We want to describe a \mathbb{Z} -basis for $A(G_1, G_2)$ for finite groups G_1 and G_2 .

Recall that $A(G_1, G_2)$ is the group completion of the monoid of isomorphism classes of finite (G_1, G_2) -sets.

Similarly, for a finite group G, the Burnside ring of G is the group completion A(G) of the monoid of isomorphism classes of finite G-sets.

Now, a finite (G_1, G_2) -set Ω can be regarded as a left $(G_1 \times G_2)$ set by putting

$$(g_1, g_2).x := g_2 x g_1^{-1}$$

for $g_1 \in G_1, g_2 \in G_2$ and $x \in \Omega$. This gives us an imbedding of \mathbb{Z} -modules

$$A(G_1, G_2) \hookrightarrow A(G_1 \times G_2).$$

This allows us to approach $A(G_1, G_2)$ by studying the module $A(G_1 \times G_2)$.

Remark. When $G_1 = G_2$ the module $A(G_1, G_2)$ has a ring structure, which one should note is very different from the ring structure on $A(G_1 \times G_2)$.

Let G be a finite group. The isomorphism type of a finite G-set X is determined by the isomorphism types of its G-orbits. The following observations are left as exercises.

Exercise. Each G-orbit of X is isomorphic to a G-set of type G/H, where $H \leq G$.

Exercise.

$$G/H_1 \cong G/H_2$$

as G-sets if and only if H_1 and H_2 are conjugate in G.

We conclude the following fact.

Fact. A(G) is a free \mathbb{Z} -module with one basis element [G/H] for each conjugacy class [H] of subgroups $H \leq G$.

We now study the image of $A(G_1, G_2)$ in $A(G_1 \times G_2)$.

It is easy to see that this image consists of exactly those $G_1 \times G_2$ -bisets whose G_2 -action (via the map $G_2 \to G_1 \times G_2$, $g \mapsto (1,g)$) is free.

Therefore a $G_1 \times G_2$ -set is in the image of $A(G_1, G_2)$ if and only if each of its irreducible components is in the image. We deduce that it suffices to check which basis elements of $A(G_1 \times G_2)$ is in the image of $A(G_1, G_2)$. This is left as an exercise.

Exercise. A \mathbb{Z} -basis for the image of $A(G_1,G_2)$ in $A(G_1\times G_2)$ is given by the collection of basis elements of type $[G_1\times G_2/\Delta_H^{\varphi}]$, where $H\leq G_1$ and φ is a group homomorphism $H\to G_2$.

Now let us interpret these results for bisets.

Definition. Let G_1 and G_2 be finite groups. A (G_1, G_2) -pair is a pair (H, φ) consisting of a subgroup $H \leq G_1$ and a homomorphism

$$\varphi \colon H \to G_2.$$

We say that two (G_1,G_2) -pairs (H_1,φ_1) and (H_2,φ_2) are (G_1,G_2) -conjugate if there exist elements $g \in G_1$ and $h \in G_2$ such that $c_g(H_1) = H_2$ and the following diagram commutes

$$H_1 \xrightarrow{\varphi_1} G_2$$

$$\cong \downarrow c_g \qquad \qquad \downarrow c_h$$

$$H_2 \xrightarrow{\varphi_2} G_2.$$

 (G_1,G_2) -conjugacy is an equivalence relation on (G_1,G_2) -pairs and we write $[H,\psi]$ for the conjugacy class of a (G_1,G_2) -pair (H,ψ) .

For a (G_1, G_2) -pair (H, ψ) , we define a (G_1, G_2) -biset

$$G_2 \times_{(H,\psi)} G_1 = (G_2 \times G_1)/\sim,$$

where

$$(x,gy) \sim (x\psi(g),y)$$

for $x \in G_2$, $y \in G_1$, $g \in H$.

The group actions are the obvious right G_1 -action and free left G_2 -action given by

$$(x,y).g_1 = (x,yg_1)$$

and

$$g_2.(x,y) = (g_2x,y)$$

for $x, g_2 \in G_2$ and $y, g_1 \in G_1$.

We again proceed by a sequence of observations, the proofs of which are left as exercises.

Exercise. Let (H, ψ) and (H', ψ') be (G_1, G_2) -pairs. Then

$$G_2 \times_{(H,\psi)} G_1 \cong G_2 \times_{(H',\psi')} G_1$$

as (G_1, G_2) -bisets if and only if (H, ψ) and (H', ψ') are (G_1, G_2) -conjugate.

In view of this we will abuse notation and also denote the isomorphism class of the (G_1, G_2) -biset $G_2 \times_{(H,\psi)} G_1$ by $[H, \psi]$.

Exercise.

$$G_1 \times G_2/\Delta_H^{\psi} \cong G_1 \times G_2/\Delta_{H'}^{\psi'}$$

as $(G_1 \times G_2)$ -sets if and only if (H, ψ) and (H', ψ') are (G_1, G_2) -conjugate.

Exercise. The image of $[G_1 \times G_2/\Delta_H^{\psi}]$ in $A(G_1, G_2)$ is $[H, \psi]$.

We conclude:

Fact. $A(G_1, G_2)$ is a free \mathbb{Z} -module with one basis element $[H, \psi]$ for every conjugacy class $[H, \psi]$ of (G_1, G_2) -pairs.

Recall that there is a \mathbb{Z} -module morphism

$$\alpha: A(G_1, G_2) \longrightarrow \{BG_{1+}, BG_{2+}\}.$$

Exercise. α sends the basis element $[H, \psi]$ to the homotopy class of the map

$$\Sigma_{+}^{\infty} B \psi \circ tr_{H} \colon \Sigma_{+}^{\infty} B G_{1} \to \Sigma_{+}^{\infty} B G_{2},$$

where

$$tr_H: \Sigma_+^{\infty} BG_1 \to \Sigma_+^{\infty} BH$$

is the transfer of the inclusion $H \leq G_1$.

Recall also that by the Segal conjecture, for finite p-groups S_1 and S_2 , α induces an isomorphism

$$A(S_1, S_2)_p^{\wedge} \xrightarrow{\cong} \{BS_{1+}, BS_{2+}\}_p^{\wedge},$$

where $\{BS_{1+},BS_{2+}\}_p^{\wedge}$ denotes the group of homotopy classes of maps between p-completed classifying spectra

$$(\Sigma_+^{\infty} BS_1)_p^{\wedge} \to (\Sigma_+^{\infty} BS_2)_p^{\wedge}.$$

In view of this and the last exercise, we will further abuse notation and let $[P, \psi]$ also denote the homotopy class of the map

$$(\Sigma_+^{\infty} B\psi \circ tr_P)_p^{\wedge}$$
: $(\Sigma_+^{\infty} BS_1)_p^{\wedge} \to (\Sigma_+^{\infty} BS_2)_p^{\wedge}$, when S_1 and S_2 are finite p -groups.

We now get the following version of the Segal conjecture.

Theorem (Segal conjecture). Let S_1 and S_2 be finite p-groups. Then $\{BS_{1+},BS_{2+}\}_p^{\wedge}$ is a free \mathbf{Z}_p^{\wedge} -module with one basis element $[P,\psi]$ for every conjugacy class $[S_1,S_2]$ of (S_1,S_2) -pairs.

It is more common to get rid of the sphere spectra corresponding to the added base-points before describing the group of homotopy classes of stable maps. (Recall that $\Sigma^{\infty}_{+}BS \simeq \Sigma^{\infty}BS \vee S^{0}$.) Although we will not use this version of the Segal conjecture, we present it below.

Theorem (Segal conjecture). Let S_1 and S_2 be finite p-groups. Then $\{BS_{1+}, BS_{2+}\}$ is a free \mathbb{Z}_p^{\wedge} -module with one basis element $[P, \psi]$ for every conjugacy class $[S_1, S_2]$ of (S_1, S_2) -pairs, where ψ is nontrivial.