Historical note: Let G be a finite group.

Atiyah (ca. 1960): There is an isomorphism

R(G)) — KU(BG),

where R(G) is the complex representation ring
and I is the kernel of the augmentation

R(G) = Z, V —dim(V).

Segal conjectured that the analogous result
holds for stable cohomotopy.

Segal conjecture (weak form): There is an
iIsomorphism

A(Q)} — 73(BGL) = {BG,,S°},

where A(G) is the Burnside ring of finite G-
sets, and I is the kernel of the augmentation

AG) — Z, X —|X|.



Lin: Proved conjecture for G = 7Z/2.
Gunawardena: G = Z/p, p odd prime.
Ravenel: General finite cyclic groups.
Carlsson: Elementary abelian 2-groups.
Adams-Gunawardena-Miller:

Odd elementary abelian groups.
May-McClure: Reduce question to finite
p-groups.

Carlsson: Uses A-G-M result and induction to
prove p-group case.

Lewis-May-McClure: extended result to maps
between classifying spaces. That is, replace S0
by BG'.



“‘Double Burnside modules”

Mor(G,G") := Set of isomorphism classes of
finite sets with right G-action and free left G'-
action such that the actions commute.

Mor(G, G") is a monoid under disjoint union.

A(G, G") := Grothendieck group completion of
Mor(G, Q).



A(G,G") is a free module with one basis ele-
ment [H, go]g' for each conjugacy class of pairs
(H,p), where H <G, o: H— G

Conjugacy is taken in both source and tar-

get. That is (Hq1,¢1) ~ (H»p, o) if and only
if 3g € G, ¢’ € G’ s.t.
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The basis element [H, go]g/ corresponds to the
biset

G x G'/ A%,
where
AY = {(h,o(h) | h € H},
and actions are given by

for a,z € G and b,y € G’.



The modules A(G,G") form the morphism sets
in @ pre-additive category A, whose objects are
the finite groups, and where composition is
given by

A(G/a G”) X A(G7 G,) - A(G7 G”)a

(D)= Qo =0 xu Q.

T his can be described on basis elements by the
double coset formula:

1! /
[Hla @l]g/ © [Ha Sp]g
G//

— > [(p—l (gp(H)ﬂH/aj),go/ocxocp]G :
ceH\G'/¢(H)

In particular, A(G,G) is a ring, called the
double Burnside ring of G.



There is also a pairing
A(G,1) x A(G,G) — A(G, &)

(X, Q)= X -Q:=XxQ

where G acts via the diagonal, and G’ acts on
the second coordinate.

This makes A(G) = A(G, 1) into a ring, called
the Burnside ring of G, which acts on A(G,G").



We have an “augmentation functor”
e A—17
defined on (G, G')-bisets by
e(2) = |2/G.

Functoriality means composition is sent to
multiplication.

Note that

/ G x G’ p
) = |(G) e

= |G/H|.

On A(G), this gives the augmentation. We let
I(G) be the augmentation ideal

I(G) =ker(e: A(G) - 7Z,X — | X]).



We are interested in the functor

o . A— Spectra

acting on objects by

G — BG,

where
BG = Z>°(BGy) ~X*BGVSP,

and acting on morphisms by

/
[H, ]G — By otry,

B
BG, —L BH, —F BG/ .



Lewis-May-McClure showed that the following
IS @ consequence of Carlsson’s proof of the Se-

gal conjecture.
Theorem (Segal conjecture). a induces an iso-

morphism

A(G,G"} — {BG4,BG', },

where I = I(G) is the augmentation ideal of
the Burnside ring A(G).

With the appropriate definition of A(G,G’), we
can let G’ be a compact Lie group.



The I(G)-adic completion can be difficult to
calculate. However, in the special case where
G is a p-group, May-McMclure noticed that the
I(G)-adic topology coincides with the p-adic
topology, at least after removing basepoints.

Recall that ¥ BG' ~ Z*°BG' v SO. We have

{BG, BG'} 2 {BGy,BG'}/{BG4,S%}.
Put
A(G, @) = A(G,G)/([H, triv]G | H < G').
Then we get an induced natural map
o A(G,G" — {BG, BG'}.

Theorem (Lewis-May-McClure,Carlsson). Let
S be a finite p-group and G’ be a finite group.
Then o induces an isomorphism

A(S,G"),, — {BS, BG'},

where (=);, = Zy ® (—) Is p-adic completion.

Again, G’ can be a compact Lie group.



Let A,(G,G’) be the submodule of A(G,G’)
generated by (G,G')-bisets whose G-isotropy
groups are p-groups. We have

Ap(G, G = ([P, go]g/ | P < G p—subgroup).

Theorem (KR). For finite groups G and G/, «
induces an isomorphism

Ap(G,G")) — {BG}), BG'}.

Again, G’ can be a compact Lie group.



Since
BG ~ \/BGY,
p
we get the following consequence.

Corollary (KR). For finite groups G and G/, «
induces an isomorphism

P Ap(G, G, — P{BG), BG'} = {BG, BG'}.
p p

This is arguably a simpler description of
{BG, BG'} than the I(G)-adic completion.



The map in the statement is actually the p-
completion of the composite

*

Ap(G,G") % {BG, BG'} % {BG), BG'},
where
p: BG), — BG

iIs the natural wedge-summand inclusion ob-
tained from the natural splitting BG ~ \ BG}
q

Note that the target is p-complete since

~ Ny ~ AN
{BGp,BG'} 2 (P{BG,,BG,} = {BG,), BG',},
q



Pick a Sylow p-subgroup S of G.

Let R be the operation restricting (G,G’)-
bisets to (S, G’)-bisets. This is linear, and we
have a homomorphism

R:A(G,G) — A(S,G),
Q- Qxa[Gl§ =Q0[S,5]4,

where [G]§ is G regarded as a (S, G)-biset.

Applying o« we get the homomorphism

R:{BG),BG'} — {BS, BG'},

fr— folBeg.



Let T be the operation inducing a (G,G’)-
biset from a (S, G')-biset. This gives a homo-
morphism

T:A(S,G) — A(G, G,

Q- Qxg G = QolS,idg,
where [G]g is G regarded as a (G, S)-biset.

Applying o« we get a homomorphism

T : {BS,BG'} — {BG,,BG'},

f|—>fot7°5.



Since
B.g o trg : BG, — BG),
acts as multiplication by |G/S| in H*(—;Fp), it
IS @ homotopy equivalence.
T herefore,
ToR:{BG,),BG'} — {BG,,BG"}

IS an isomorphism.



We now have a (partial) commutative diagram:

RoT(A(S,GN)) &~ RoT({BS, BG'})
f R|=

R! T({BS,BG'})
: T_

Ap(G,G"),) o {BG),BG'}.

If we can show that R restricts to a map as
indicated by the dashed arrow on the left side
of the diagram, and that the restriction is an
isomorphism, we can conclude that the bottom
a in the diagram is an isomorphism, completing
the proof.

We prove this “before taking quotients”. That
IS, we show that R restricts to an isomorphism

Ap(G, G = RoT(A(S,G")))

It is easy to check that the isomorphism ‘sur-
vives” to A.



Ap(G, G’)g has basis

([P, 0] | i€ J}.

By Sylow’s theorems (and since P; is only de-
termined up to conjugacy) we may assume
that P, < S. We can then consider

/ .
C={[P;, 0] |iecJ}

and

. N\
Mg = ([P, @il§ | i€ J) C Ap(S, G,



Note that T maps [P}, »;]§ to [P, ¢;]& . There-
fore T' maps the basis C of Mo to a basis of

Ap(G, G’);\, and we have an isomorphism

T : Mc — Ap(G,G"),).

As illustrated on the diagram on the next page,
we can conclude that R induces a map

R: Ap(G,GN" — RoT(A,(S,GHM).
p p p p



Consider the diagram:

McH LR o T(Mg)—+—Ro T(A(S,G")})

LR

Ap(G, ")

We are trying to show that the map R repre-
sented by the dashed arrow (which we now see
does exist) is an isomorphism. Looking at the
diagram we see that it suffices to show that
the maps RoT' and ¢ are isomorphisms.



RoT iIs an isomorphism:

We say [Q,¢]G 3 [P,¢l§ if there exist g€ G
and ¢’ € G’ making the following diagram com-
mute:

Q L »(Q)

ol
P = o(P).
This is a transitive relation.

Say [Q,¢]G ~ [P,¢l§ if

[Q, ]G [P, ¢lG and [P,¢lG 2 [Q,]§ .

This is an equivalence relation, and C' is a set
of representatives for equivalence classes.

Say [Q,¢]S 3 [P,¢)G if

[Q, 1§ 2 [P, ¢lg but not [P,lg ~ [Q,v]F.



The subconjugacy relation gives us two filtra-
tions of A,(S, G/)z/?\ as follows.

Put

M3 [P, o)) = ([Q, ¢] Z [P, ],

and

M3 [P, e]) = (Q,¢] 3 [P, 0]).



Lemma. Ro1T preserves these filtrations. That
IS
RoT(M(Z [P,wl)) C M(Z [P, ¢])

and

RoT(M(Z [P, ¢])) C M(Z [P ¢]).

Proof. Have

RoT([Q,¢]§) = [Q,¥]S o [S,id]2 o [S,:5]F.

Use double coset formula. [ ]



Lemma. RoT preserves stratification. That is

RoT([P,¢]) € M(Z [P e]) \ M(Z [P, ¢]).

Proof.
e(RoT([P, ¢])) = e([P, ¢])-e([G]2) = %-e([}% ©l),
but

e(M(Z [P, ¢])) = p-e(lP, 0])Z,

G
and p)(k?ﬂ H



We can now regard Ro1 as an upper triangular
matrix with nonzero entries on the diagonal on
Mqs. Hence we get an isomorphism

RoT : My — RoT(Mgp).



¢ 1S 1S0: Suffices to show surjectivity.

Every basis element [P, go]g/ of Ap(S, G’)Z/)\ is
(G, G")-conjugate to some [Pi,goi]g/ cC.

Now

T([P,0lS) = [P, ¢l& = [P, ¢S = T([P;, ¢S,

SO

RoT([P,¢lS) = RoT([P;, 9i]%).

T his completes the proof.



