Historical note: Let G be a finite group.

Atiyah (ca. 1960): There is an isomorphism

$$
R(G)_{I}^{\wedge} \longrightarrow K U(B G)
$$

where $R(G)$ is the complex representation ring and I is the kernel of the augmentation

$$
R(G) \rightarrow \mathbf{Z}, \quad V \mapsto \operatorname{dim}(V) .
$$

Segal conjectured that the analogous result holds for stable cohomotopy.
Segal conjecture (weak form): There is an isomorphism

$$
A(G)_{I}^{\wedge} \longrightarrow \pi_{S}^{0}\left(B G_{+}\right):=\left\{B G_{+}, S^{0}\right\}
$$

where $A(G)$ is the Burnside ring of finite G sets, and I is the kernel of the augmentation

$$
A(G) \rightarrow \mathbf{Z}, \quad X \mapsto|X| .
$$

Lin: Proved conjecture for $G=\mathbf{Z} / 2$.
Gunawardena: $G=\mathrm{Z} / p, p$ odd prime.
Ravenel: General finite cyclic groups.
Carlsson: Elementary abelian 2-groups.
Adams-Gunawardena-Miller:
Odd elementary abelian groups.
May-McClure: Reduce question to finite p-groups.
Carlsson: Uses A-G-M result and induction to prove p-group case.

Lewis-May-McClure: extended result to maps between classifying spaces. That is, replace S^{0} by $B G^{\prime}$.

"Double Burnside modules"

$\operatorname{Mor}\left(G, G^{\prime}\right):=$ Set of isomorphism classes of finite sets with right G-action and free left G^{\prime} action such that the actions commute.
$\operatorname{Mor}\left(G, G^{\prime}\right)$ is a monoid under disjoint union.
$A\left(G, G^{\prime}\right):=$ Grothendieck group completion of $\operatorname{Mor}\left(G, G^{\prime}\right)$.
$A\left(G, G^{\prime}\right)$ is a free module with one basis elemont $[H, \varphi]_{G}^{G^{\prime}}$ for each conjugacy class of pairs (H, φ), where $H \leq G, \varphi: H \rightarrow G^{\prime}$.

Conjugacy is taken in both source and target. That is $\left(H_{1}, \varphi_{1}\right) \sim\left(H_{2}, \varphi_{2}\right)$ if and only if $\exists g \in G, \exists g^{\prime} \in G^{\prime}$ s.t.

$$
\begin{array}{cc}
H_{1} \xrightarrow{\varphi_{1}} & \varphi_{1}\left(H_{1}\right) \\
\cong \mid c_{g} & \cong c_{g^{\prime}} \\
H_{2} \xrightarrow{\varphi_{2}} & \varphi_{2}\left(H_{2}\right) .
\end{array}
$$

The basis element $[H, \varphi]_{G}^{G^{\prime}}$ corresponds to the biset

$$
G \times G^{\prime} / \Delta_{H}^{\varphi},
$$

where

$$
\Delta_{H}^{\varphi}=\{(h, \varphi(h) \mid h \in H\},
$$ and actions are given by

$$
b(x, y) a=\left(a^{-1} x, b y\right)
$$

for $a, x \in G$ and $b, y \in G^{\prime}$.

The modules $A\left(G, G^{\prime}\right)$ form the morphism sets in a pre-additive category \underline{A}, whose objects are the finite groups, and where composition is given by

$$
\begin{gathered}
A\left(G^{\prime}, G^{\prime \prime}\right) \times A\left(G, G^{\prime}\right) \longrightarrow A\left(G, G^{\prime \prime}\right), \\
\left(\Omega^{\prime}, \Omega\right) \mapsto \Omega^{\prime} \circ \Omega:=\Omega^{\prime} \times{ }_{G^{\prime}} \Omega .
\end{gathered}
$$

This can be described on basis elements by the double coset formula:

$$
\begin{gathered}
{\left[H^{\prime}, \varphi^{\prime}\right]_{G^{\prime}}^{G^{\prime \prime}} \circ[H, \varphi]_{G}^{G^{\prime}}} \\
=\sum_{x \in H^{\prime} \backslash G^{\prime} / \varphi(H)}\left[\varphi^{-1}\left(\varphi(H) \cap H^{\prime x}\right), \varphi^{\prime} \circ c_{x} \circ \varphi\right]_{G}^{G^{\prime \prime}} .
\end{gathered}
$$

In particular, $A(G, G)$ is a ring, called the double Burnside ring of G.

There is also a pairing

$$
\begin{gathered}
A(G, 1) \times A\left(G, G^{\prime}\right) \longrightarrow A\left(G, G^{\prime}\right) \\
(X, \Omega) \mapsto X \cdot \Omega:=X \times \Omega
\end{gathered}
$$

where G acts via the diagonal, and G^{\prime} acts on the second coordinate.

This makes $A(G)=A(G, 1)$ into a ring, called the Burnside ring of G, which acts on $A\left(G, G^{\prime}\right)$.

We have an "augmentation functor"

$$
\epsilon: \underline{A} \longrightarrow \mathbb{Z}
$$

defined on (G, G^{\prime})-bisets by

$$
\epsilon(\Omega)=\left|\Omega / G^{\prime}\right| .
$$

Functoriality means composition is sent to multiplication.

Note that

$$
\epsilon\left([H, \varphi]_{G}^{G^{\prime}}\right)=\left|\left(\frac{G \times G^{\prime}}{\Delta_{H}^{\varphi}}\right) / G^{\prime}\right|=|G / H| .
$$

On $A(G)$, this gives the augmentation. We let $I(G)$ be the augmentation ideal

$$
I(G)=\operatorname{ker}(\epsilon: A(G) \rightarrow \mathbb{Z}, X \mapsto|X|)
$$

We are interested in the functor

$$
\alpha: \underline{A} \longrightarrow \text { Spectra }
$$

acting on objects by

$$
G \mapsto \mathbb{B} G_{+},
$$

where

$$
\mathbb{B} G_{+}:=\Sigma^{\infty}\left(B G_{+}\right) \simeq \Sigma^{\infty} B G \vee \mathbb{S}^{0}
$$

and acting on morphisms by

$$
\begin{gathered}
{[H, \varphi]_{G}^{G^{\prime}} \mapsto \mathbb{B} \varphi_{+} \circ \operatorname{tr}_{H},} \\
\mathbb{B} G_{+} \xrightarrow{t r_{H}} \mathbb{B} H_{+} \xrightarrow{\mathbb{B} \varphi_{+}} \mathbb{B} G_{+}^{\prime}
\end{gathered}
$$

Lewis-May-McClure showed that the following is a consequence of Carlsson's proof of the Segal conjecture.
Theorem (Segal conjecture). α induces an isomorphism

$$
A\left(G, G^{\prime}\right)_{I}^{\wedge} \longrightarrow\left\{B G_{+}, B G_{+}^{\prime}\right\}
$$

where $I=I(G)$ is the augmentation ideal of the Burnside ring $A(G)$.

With the appropriate definition of $A\left(G, G^{\prime}\right)$, we can let G^{\prime} be a compact Lie group.

The $I(G)$-adic completion can be difficult to calculate. However, in the special case where G is a p-group, May-McMclure noticed that the $I(G)$-adic topology coincides with the p-adic topology, at least after removing basepoints.

Recall that $\Sigma_{+}^{\infty} B G^{\prime} \simeq \Sigma^{\infty} B G^{\prime} \vee \mathbb{S}^{0}$. We have

$$
\left\{B G, B G^{\prime}\right\} \cong\left\{B G_{+}, B G_{+}^{\prime}\right\} /\left\{B G_{+}, \mathbb{S}^{0}\right\}
$$

Put

$$
\tilde{A}\left(G, G^{\prime}\right):=A\left(G, G^{\prime}\right) /\left\langle[H, \text { triv }]_{G}^{G^{\prime}} \mid H \leq G^{\prime}\right\rangle .
$$

Then we get an induced natural map

$$
\alpha: \widetilde{A}\left(G, G^{\prime}\right) \longrightarrow\left\{B G, B G^{\prime}\right\}
$$

Theorem (Lewis-May-McClure, Carlsson). Let S be a finite p-group and G^{\prime} be a finite group. Then α induces an isomorphism

$$
\widetilde{A}\left(S, G^{\prime}\right)_{p}^{\wedge} \longrightarrow\left\{B S, B G^{\prime}\right\}
$$

where $(-)_{p}^{\wedge}=\mathbb{Z}_{p}^{\wedge} \otimes(-)$ is p-adic completion.
Again, G^{\prime} can be a compact Lie group.

Let $A_{p}\left(G, G^{\prime}\right)$ be the submodule of $A\left(G, G^{\prime}\right)$ generated by (G, G^{\prime})-bisets whose G-isotropy groups are p-groups. We have

$$
\left.A_{p}\left(G, G^{\prime}\right)=\left\langle[P, \varphi]_{G}^{G^{\prime}}\right| P \leq G p-\text { subgroup }\right\rangle .
$$

Theorem (KR). For finite groups G and G^{\prime}, α induces an isomorphism

$$
\tilde{A}_{p}\left(G, G^{\prime}\right)_{p}^{\wedge} \longrightarrow\left\{B G_{p}^{\wedge}, B G^{\prime}\right\}
$$

Again, G^{\prime} can be a compact Lie group.

Since

$$
\mathbb{B} G \simeq \bigvee_{p} \mathbb{B} G_{p}^{\wedge}
$$

we get the following consequence.
Corollary (KR). For finite groups G and G^{\prime}, α induces an isomorphism

$$
\bigoplus_{p} \widetilde{A}_{p}\left(G, G^{\prime}\right)_{p}^{\wedge} \rightarrow \bigoplus_{p}\left\{B G_{p}^{\wedge}, B G^{\prime}\right\} \cong\left\{B G, B G^{\prime}\right\} .
$$

This is arguably a simpler description of $\left\{B G, B G^{\prime}\right\}$ than the $I(G)$-adic completion.

The map in the statement is actually the p completion of the composite

$$
\tilde{A}_{p}\left(G, G^{\prime}\right) \xrightarrow{\alpha}\left\{B G, B G^{\prime}\right\} \xrightarrow{\iota_{p}^{*}}\left\{B G_{p}^{\wedge}, B G^{\prime}\right\},
$$

where

$$
\iota_{p}: \mathbb{B} G_{p}^{\wedge} \hookrightarrow \mathbb{B} G
$$

is the natural wedge-summand inclusion obtained from the natural splitting $\mathbb{B} G \simeq \bigvee_{q} \mathbb{B} G_{q}^{\wedge}$

Note that the target is p-complete since $\left\{B G_{p}^{\wedge}, B G^{\prime}\right\} \cong \bigoplus_{q}\left\{B G_{p}^{\wedge}, B G_{q}^{\prime \wedge}\right\} \cong\left\{B G_{p}^{\wedge}, B G_{p}^{\prime \wedge}\right\}$,

Pick a Sylow p-subgroup S of G.

Let R be the operation restricting (G, G^{\prime})bisets to (S, G^{\prime})-bisets. This is linear, and we have a homomorphism

$$
R: A\left(G, G^{\prime}\right) \longrightarrow A\left(S, G^{\prime}\right)
$$

$$
\Omega \mapsto \Omega \times_{G}[G]_{S}^{G}=\Omega \circ\left[S, \iota_{S}\right]_{S}^{G},
$$

where $[G]_{S}^{G}$ is G regarded as a (S, G)-biset.

Applying α we get the homomorphism

$$
\begin{gathered}
R:\left\{B G_{p}^{\wedge}, B G^{\prime}\right\} \longrightarrow\left\{B S, B G^{\prime}\right\}, \\
f \mapsto f \circ \mathbb{B} \iota_{S} .
\end{gathered}
$$

Let T be the operation inducing a (G, G^{\prime})biset from a (S, G^{\prime})-biset. This gives a homomorphism

$$
\begin{gathered}
T: A\left(S, G^{\prime}\right) \longrightarrow A\left(G, G^{\prime}\right), \\
\Omega \mapsto \Omega \times_{S}[G]_{G}^{S}=\Omega \circ[S, i d]_{G}^{S},
\end{gathered}
$$

where $[G]{ }_{G}^{S}$ is G regarded as a (G, S)-biset.
Applying α we get a homomorphism

$$
\begin{aligned}
T:\left\{B S, B G^{\prime}\right\} & \longrightarrow\left\{B G_{p}^{\wedge}, B G^{\prime}\right\}, \\
f & \mapsto f \circ \operatorname{tr}_{S}
\end{aligned}
$$

Since

$$
\mathbb{B} \iota_{S} \circ \operatorname{tr}_{S}: \mathbb{B} G_{p}^{\wedge} \rightarrow \mathbb{B} G_{p}^{\wedge}
$$

acts as multiplication by $|G / S|$ in $H^{*}\left(-; \mathbb{F}_{p}\right)$, it is a homotopy equivalence.

Therefore,

$$
T \circ R:\left\{B G_{p}^{\wedge}, B G^{\prime}\right\} \longrightarrow\left\{B G_{p}^{\wedge}, B G^{\prime}\right\}
$$

is an isomorphism.

We now have a (partial) commutative diagram:

$$
\begin{aligned}
& R \circ T\left(\widetilde{A}\left(S, G^{\prime}\right)_{p}^{\wedge}\right) \xrightarrow{\cong} R \circ T\left(\left\{B S, B G^{\prime}\right\}\right) \\
& R \hat{} \text { § } \\
& \text { R } \\
& T\left(\left\{B S, B G^{\prime}\right\}\right) \\
& \widetilde{A}_{p}\left(G, G^{\prime}\right)_{p}^{\wedge} \quad \alpha \longrightarrow\left\{B G_{p}^{\wedge}, B G^{\prime}\right\} .
\end{aligned}
$$

If we can show that R restricts to a map as indicated by the dashed arrow on the left side of the diagram, and that the restriction is an isomorphism, we can conclude that the bottom α in the diagram is an isomorphism, completing the proof.

We prove this "before taking quotients". That is, we show that R restricts to an isomorphism

$$
A_{p}\left(G, G^{\prime}\right)_{p}^{\wedge} \xlongequal{\cong} R \circ T\left(A\left(S, G^{\prime}\right)_{p}^{\wedge}\right)
$$

It is easy to check that the isomorphism "survives" to \widetilde{A}.
$A_{p}\left(G, G^{\prime}\right)_{p}^{\wedge}$ has basis

$$
\left\{\left[P_{i}, \varphi_{i}\right]_{G}^{G^{\prime}} \mid i \in J\right\}
$$

By Sylow's theorems (and since P_{i} is only determined up to conjugacy) we may assume that $P_{i} \leq S$. We can then consider

$$
C=\left\{\left[P_{i}, \varphi_{i}\right]_{S}^{G^{\prime}} \mid i \in J\right\}
$$

and

$$
M_{C}=\left\langle\left[P_{i}, \varphi_{i}\right]_{S}^{G^{\prime}} \mid i \in J\right\rangle \subset A_{p}\left(S, G^{\prime}\right)_{p}^{\wedge}
$$

Note that T maps $\left[P_{i}, \varphi_{i}\right]_{S}^{G^{\prime}}$ to $\left[P_{i}, \varphi_{i}\right]_{G}^{G^{\prime}}$. Therefore T maps the basis C of M_{C} to a basis of $A_{p}\left(G, G^{\prime}\right)_{p}^{\wedge}$, and we have an isomorphism

$$
T: M_{C} \longrightarrow A_{p}\left(G, G^{\prime}\right)_{p}^{\wedge}
$$

As illustrated on the diagram on the next page, we can conclude that R induces a map

$$
R: A_{p}\left(G, G^{\prime}\right)_{p}^{\wedge} \longrightarrow R \circ T\left(A_{p}\left(S, G^{\prime}\right)_{p}^{\wedge}\right)
$$

Consider the diagram:

We are trying to show that the map R represented by the dashed arrow (which we now see does exist) is an isomorphism. Looking at the diagram we see that it suffices to show that the maps $R \circ T$ and ι are isomorphisms.

$R \circ T$ is an isomorphism:

We say $[Q, \psi]_{S}^{G^{\prime}} \precsim[P, \varphi]_{S}^{G^{\prime}}$ if there exist $g \in G$ and $g^{\prime} \in G^{\prime}$ making the following diagram commute:

This is a transitive relation.

Say $[Q, \psi]_{S}^{G^{\prime}} \sim[P, \varphi]_{S}^{G^{\prime}}$ if

$$
[Q, \psi]_{S}^{G^{\prime}} \precsim[P, \varphi]_{S}^{G^{\prime}} \text { and }[P, \varphi]_{S}^{G^{\prime}} \precsim[Q, \psi]_{S}^{G^{\prime}} .
$$

This is an equivalence relation, and C is a set of representatives for equivalence classes.

Say $[Q, \psi]_{S}^{G^{\prime}} \nprec[P, \varphi]_{S}^{G^{\prime}}$ if
$[Q, \psi]_{S}^{G^{\prime}} \precsim[P, \varphi]_{S}^{G^{\prime}}$ but not $[P, \varphi]_{S}^{G^{\prime}} \sim[Q, \psi]_{S}^{G^{\prime}}$.

The subconjugacy relation gives us two filtrations of $A_{p}\left(S, G^{\prime}\right)_{p}^{\wedge}$ as follows.

Put

$$
M(\precsim[P, \varphi])=\langle[Q, \psi] \precsim[P, \varphi]\rangle,
$$

and

$$
M(\precsim[P, \varphi])=\langle[Q, \psi] \npreceq[P, \varphi]\rangle .
$$

Lemma. $R \circ T$ preserves these filtrations. That is

$$
R \circ T(M(\precsim[P, \varphi])) \subset M(\precsim[P, \varphi])
$$

and

$$
R \circ T(M(\prec \prec[P, \varphi])) \subset M(\npreceq \nsim P, \varphi]) .
$$

Proof. Have

$$
R \circ T\left([Q, \psi]_{S}^{G^{\prime}}\right)=[Q, \psi]_{S}^{G^{\prime}} \circ[S, i d]_{G}^{S} \circ\left[S, \iota_{S}\right]_{S}^{G} .
$$

Use double coset formula.

Lemma. $R \circ T$ preserves stratification. That is

$$
R \circ T([P, \varphi]) \in M(\precsim[P, \varphi]) \backslash M(\precsim[P, \varphi]) .
$$

Proof.

$$
\epsilon(R \circ T([P, \varphi]))=\epsilon([P, \varphi]) \cdot \epsilon\left([G]_{S}^{S}\right)=\frac{|G|}{|S|} \cdot \epsilon([P, \varphi]),
$$

but

$$
\epsilon(M(\precsim[P, \varphi]))=p \cdot \epsilon([P, \varphi]) \mathbb{Z},
$$

and $p \nmid \frac{|G|}{|S|}$.

We can now regard $R \circ T$ as an upper triangular matrix with nonzero entries on the diagonal on M_{C}. Hence we get an isomorphism

$$
R \circ T: M_{C} \longrightarrow R \circ T\left(M_{C}\right) .
$$

ι is iso: Suffices to show surjectivity.
Every basis element $[P, \varphi]_{S}^{G^{\prime}}$ of $A_{p}\left(S, G^{\prime}\right)_{p}^{\wedge}$ is $\left(G, G^{\prime}\right)$-conjugate to some $\left[P_{i}, \varphi_{i}\right]_{S}^{G^{\prime}} \in C$.

Now
$T\left([P, \varphi]_{S}^{G^{\prime}}\right)=[P, \varphi]_{G}^{G^{\prime}}=\left[P_{i}, \varphi_{i}\right]_{G}^{G^{\prime}}=T\left(\left[P_{i}, \varphi_{i}\right]_{S}^{G^{\prime}}\right)$,
so

$$
R \circ T\left([P, \varphi]_{S}^{G^{\prime}}\right)=R \circ T\left(\left[P_{i}, \varphi_{i}\right]_{S}^{G^{\prime}}\right) .
$$

This completes the proof.

