
Historical note: Let G be a finite group.

Atiyah (ca. 1960): There is an isomorphism

R(G)∧I −→ KU(BG),

where R(G) is the complex representation ring

and I is the kernel of the augmentation

R(G) → Z, V 7→ dim(V ).

Segal conjectured that the analogous result

holds for stable cohomotopy.

Segal conjecture (weak form): There is an

isomorphism

A(G)∧I −→ π0
S(BG+) := {BG+, S0},

where A(G) is the Burnside ring of finite G-

sets, and I is the kernel of the augmentation

A(G) → Z, X 7→ |X|.



Lin: Proved conjecture for G = Z/2.

Gunawardena: G = Z/p, p odd prime.

Ravenel: General finite cyclic groups.

Carlsson: Elementary abelian 2-groups.

Adams-Gunawardena-Miller:

Odd elementary abelian groups.

May-McClure: Reduce question to finite

p-groups.

Carlsson: Uses A-G-M result and induction to

prove p-group case.

Lewis-May-McClure: extended result to maps

between classifying spaces. That is, replace S0

by BG′.



“Double Burnside modules”

Mor(G, G′) := Set of isomorphism classes of

finite sets with right G-action and free left G′-
action such that the actions commute.

Mor(G, G′) is a monoid under disjoint union.

A(G, G′) := Grothendieck group completion of

Mor(G, G′).



A(G, G′) is a free module with one basis ele-

ment [H, ϕ]G
′

G for each conjugacy class of pairs

(H, ϕ), where H ≤ G, ϕ: H → G′.

Conjugacy is taken in both source and tar-

get. That is (H1, ϕ1) ∼ (H2, ϕ2) if and only

if ∃g ∈ G, ∃g′ ∈ G′ s.t.

H1
ϕ1−−→ ϕ1(H1)

∼=
ycg ∼=

ycg′

H2
ϕ2−−→ ϕ2(H2).



The basis element [H, ϕ]G
′

G corresponds to the

biset

G×G′/∆ϕ
H ,

where

∆ϕ
H = {(h, ϕ(h) | h ∈ H},

and actions are given by

b(x, y)a = (a−1x, by),

for a, x ∈ G and b, y ∈ G′.



The modules A(G, G′) form the morphism sets

in a pre-additive category A, whose objects are

the finite groups, and where composition is

given by

A(G′, G′′)×A(G, G′) −→ A(G, G′′),

(Ω′,Ω) 7→ Ω′ ◦Ω := Ω′ ×G′ Ω.

This can be described on basis elements by the

double coset formula:

[H ′, ϕ′]G
′′

G′ ◦ [H, ϕ]G
′

G

=
∑

x∈H ′\G′/ϕ(H)

[
ϕ−1

(
ϕ (H) ∩H ′x)

, ϕ′ ◦ cx ◦ ϕ
]G′′
G

.

In particular, A(G, G) is a ring, called the

double Burnside ring of G.



There is also a pairing

A(G,1)×A(G, G′) −→ A(G, G′)

(X,Ω) 7→ X ·Ω := X ×Ω

where G acts via the diagonal, and G′ acts on

the second coordinate.

This makes A(G) = A(G,1) into a ring, called

the Burnside ring of G, which acts on A(G, G′).



We have an “augmentation functor”

ε : A −→ Z

defined on (G, G′)-bisets by

ε(Ω) = |Ω/G′|.
Functoriality means composition is sent to

multiplication.

Note that

ε([H, ϕ]G
′

G ) =

∣∣∣∣∣

(
G×G′

∆ϕ
H

)
/G′

∣∣∣∣∣ = |G/H|.

On A(G), this gives the augmentation. We let

I(G) be the augmentation ideal

I(G) = ker(ε : A(G) → Z, X 7→ |X|).



We are interested in the functor

α : A −→ Spectra

acting on objects by

G 7→ BG+,

where

BG+ := Σ∞(BG+) ' Σ∞BG ∨ S0,

and acting on morphisms by

[H, ϕ]G
′

G 7→ Bϕ+ ◦ trH ,

BG+
trH−−→ BH+

Bϕ+−−−→ BG′+.



Lewis-May-McClure showed that the following

is a consequence of Carlsson’s proof of the Se-

gal conjecture.

Theorem (Segal conjecture). α induces an iso-

morphism

A(G, G′)∧I −→ {BG+, BG′+},
where I = I(G) is the augmentation ideal of

the Burnside ring A(G).

With the appropriate definition of A(G, G′), we

can let G′ be a compact Lie group.



The I(G)-adic completion can be difficult to
calculate. However, in the special case where
G is a p-group, May-McMclure noticed that the
I(G)-adic topology coincides with the p-adic
topology, at least after removing basepoints.

Recall that Σ∞
+BG′ ' Σ∞BG′ ∨ S0. We have

{BG, BG′} ∼= {BG+, BG′+}/{BG+, S0}.
Put

Ã(G, G′) := A(G, G′)/〈[H, triv]G
′

G | H ≤ G′〉.
Then we get an induced natural map

α : Ã(G, G′) −→ {BG, BG′}.
Theorem (Lewis-May-McClure,Carlsson). Let
S be a finite p-group and G′ be a finite group.
Then α induces an isomorphism

Ã(S, G′)∧p −→ {BS, BG′},
where (−)∧p = Z∧p ⊗ (−) is p-adic completion.

Again, G′ can be a compact Lie group.



Let Ap(G, G′) be the submodule of A(G, G′)
generated by (G, G′)-bisets whose G-isotropy

groups are p-groups. We have

Ap(G, G′) = 〈[P, ϕ]G
′

G | P ≤ G p− subgroup〉.
Theorem (KR). For finite groups G and G′, α

induces an isomorphism

Ãp(G, G′)∧p −→ {BG∧p , BG′}.

Again, G′ can be a compact Lie group.



Since

BG '
∨
p
BG∧p ,

we get the following consequence.

Corollary (KR). For finite groups G and G′, α

induces an isomorphism
⊕
p

Ãp(G, G′)∧p →
⊕
p
{BG∧p , BG′} ∼= {BG, BG′}.

This is arguably a simpler description of

{BG, BG′} than the I(G)-adic completion.



The map in the statement is actually the p-

completion of the composite

Ãp(G, G′) α−→ {BG, BG′} ι∗p−→ {BG∧p , BG′},
where

ιp : BG∧p ↪→ BG

is the natural wedge-summand inclusion ob-

tained from the natural splitting BG ' ∨
q
BG∧q

Note that the target is p-complete since

{BG∧p , BG′} ∼=
⊕
q
{BG∧p , BG′∧q } ∼= {BG∧p , BG′∧p },



Pick a Sylow p-subgroup S of G.

Let R be the operation restricting (G, G′)-
bisets to (S, G′)-bisets. This is linear, and we

have a homomorphism

R : A(G, G′) −→ A(S, G′),

Ω 7→ Ω×G [G]GS = Ω ◦ [S, ιS]GS ,

where [G]GS is G regarded as a (S, G)-biset.

Applying α we get the homomorphism

R : {BG∧p , BG′} −→ {BS, BG′},

f 7→ f ◦ BιS.



Let T be the operation inducing a (G, G′)-
biset from a (S, G′)-biset. This gives a homo-

morphism

T : A(S, G′) −→ A(G, G′),

Ω 7→ Ω×S [G]SG = Ω ◦ [S, id]SG,

where [G]SG is G regarded as a (G, S)-biset.

Applying α we get a homomorphism

T : {BS, BG′} −→ {BG∧p , BG′},

f 7→ f ◦ trS.



Since

BιS ◦ trS : BG∧p → BG∧p
acts as multiplication by |G/S| in H∗(−;Fp), it

is a homotopy equivalence.

Therefore,

T ◦R : {BG∧p , BG′} −→ {BG∧p , BG′}
is an isomorphism.



We now have a (partial) commutative diagram:

R ◦ T (Ã(S, G′)∧p ) α∼=
// R ◦ T ({BS, BG′})

T ({BS, BG′})
R ∼=

OO

Ãp(G, G′)∧p
α //

R

OOÂ
Â
Â
Â
Â
Â
Â
Â

{BG∧p , BG′}.
=

OO

If we can show that R restricts to a map as

indicated by the dashed arrow on the left side

of the diagram, and that the restriction is an

isomorphism, we can conclude that the bottom

α in the diagram is an isomorphism, completing

the proof.

We prove this “before taking quotients”. That

is, we show that R restricts to an isomorphism

Ap(G, G′)∧p
∼=−→ R ◦ T (A(S, G′)∧p )

It is easy to check that the isomorphism “sur-

vives” to Ã.



Ap(G, G′)∧p has basis

{[Pi, ϕi]
G′
G | i ∈ J}.

By Sylow’s theorems (and since Pi is only de-

termined up to conjugacy) we may assume

that Pi ≤ S. We can then consider

C = {[Pi, ϕi]
G′
S | i ∈ J}

and

MC = 〈[Pi, ϕi]
G′
S | i ∈ J〉 ⊂ Ap(S, G′)∧p .



Note that T maps [Pi, ϕi]
G′
S to [Pi, ϕi]

G′
G . There-

fore T maps the basis C of MC to a basis of

Ap(G, G′)∧p , and we have an isomorphism

T : MC −→ Ap(G, G′)∧p .

As illustrated on the diagram on the next page,

we can conclude that R induces a map

R : Ap(G, G′)∧p −→ R ◦ T (Ap(S, G′)∧p ).



Consider the diagram:

MC
R◦T //

T∼=
$$IIIIIIIIIIIIIIIIIIIII

R ◦ T (MC) // ι // R ◦ T (A(S, G′)∧p )

Ap(G, G′)∧p

R

OO

R
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We are trying to show that the map R repre-

sented by the dashed arrow (which we now see

does exist) is an isomorphism. Looking at the

diagram we see that it suffices to show that

the maps R ◦ T and ι are isomorphisms.



R ◦ T is an isomorphism:

We say [Q, ψ]G
′

S - [P, ϕ]G
′

S if there exist g ∈ G

and g′ ∈ G′ making the following diagram com-

mute:

Q
ψ−→ ψ(Q)ycg

ycg′

P
ϕ−→ ϕ(P ).

This is a transitive relation.

Say [Q, ψ]G
′

S ∼ [P, ϕ]G
′

S if

[Q, ψ]G
′

S - [P, ϕ]G
′

S and [P, ϕ]G
′

S - [Q, ψ]G
′

S .

This is an equivalence relation, and C is a set

of representatives for equivalence classes.

Say [Q, ψ]G
′

S � [P, ϕ]G
′

S if

[Q, ψ]G
′

S - [P, ϕ]G
′

S but not [P, ϕ]G
′

S ∼ [Q, ψ]G
′

S .



The subconjugacy relation gives us two filtra-

tions of Ap(S, G′)∧p as follows.

Put

M(- [P, ϕ]) = 〈[Q, ψ] - [P, ϕ]〉,
and

M(� [P, ϕ]) = 〈[Q, ψ] � [P, ϕ]〉.



Lemma. R◦T preserves these filtrations. That

is

R ◦ T (M(- [P, ϕ])) ⊂ M(- [P, ϕ])

and

R ◦ T (M(� [P, ϕ])) ⊂ M(� [P, ϕ]).

Proof. Have

R ◦ T ([Q, ψ]G
′

S ) = [Q, ψ]G
′

S ◦ [S, id]SG ◦ [S, ιS]GS .

Use double coset formula.



Lemma. R◦T preserves stratification. That is

R ◦ T ([P, ϕ]) ∈ M(- [P, ϕ]) \M(� [P, ϕ]).

Proof.

ε(R◦T ([P, ϕ])) = ε([P, ϕ])·ε([G]SS) =
|G|
|S| ·ε([P, ϕ]),

but

ε(M(� [P, ϕ])) = p · ε([P, ϕ])Z,

and p - |G||S| .



We can now regard R◦T as an upper triangular

matrix with nonzero entries on the diagonal on

MC. Hence we get an isomorphism

R ◦ T : MC −→ R ◦ T (MC).



ι is iso: Suffices to show surjectivity.

Every basis element [P, ϕ]G
′

S of Ap(S, G′)∧p is

(G, G′)-conjugate to some [Pi, ϕi]
G′
S ∈ C.

Now

T ([P, ϕ]G
′

S ) = [P, ϕ]G
′

G = [Pi, ϕi]
G′
G = T ([Pi, ϕi]

G′
S ),

so

R ◦ T ([P, ϕ]G
′

S ) = R ◦ T ([Pi, ϕi]
G′
S ).

This completes the proof.


