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TueoReM. If a linear operator preserves the L? norm of the characteristic
function of every interval on R, then it is a real isometry on L¥R). A counter-
example shows that R may not be replaced by R?in the theorem. Other counter-
examples show that if we replace “preserves’ by “decreases” in the hypothesis
of the theorem, then T may fail to be bounded.

1. INTRODUCTION

i A major tool for studying bounded linear operators on L¥R") is the Fourier
ansform. In case an operator does not commute with translations, however,
"‘h?r methods are often needed. The characterization we give here provides
¥ interesting and practical alternative method which treats operators that do
ot ne?essarily commute with translations, We must pay for this gain in
¥enerality —our linear operator T must be an isometry.

. meTmN' A linear map T: Re L¥(R", du) — # (S is a complex Hilbert
Re Lo . isometry provided || Tf | = || fll, = (fun /) du(®))V for all f in
“opol R", dy). Thus, T is a distance-preserving map in the sense of point set
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418 ASH, ASH AND OGDEN

The main result of this paper, in essence, is the following characterization:

If a linear operator preserves the L2 norm of the characteristic
function of every interval of the real line R, then it is an isometry
on L(R). (For a more precise statement see Theorem 1.)

Many plausible generalizations of this result fail to be true. The first surprise
is that we cannot replace the line by the plane (where interval means rectangle
with sides parallel to the axes). For this, see Section 3, Counterexample |
which depends on this simple but little known geometric fact:

If a rectangle is divided into four disjoint subrectangles by two
perpendicular lines parallel to its sides, then the product of the areas
of one pair of opposite subrectangles is equal to the product of the
other two areas.

If we attempt to extend the characterization from isometries to bounded
operators, the following generalization springs to mind: If a linear operator
shrinks the L2 norm of the characteristic function of every interval of the real
line R, then it is a contraction on L2(R); but this fails to be true. Counterexample
2 of Section 3 is an unbounded linear operator satisfying the hypothesis of this
proposed generalization. There is already known an unbounded linear operator
which shrinks the norm of the characteristic function of every measurable set
and thus is of restricted type (2, 2). Stein and Weiss introduced this example
in [6, pp. 283-284} to distinguish bounded maps from L? to L? from maps of

restricted type (p, ¢). Counterexample 2 is of independent interest because itis

a convolution operator.

Theorem 3, although only a special case of Theorem 1, has an entirely diffe;rent .
proof which is of independent interest. (It preceeded the more functional |

analytic Theorem 1.) One tool it uses is this interesting formula for C,' functions:

[ rwd=—2 " [7 1t—s1 7 f@ dsdt  (Theorem 2, Scction:

. L oo i vals 1s
Not every extension of the characterization fails; if the class of intervals &

. . {zation
extended to include certain extra sets, a useful form of the characterizatl

for Re L¥R?) is obtained (Theorem 4, Section 3). This can be used to give ver:
fast proofs of some well-known facts about tensor products of isometries (see [3J)'

Finally, the characterization is applied to produce new proofs that the Fourte!
and Hilbert transforms are unitary on L{(R"). (A related proof t )
transform is unitary uses Bochner’s characterization of operators un

LR, dx) [5, pp. 291-295].) Thus, one can show that the Hilbert trans

unitary without using Fourier transform techniques.

tary on

hat the Fourier '
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Another application, which we give elsewhere [1, 2], is that convolution with

sgn x
‘ x ‘H—z’v

5 R (x) = [?yl’ tanh (’;l)]_l/z

is a unitary operator. The kernels %, were studied by Muckenhoupt [4]. As
y=0, k, x f converges to the Hilbert transform in L?, 1 < p < o0, but not
pointwise a.e. [1]. This is connected with the unboundedness of the associated
maximal operator, a fact closely related to Counterexample 2.

2. Basic REsuLTs

We caution the reader that an isometry T: Re L{R?, du) — # in our sense
may not remain an isometry when T is extended in the obvious manner to
complex-valued functions. In fact, it may ot even be true that (Tf, Tg) =
I (fg) = fkn f(x) g(x) du(x) for real-valued f and g, where the inner product

on the left-hand side is that of . On the other hand, (f, &) = Re(Tf, Tg)

follows immediately from the polarization identity.

. THEOREM 1. A linear transformation that preserves L? norm for the character-
. Btic function of each interval is an isometry on L¥(R).

More precisely, suppose w is a Borel measure on the reals which is finite on
' d intervals. Let SF be the space of real-valued step functions based on
mervals. If T is a linear map defined on SF with values in some complex Hilbert
Pace K which ;s norm-preserving on characteristic functions of intervals (i.e.,
- Tu ”.8 = 2. D x(t)? du(t) = u(l) for all intervals I), then T extends uniquely
o an isometry from Re LA(R, dy) to #.

froof. We present the proof when du is Lebesgue measure dx, since this
"¢ has more intuitive appeal. There are only two trivial changes in the proof
Fthe general case: First, an interval must be defined as a bounded nonempty
. %nvex subset of R (e.g., 2 point is then an interval), and second, additivity of
Beasure  mygt replace arguments such as (c —&) + (b —a) =c¢—a (cf.
23)).
inlﬁl:;r COmbi{laﬁoﬂS of the characteristic functions of intervals are d'ense
Pl flx) _(R)’mso 1t suffices to prove that T preserves norm for.such fl{nctloni.
with di; 2 L ai)(.i(x)’ where the ; are the characteristic functions of intervals
Sjoint interiors, then

form if .

[fIE = Z a? | x:|?
"‘09/60[2-9
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- )

and by three applications of the hypothesis and two applications of the preceding
, ase. Thus, we have
e (Y aTy.. S aTy;) =3 2Ty, , Tx) + Y aaTy;, Tx;
WTfIE = (E_la'TX’ , Zl a,TxJ) Zl a*(Tx:» Tx:) ; a;a(Tx;, Ty;) d—a=d—a~+2Re(Tx,, Tx,, so Re(Ty;, Ty, =0,
(2.H

d i f (2.2).
=Y a2 Tul® +2 ¥, aa Re(Ty,, T onpltng the proof of (2.2). 1
= < Remarks. Some special cases of this theorem occur when the space on which

By hypothesis, || x; || = |! Tx; Il, so it will suffice to show ' the operators act is: (1) Re L3(R)—this is what we proved above (du = dx);
i ' ‘ () ReL? of the circle (du = dx/2n on [0, 2)); (3) the sequence space Re I2

Re(Ty;, Tx,) = 0 for nonoverlapping intervals I and J. (22) - {d = unit mass at each integer); and (4) finite (d, say)-dimensional Euclidean
i space (du = unit mass at the points 1, 2,..., d).

First, consider the adjacent case: x; = Xfa.5) » X2 = Xiv.c) - Then we have * Theorem 1 works because the “test” family of characteristic functions of
’ ’ ' _intervals (we can reduce the family to the countable subfamily of intervals
(Txs» Tx)) = Gt x1) =i 2 =6 — a, (Txs, Txy) =c—b  vith rational endpoints) is sufficiently rich to determine the measure structure.
Yo complete orthonormal family is so rich: In fact, if {¢;} is such a family, set
and T¢y=¢,forallj. Then | T¢;|| = ||, || = 1 = || ¢, | for allj, but T'is certainly
10t an isometry.
(TGer + xa) Tt + x2)) = (Txs + Txs s Txr + Txa) | We now proceed to the case of an integral transform. We start with a needed
= (Txs, Txs) + (Tx1» Txi) + 2 Re(Txr, Txs) 29 preliminary.
— (c— — T ' .
= (c —b) + (b — a) + 2 Re(Tx;, Txy) THEOREM 2. Suppose f: R— R, fe Cyl—the compactly supported continuously

= (c — a) + 2 Re(Txs, Txs)- | Uifferentiable real-valued Sfunctions. Then

But x; - x; is the characteristic function of the interval [a, ¢), so

fIE = — % f_w f_‘” [t — s|f(s)f(2)ds dt. 2.4)
1T+ x)E=lxi +xs12=¢c—a

Proof. Since the iterated integral may be considered as a double integral

%et R? by Fubini’s theorem and since the integrand is then symmetric in

Combining this with (2.3), we see Re(Ty;, Tx;) = 0. generalts s

Next, suppose the supports of y; and x, do not abut. Without los§ of et

SUPPOSE X; = X[a.0) » X7 = Xle.a) » Where @ <b < ¢ < d. The trick is to 10 1
. . . L. . . h ©  am © t , ,

the intermediate characteristic function, xp, ) - We have -3 J‘_ J* [t — 5| f) f(0) ds dt — " f (s — ) 1) F(t) ds at.

| Txta,a I* = Il Xta,0 I? = d — @, .
but Negrating the inner integral by parts,

I Txte.or 1P = Il Txta,0 + Txtv.00 + Ttte.ar I }4 =016 ds=(G—056)| — [ fo)ds=— " fe) ds = —F(t).
— (Txte + Txv.0 + Txte.a) » Txtanr + Titto.0 + Tx1e0) - )f6) Lo f_m f_w

= | Txta I + Il Txto,00 I? + 1 Txte,ar I?
’ + 2 Re(Tx1a,0) » Txto.0)) + 2 Re(Tx1a,0) » TX[‘-"))

+ 2 Re(Tx1,0) » TXle.a)) 0
—(b—a)+(c — b+ (d — ) + 0 + 2 Re(Txr, Tx) +7

Thus, the iterated integral is equal to

_ f; &) FQ) dt.
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If we integrate this by parts, we get

~fOF0|” = [ foF@Qa=[" fora=ie )

Theorem 2 admits a generalization containing both Theorem 2 and a similar
result for step functions as special cases. See [2] or [3] for details.

Although the following theorem is a special case of Theorem I, the proof
uses Theorem 2 and may be of independent interest.

THeOREM 3. Let T be an integral transform defined by

Tf(x) = pov. | : k(x, 1) f(t) dt = lim fi LCRIOE

Jor f€ CY(R), where k is a complex-valued function, jointly measurable in x and !
If k satisfies the condition

[ i [

lr—ul>e

2
k(x,u)du} de = |t — 5| for all s ¢,

then T extends uniguely to an isometry from Re LX(R, dx) to L¥(R, dx). A\""f’

that (2.5) means essentially that T preserves the L® norm of the characteristic

Sfunction of each interval.

Proof. Since Cyl is a dense subset of Re L?, it suffices to prove | Tf!! = /
for fe Cil. Define K(x, t) = p.v. ff) k(x, u) du, and observe that (2.5) may be
rewritten
5, 1. (28

"” | K(x, t) — K(x, s)|2dx = [t — 5| for all

Fix x and write K(x, t) = K(z). If we integrate the defining equation for Tfw
by parts and observe that f has compact support, we get

Tf(x) = — [ K@ f@) .
Taking complex conjugates,

7 ~ — [ KOG ds

(23)
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Multiplying these last two equations we get

¥

1Tf@F ~ [ Kf@a | KO a

Putting s = 0 into (2.6) shows that K is locally square integrable, thus
lwcally integrable, so we may change the order of integration to get

171@E = [ [ KO RO FOF 0 d 27)

" Since | Tf(x)[? is real, taking the complex conjugate of (2.7) does not change
+ the value, and if we take the sum of the resulting equal expressions, we get

| Tf(x)[2 = % f f_i (K(t) K(s) + K(t) K)) £(6) f/(5) ds de.  (2.8)

| .
- Now observe, if g and % are locally integrable functions of a single variable,

. o
f_w f_m @) f'(s) ds dt = f_w f_w (s) () f'(s) ds dt =0,

| since, for example, the first integral may be written as [ g O f(s) ds)dt,
" and the inner integral is 0.

Thus, we may add —| K(t)[2 — | K(s){? to the expression in square brackets
1n (2.8) without changing the value of the integral to get

i ) = — % f:) L Z [ K@)2 — K() K(s) — K(2) K(s) + | K(5))

: X f'(t) f'(s) ds dt
- % f’ f’ | K(t) — K(s)[2 /() £(s) ds at.

f f(emlling that K(¢) = K(x, t), integrate in x and change the order of integration
' 10 get
1

T

,l_x l Tf(x)]2 dx = — % [: Jj; (J_Z | K(x, t) — K(x, 5)i2 dx) f'® £ ds dt.

| Fin 3pPply (2.6) and then Theorem 2 to get

b= =3[ {7 le—sif@ e dear =11 1
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3. COUNTEREXAMPLES AND EXTENSIONS

It is a surprising fact that Theorem 1 does not generalize to R2,

COUNTEREXAMPLE |.
norm of the characteristic function of each interval in R2, but is not an isometry
on L%(R?). (Recall that an interval in R? is the Cartesian product of two one-
dimensional intervals.}

Proof. LetS =1L Ul uIl,Ul,,wherel, =[0,1] x [0,1],1, =[—1,0] =

There is a linear transformation that preserves the 1!

[0,1], I, = [—1,0] x [—1,0] and I, = [0, 1] X [~1,0]. Note that I, isa '

square in the jth quadrant (see Fig. 1).

-

FiGure 1

- . . i . are
Let ¢; be the characteristic function of I, . Since the four functions $;a

orthonormal, they may be extended to a (real-valued) complete orthonorm
basis of LR), {¢; |/ = 1, 2,...}.

Define a linear operator T on L¥R) by T¢, = ¢, , Ty = —%2» and T; =4 |
otherwise. 0. whie

Now T is not an i ince | gl = g — el =5 P
ow T is not an isometry, since {| T(¢y + @yl = |2 — 2 ¢ the charic

| ¢y + ¢, | = 21/2. Next we show that T does preserve the norm ol t
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eristic function x of any interval R in R2. Since y € L(R?), we may write
y=Xag, Ixl* = > a?, so that

Ty =) a;Td; = (@, + a3) by + (@ — a) o + Y a,,
is
Tyl =Y q a? + 2(a1a; — asay). It only remains to show that

a,a; = a,a, .

G.1)

The rectangle RN.S = R, U R, U R; U R, , where the subrectangle R; =
RN 1 is that portion of R N S lying in the ith quadrant. Since fori == 1,2, 3, 4,

a,~=(X,<j>,~)=J;a ) dx = | R;| = area of R;;
Ny

{3.1) reduces to the geometric identity

|Ry| IRy, = R, R,| (sceFig.1). (3.2)

If RN S misses at least one quadrant, then it is easy to see that both sides
of (3.2) are 0. Thus, we may let (a, b) be the vertex of R; opposite (0, 0) and
(~¢, —d) be the vertex of R, opposite (0, 0) where a, b, ¢, and d are all positive.

Thus,
|Ry| | Ry| = (ab)(cd) = (be)(ad) = | Ry| | Ryl I

The hypothesis that the norm be preserved is crucial to Theorems 1 and 3

" inthe following sense:

(?OUNTF.REXAMPLE 2. There is a convolution operator K defined on SF which
.shrmks the norm of the characteristic function of each interval, but which
s unbounded on Re L¥R).

Proof. We relent on our Fourier transform-less program for the duration of

. this example. Define K on SF by Kf = k « f, where

KO = ()" T Mm@

n=1

% that K (x) = F1[(Ff Xé) - lé(é’)](x), where F denotes the Fourier transform,

(BFXO) = s | f@e d,

1
Q)

- d F1 depotes the inverse Fourier transform. Then since % is unbounded,
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K is an unbounded operator on L? [7, p. 28]. However, if y is the characteristic
function of an interval of length 20, direct calculations yield

sin af

£

’

1 eta 2172
[(Fx)E) = IW fc_u e~ixt dx‘ = (7—1_)
and || x |2 = 2a. Thus, by Plancherel’s theorem

LKy ® = PRI = [ I Fx(@ R dt

_ % J':O (sin§a§)2 y "ZX[n,n+n~4)(§) d¢

T
antn™?) gin £12
= -33 z n? [ ( } dt » 2o
kg Jon t

3 1 1
<5 (2 ) 20 =5 hxl®

- " - ,
where the integral is dominated by f ::ZM ‘dtifa < 1 and by fa;"ﬂ )(dt/tz) if
a>1. |

Even in the finite-dimensional setting, where all linear transformations must
be bounded, things go as wrong as they possibly can. For example, if Pisa
projection onto a subspace which does not contain any of the test vectors (1,0)
(0, 1), and (1, 1), then (1 + €)P| > 1 but (1 + €)P shrinks the three test
vectors if € > 0 is sufficiently small.

In view of Counterexample 1, it is not immediately clear how Theorem |
should be generalized to higher dimensions. One possibility is to extend the
test family of all intervals to a larger collection .£. )

Let .# be the collection of all sets of the form J U J where I and ] are intervals
of R” with a common “face”’ of dimension k, 0 < k< n — 1. Forn = 3, the
three basic shapes that elements of . may have are shown in Fig. 2.

FiGure 2
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TueoreM 4. If T is a linear operator defined on SF Dreserving the L2 norm
of the characteristic function of every element of ., then T extends uniquely to an
sometry of Re LA(R", dx).

Proof. We outline the proof for n = 2 since it displays the essence of the

" ndimensional case. If we can prove (2.2) for I and J, then the result will follow
_ from applying 7' to a linear combination of characteristic functions of intervals
just as in the proof of Theorem 1. Now, given disjoint intervals I and J, extend
their sides to form a (possibly degenerate) configuration of nine blocks R,
1<4,j < 3, where R;; is the block in the 7th row and Jth column. (For example,
~ ifllies “northeast” of J one might have I = R, J — R, , while if I lies due east
* of Jand is smaller than ], one might have I = R, , J =Ry VR, UR,.)
To show (2.2) it suffices to prove Re(Txg, ,» Txz, ,) =0 if (5,7) # (@, 1),
since y; and y; are each sums of the Xr, and the inner product is bilinear.

\ Any pair R, S of these nine intervals R;; stands in one of the following
relations;
]

.

() They ke in the same row (or column) and touch.
(if) They lie in the same row (or column) and do not touch.

(i) They lie on the same diagonal and touch.

!
i
‘ ‘(iV) They lie in adjacent rows (or columns) but do not touch. (In chess,
l 2knight could move from one to the other.)

(V) They lie on the same diagonal and do not touch.

. We give the flavor of the remainder of the proof by proving case (v) under
the assumption that the first four cases have been proved.

ofst;y R =Ry and § = Ry;. Then (Ry; U Ry U Ry, U Ryy) U Ryye S and

o € 10 terms of the form 2 Re( TXR” » Txr,.,) that appear in the expansion

‘ " TXR“ + TXsz + TXRm + TXR22 -+ Txe,, |12, nine are immediately zero by

the :
bezifeVIOIIls four cases, and hence, the tenth one, 2 Re( Txz,, » Txr,,), must also
H o,

For some applications of Theorem 4, see [3].

of C;)h;nl can 2Theorem 1 be used to characterize complex linear isometn:ies

15 plex L (R’ du)? Recall the cautionary remarks at the start of Section
"PPose T'is an isometry from Re L2 and T is extended to complex L? by

(f+ i) = Tf + iTg. Then

I+ agle = ffiE 4 glp =1 TFI2 + [ Tel?
_ = T(f + i) — 2 Im(7f, Tg),
i, O Show 7js an isometry from L? to a Hilbert space J, it suffices to show

! .hat T .
18 an isometry of Re L2 as defined in the introduction, and that

Im(Tf, Tg) =0  if f and g are real-valued. (33)
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A simple sufficient condition for (3.3) to hold is the crux of the following lemma,

LeMMA.  Suppose there exists an antiunitary operator C on 3 such that
T(f) = CTf for all fe LYR, dp). Then if T satisfies the hypotheses of Theorem |,
T is a complex isometry. (Recall that C antiunitary means that C(of) = aCf
for aeC and fe o and (Cf, Cg) = (g, f). Complex conjugation is antiunitary
on LYR), for example.)

Proof. For real-valued f and g,

(Tf, Tg) = (Tf, Tg) = (CTf, CTg)
= (Tg, Tf)

= (T, Tg),
SO
Im(Tf, Tg) = 0. |

One can now give new proofs that the Fourier transform and the Hilbert
transform are unitary operators. By means of the lemma and Theorem 3 (or
Theorem 1) one shows that both transforms are isometries on L(R). The adjoint
F* of the Fourier transform F is obviously given by F*f(x) = Ff(—x). Also,
it may be shown that the adjoint H* of the Hilbert transform H satisfies H* =
—H. The last two formulas show that F* and H* are likewise isometries, so0

that F and H are unitary on LR). This result extends easily to L{R") since

each transform is simply the tensor product of n copies of the one-dimensional
transform. See [3] for details.
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