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Definition
A (G1,G2)-biset is a set with a right G1-action and a
commuting, free left G2-action.

The isomorphism classes of finite (G1,G2)-bisets form a
monoid under disjoint union.

Definition
The Burnside module A(G1,G2) is the group completion of this
monoid.

An element of A(G1,G2) is a formal difference [X ]− [Y ] of
isomorphism classes of finite (G1,G2)-bisets.
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Basis for A(G1,G2):

A (G1,G2)-pair is a pair (H, ϕ), where

H ≤ G1, ϕ : H → G2.

Conjugacy: (H1, ϕ1) ∼ (H2, ϕ2) if ∃g1 ∈ G1, ∃g2 ∈ G2 s.t.

H1
ϕ1−−−−→ ϕ1(H1)

∼=
ycg ∼=

ycg′

H2
ϕ2−−−−→ ϕ2(H2).

Write [H, ϕ]G2
G1

(or just [H, ϕ]) for the conjugacy class of (H, ϕ).
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A(G1,G2) is a free Z-module with basis indexed by conjugacy
classes of (G1,G2)-pairs.

The basis element [H, ϕ]G2
G1

corresponds to the biset

G1 ×G2/∆
ϕ
H ,

where
∆ϕ

H = {(h, ϕ(h)) | h ∈ H},

and actions are given by

b(x , y)a = (a−1x ,by),

for a, x ∈ G1 and b, y ∈ G2.
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Definition
The Burnside category A is the category with
-Objects: Finite groups
-Morphisms: Burnside modules A(G1,G2)
-Composition:

A(G2,G3)× A(G1,G2) −→ A(G1,G3)

(Ω′,Ω) 7→ Ω′ ◦ Ω := Ω′ ×G2 Ω

This can be described on basis elements by the double coset
formula:

[K , ψ]G3
G2
◦[H, ϕ]G2

G1
=

∑
x∈K\G′

2/ϕ(H)

[
ϕ−1 (ϕ (H) ∩ K x) , ψ ◦ cx ◦ ϕ

]G3

G1

In particular, A(G,G) is a ring, called the double Burnside ring
of G.
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Let R be a ring. An R-valued global Mackey functor is a
contravariant functor

A −→ R −mod .

This is a functor M defined on finite groups which allows
-restriction along a group homomorphism

ϕ : H → G2  ϕ∗ : M(G2) → M(H)

-transfer along a subgroup inclusion

H ≤ G1  tr : M(H) → M(G1).

We can think of the biset [H, ϕ] as the composite of a transfer
and restriction.

Examples: Group cohomology, representation rings, . . .
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Let S be a Sylow subgroup of G. We have a commutative
diagram

M(G)

res

##HH
HH

HH
HH

H

M(S)

tr
;;vvvvvvvvv M([G]SS)

// M(S)

where [G]SS is G regarded as a (S,S)-biset.

Theorem (Dress)
If M is a p-projective global Mackey functor, then tr is surjective,
res is injective, and

M(G) ∼= Im (M([G]) : M(S) → M(S))

can be calculated by stable elements.
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Stable elements:

Let F = FS(G) be the fusion system of G over S.
Category with
-Objects: Subgroups of S
-Morphisms: Conjugations in G.

Definition
The module (ring) of F-stable elements in M(S) is

M(F) := lim
FS(G)

M

∼= {x ∈ M(S) | ϕ∗(x) = res(x)∀P ≤ S, ϕ ∈ Hom(P,S)}

Depends only on the fusion system!
Extend to abstract fusion systems?
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S finite p-group

Definition
A fusion system on S is a category with:
-Objects: Subgroups of S.
-Morphisms satisfy

HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q).

Definition
A fusion system is saturated if it satisfies two additional axioms,
playing the role of Sylow theorems.
I “prime to p axiom”
II “Extension axiom”
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Definition (Linckelmann-Webb)

A characteristic biset for F is an (S,S)-biset Ω such that
a) |Ω|/|S| ≡ 1(mod p)

b) For all P ≤ S and ϕ ∈ HomF (P,S),
Ω ◦ [P, ϕ]SP = Ω ◦ [P, incl]SP (right F-stable),
and
[ϕ(P), ϕ−1]PS ◦ Ω = [P, id]PS ◦ Ω (left F-stable).

c) Ω lies in the span of {[P, ϕ] | P ≤ S, ϕ ∈ HomF (P,S).}

Motivation:
b) xG = G = Gx for x ∈ G.

c) [G]SS =
∑

x∈S\G/S

[S ∩ Sx , cx ]SS

Theorem (Broto–Levi–Oliver)
Every saturated fusion system has a characteristic biset.
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Theorem (Linckelmann–Webb,Broto–Levi–Oliver)
Let H∗ be cohomology with Fp-coefficients. Then

H∗([Ω]) : H∗(S) → H∗(S)

is an idempotent with image H∗(F).

The theorem allows one to regard H∗([Ω]) as a transfer map
H∗(S) → H∗(F).

Diaz–Glesser–Mazza–Park: Replace Fp with abelian p-group.
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What about other Mackey functors?
-M([Ω]) generally not idempotent
-[Ω] is not unique

Definition
A characteristic idempotent for F is an idempotent ω in
Z(p) ⊗ A(S,S) such that

a) |ω|/|S| = 1
b) ω is right and left F-stable
c) ω lies in the span of {[P, ϕ] | P ≤ S, ϕ ∈ HomF (P,S)}

Theorem (KR)
Every saturated fusion system has a unique characteristic
idempotent.
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Proof.
If Ω characteristic biset, then Ωn is also one.
Some power of Ω is idempotent (mod p) (since
Fp ⊗ A(S,S) is finite).
Take characteristic biset Ω that is idempotent (mod p).
Then Ωpn

is idempotent (mod p).

Conclude that Ω,Ωp,Ωp2
, . . . is a Cauchy sequence

converging to an idempotent ω in Z∧
p ⊗ A(S,S).

Hard part: Coefficients in basis decomposition of ω satisfy
fully determined system of equations, giving uniqueness.
Since equations have integer coefficients, ω lies in
Z(p) ⊗ A(S,S).
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The “hard part” involves describing ω2Z∧
p ⊗ A(S1,S2)ω1 for

characteristic idempotents of fusion systems F1 and F2 over S1
and S2. Basically, multiplying by ω “quotients out” F-conjugacy.

The description has other consequences.

Corollary (KR,Castellana–Morales)
For any p-local Mackey functor M, the map

M([ω]) : M(S) → M(S)

is an idempotent with image M(F).

Hence we can regard M([ω]) as a transfer map M(S) → M(F).

This transfer map is unique, and natural with respect to
fusion-preserving homomorphisms
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Definition
For X ∈ A(S,S), the stabilizer fusion system of X is the fusion
system Stab(X ) on S with morphism sets

{ϕ ∈ ( Hom)(P,Q) | X ◦ [P, ϕ]SP = X ◦ [P, incl]SP}

Corollary (KR,Puig?)

If Ω is a characteristic biset (or idempotent) for F , then
Stab(Ω) = F .

This has an interesting interpretation in stable homotopy: We
can recover FS(G) from the stable homotopy type of the map
BS → BG∧

p , but not from the stable homotopy type of BG∧
p

[Martino–Priddy].

Kári Ragnarsson Encoding fusion data in the double Burnside ring



Saturation can also be detected in the Burnside ring.

Theorem (Puig,KR–Stancu)

Let F be a fusion system on S. If F has a characteristic biset
(or idempotent), then F is saturated.

This is a (first?) radically different formulation of saturation.

The proof goes by counting fixed points.

Kári Ragnarsson Encoding fusion data in the double Burnside ring



For each [P, ϕ], we have a fixed-point homomorphism

χ[P,ϕ] : A(S,S) → Z, X → |X∆ϕ
P |.

By tom Dieck, this gives an injection

A(S,S) →
∏
[P,ϕ]

Z.

Condition b) becomes

χ[P,ϕ](Ω) = χ[ϕ(P),incl](Ω)

χ[P,ϕ](Ω) = χ[P,incl](Ω)

Condition c) becomes

χ[P,ϕ](Ω) = 0

when ϕ /∈ F .
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For (S,S)-bisets X and Y , let (X × Y ) ◦∆ be the set (X × Y )
regarded as an (S,S × S)-biset via

(a1,a2)(x , y)b = (a1xb,a2yb)

for (a1,a2) ∈ S × S, (x , y) ∈ X × Y ,b ∈ S.

Corollary (KR–Stancu)

If Ω ∈ A(S,S) satisfies the Frobenius reciprocity relation

(Ω× Ω) ◦∆ = (Ω× 1) ◦∆ ◦ Ω,

then Ω is a characteristic biset for Stab(Ω).

Proof.
The relation implies

χ[Q,ψ](Ω)χ[Q,ϕ](Ω) = χ[ϕ(Q),ψ◦ϕ−1](Ω)χ[Q,ϕ](Ω)
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We should be able to prove corresponding statement for
idempotents. Then we will have a bijection

{Frobenius idempotents in Z(p) ⊗ A(S,S)}
OO

��
{Saturated fusion systems over S}
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