2 \to EG_1 \times_{G_1} \Omega \to EG_1 \times_{G_1} \Lambda$$

since the G_2 -action on Ω was free. Let

$$\xi \colon EG_1 \times_{G_1} \Lambda \to BG_2$$

be the classifying map.

Finally,

$$\alpha(\Omega) := \Sigma_+^{\infty} \xi \circ \tau.$$

There is a pairing

$$A(G_2, G_3) \times A(G_1, G_2) \to A(G_1, G_3)$$

 $(\Lambda, \Omega) \mapsto \Lambda \times_{G_2} \Omega.$

This makes A(G,G) a ring called the *double* Burnside ring of G.

The morphism α sends this pairing to the composition pairing of stable maps:

$$\alpha(\Lambda \times_{G_2} \Omega) = \alpha(\Lambda) \circ \alpha(\Omega).$$

We could regard α as a functor from the category whose objects are finite groups and whose morphism sets are $A(G_1, G_2)$ to the category whose objects are finite groups and whose morphism sets are $\{BG_{1+}, BG_{2+}\}$.

Put
$$A(G) := A(G, 1)$$
.

There is a pairing

$$A(G) \times A(G, G') \to A(G, G'),$$

 $(X, \Omega) \to X \times \Omega,$

where the actions are given by

$$(x,y).g = (x.g, y.g), g'.(x,y) = (x, g'.y).$$

In particular, A(G) is a ring and A(G,G') is a module over A(G). A(G) is called the Burnside ring of G.

A(G) has an augmentation

$$A(G) \to \mathbb{Z}, \quad \Omega \mapsto |\Omega|.$$

We let I(G) denote the augmentation ideal (i.e. the kernel of the augmentation).

Lewis-May-McClure have shown that the following theorem is a consequence of the Segal conjecture, which was proved by Carlsson.

Theorem (Segal conjecture). α induces an isomorphism

$$A(G_1,G_2)_I^{\wedge} \longrightarrow \{BG_{1+},BG_{2+}\},$$

where

$$A(G_1, G_2)_I^{\wedge} = \underline{\lim}_n (A(G_1, G_2)/I^n)$$

is the completion with respect to the ideal $I = I(G_1)$.

When G_1 is a p-group this takes a simple form

Theorem. Let S be a finite p-group and G be a finite group. Let $\tilde{A}(S,G)$ be the kernel of the morphism

$$A(S,G) \to A(S), \ \Omega \to \Omega/G.$$

Then α induces an isomorphism

$$\tilde{A}(S,G)_p^{\wedge} := \mathbf{Z}_p^{\wedge} \otimes \tilde{A}(S,G) \longrightarrow \{BS,BG\}.$$

Historical note: Let G be a finite group.

Atiyah (ca. 1960): There is an isomorphism

$$R(G)_I^{\wedge} \longrightarrow KU(BG),$$

where R(G) is the complex representation ring and I is the kernel of the augmentation

$$R(G) \to \mathbf{Z}, \ V \mapsto \dim(V).$$

Segal conjectured that the analogous result holds for stable cohomotopy.

Segal conjecture (weak form): The map

$$A(G)_I^{\wedge} \longrightarrow \pi_S^0(BG_+) := \{BG_+, S^0\}$$

is an isomorphism.

Lin: Proved conjecture for $G = \mathbb{Z}/2$.

Gunawardena: $G = \mathbf{Z}/p$, p odd prime.

Ravenel: General finite cyclic groups.

Carlsson: Elementary abelian 2-groups.

Adams-Gunawardena-Miller:

Odd elementary abelian groups.

May-McClure: Reduce question to finite p-groups.

Carlsson: Uses A-G-M result and induction to prove p-group case.

The proofs are actually of a stronger form of the conjecture. This was in fact necessary, since a statement involving only $\pi_S^0(BG_+)$ (and not higher cohomotopy groups) does not lend itself to induction.

Segal introduced equivariant stable cohomotopy groups

$$\pi_G^{-*}(S^0) = \bigotimes_K \pi_*^S(BW(K)_+),$$

where the sum is taken over conjugacy classes of subgroups of G and $W(K) = N_G(K)/K$.

Note that $\pi_G^*(S^0)$ is a an A(G)-module and $\pi_G^0(S^0) \cong A(G)$.

Segal conjecture (strong form): The map

$$\pi_G^*(S^0)_{I(G)}^{\wedge} \longrightarrow \pi_S^*(BG_+)$$

is an isomorphism.

We will study $A(S_1, S_2)$ in detail for finite p-groups. Therefore we apply an unusual form of the Segal conjecture, which maintains more of the structure of $A(S_1, S_2)$.

Theorem (Segal conjecture). If S is a finite p-group and G any finite group, then α induces an isomorphism

$$A(S,G)_p^{\wedge} \xrightarrow{\cong} \{BS_+, BG_+\}_p^{\wedge},$$

where $\{BS_+, BG_+\}_p^{\wedge}$ denotes the group of homotopy classes of stable maps $\Sigma_+^{\infty}BS_p^{\wedge} \to \Sigma_+^{\infty}BG_p^{\wedge}$.

Note that $\Sigma_+^{\infty}BG \simeq \Sigma^{\infty}BG \vee \mathbb{S}^0$. We will only be interested in the case where G is a p-group, in which case $\Sigma^{\infty}BG$ is p-complete and the effect of p-completing $\Sigma_+^{\infty}BG$ is exactly to p-complete the \mathbb{S}^0 -term.

It has been shown (Lewis-May-McClure) that in this case the difference between $\{BS_+,BG_+\}$ and $\{BS_+,BG_+\}_p^{\wedge}$ is that the \mathbb{Z} -term corresponding to $\{S^0,S^0\}$ in the former becomes a \mathbf{Z}_p^{\wedge} -term in the latter.