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ensemble la fonction g¥ associée est finie elle aussi p. p., pourvu que A28
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178 J. MARSHALL ASH AND R. L. JONES

1. Introduction

There is a one dimensional theorem of Plessner which states that g,
convergence of a trigonometric series on a set forces its conjugate series ,
converge almost everywhere on that set. In two dimensions the situatio,
becomes much more complicated. First of all the notion of “converge
diverges into a number of quite distinct notions (31, [1). We will put
aside this obstacle by (arbitrarily) choosing the mode of convergence t,
be unrestricted rectangular convergence (denoted herein as yR
convergence). The second problem is that the notion of conjugate algg
diverges into several notions. In one dimension the conjugate of X, e
is £M, c,e"™ where the multiplier M,=—isgnn. Given a two dimep.
sional ~ series  Ec,, e ™* ™ the “conjugate”  will again  be
IM,,Cp,e ™™ Perhaps the most natural choice for M, would be
MY = —isgnm or Mf,f,,)z(—isgnm)(—isgnn)=—sgnmn. However in
[2] is given an a.e. UR convergent series whose conjugates in sense (1

or sense (2) both diverge a.e., even in the very relaxed sense of square
convergence.

Other choices for the conjugate, introduced in [11], are

m mn
MJ)=———_  and "=
m+n m*+n

mn

These definitions are natural analogues of the Riesz transforms. More
explicity, the continuous analogue of the multiplier —isgnn is the Hilbert
transform which may be expressed using the multiplier —isgnx. The 2
dimensional Riesz transforms then correspond to the multipliers

% X2
2
\/x1+x2 /x1+x3

while the double Riesz transform corresponds to the multiplier
Xy Xo/(x{+x3). The only trouble is that these multipliers are usually
considered in the setting of circular convergence so that studying them
from a rectangular point of view seems a bit strange. Nevertheless,
Peterson and Welland were able to show that if a double serics converges
UR on a set, then the conjugates in both senses (3) and (4) converge
restrictedly rectangularly a. e. on that set [11]

and
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We improve their result for the multiplier {M{)}, but can only

~ gnderscore the difficulties associated with obtaining a similar improvement
for the multiplier {ME)}. Theorem 1 assumes the UR convergence of a
’I?:double seriecs on a set and concludes the a.e. UR convergence of the
. conjugate in sense (4) on that set.

One of the most delicate parts of the
proof of theorem 1 is a Tauberian lemma, lemma C, concerning double
numerical series. If one attempts to prove an analogous result for 'the
multiplier { M$)}, one seems to be ineluctably led to gnother Tz?uberla,r:
«lemma’” that is very much like lemma C. However this second “lemma

"is false, and we give an example consisting of a concrete numerical double

series to show this. Thus we leave as a very delicate open question the

... following.

ProBLEM. — Does there exist a double series

i (mx+
s____zcmn ez (mx+ny)

and a set E of positive measure so that s converges UR on E, but

m i (mx +
Z cmn et (mx +ny)
m-+n

.diverges UR at all points of E ?

The method of proof used to establish our generalized Plessner’s theore?m
(theorem 1) requires getting a lot of quantitative local control over the size
of the Poisson integral u of a double series that is UR convergent. More
concretely, if the maximal partial sum function associated with a double
trigonometric series is finite on a set, then a.e. on that set the gF(u)

~ functions are finite if A is big enough (theorem 2), the non-tangential

maximal functions N, (u) grow in a measured way as their apex angles
open up (theorem 3), and the area integral functions also grow in a
These 3
theorems are applied to control the Poisson integrals associated with the
Riesz conjugate and the double Riesz conjugate .(see
Lemma B). Theorems 2, 3 and 4 should have many other applications

| and the reader may well find them the most interesting part of this paper.
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180 J. MARSHALL ASH AND R. L. JONES

2. NOTATION

We will be studying a double trigonometric series
s(x) =ZZ2 ¢, gnx
its first Riesz conjugate

in.x
H

m
——=C €

Sl(x)‘_—ZZZW n

and its double Riesz conjugate

in.x

,  mn
S12(X)=) 2———c_e
2 m? +n?

Here x=(x, y)e T*=[0,2n] x [0,2n}; n=(m, n)e Z?, where Z? is all ord- |
ered pairs of integers; the prime (') means that the (0,0) term is to be ;

omitted; and n.x=mx+ny. We use the norms

In|=/n"+m> and  ||n|=min{|m| [n|}.
Write ¢ for (¢, ¢). If
n=(n,, n,) and m=(m,, m,)

we write n>m for n,>m, and n,>m,, while ||n||>k means n,>k and |
n,>k. The double sequence {t, } converges UR (converges unrestrictedly '
rectangularly) to ¢ if for every £>>0 there exists M=M/(g) such that n>M ‘

implies |1, —t] <e.

Associated to the series s(x) will be its partial ~ sum$

S0 (X) = ¢ <1< Cm €™ and its maximal partial sum function
$* (%) =5UPy 5 [, (0|
On the bidisc |
D={z=(z, w)||z|<]l, |w|<1}=D,xD,,

is defined a formally biharmonic extension of s(x). ‘This extension will |

be called the Poisson integral of s and is given by the equation

u@ =y cyemernddmigni where

z=re'® and w=se'®.
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The Poisson integrals u; and u,, are derived from s, and s,, respectively
in a similar manner.
It will often suffice to assume s(x) real valued in which case we may

write

m

S(X)=Zn?o/‘1n(x), Sy (x)zianomBn(x)’
SIZ(X) = *znzoﬁ%l)n(x),
[n]

where for (m, n)#(0,0),
L 4, (x)=a,cosmx cosny+b, sinmxcosny

+c, cos mx sinny +d, sin mx sin ny,
B, (x)= —b, cos mx cos ny + a, sin mx cos ny

—d, cosmxsinny +c, sin mx sinny,
C,(x)= —c, cos mx cos ny —d,, sin mx cos ny
+a, cos mx sin ny + b, sin mx sin ny,
: D, (x)=d, cos mx cos ny — c, sin mx cos ny
' —b,cosmx sinny +a, sin mx sin ny.

‘(interpret cosOx to be 1, sinOx to be 0, etc.); Ay, is a constant; and
In this case

b0=C00=D00=0.

U@ =) 450 A, (X)1"s", u, (z)=izn>o|:an(X)r’"s"
Uy, (2)= —Z..;o—,r-nn—rll;Dn(x) rmsh.

’ We will make use of a sequence of Stolz domains (denoted I', (x)) and
0 a sequence of “Stolz-like” domains (denoted A, (x)). For any
<p<1 let C, denote the circumference ]z|= p. Form the open region
unded by the two tangents from z=1 to C, and by the more distant
C of C, between the points of contact. If p=cosa, a=ao,=mu/4 1/2",
this open region the m-th Stolz domain I',m=0,1,2... Note that
also the angle between the tangent to the unit circle at z=1 and
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182 J. MARSHALL ASH AND R. L. JONES
I',. The law of sines applied to the triangle with vertices 0, 1, and z=reie
shows that

Fp={z=re'%||z|<cosa}

U{z=re“’”6]<a and  r<— 8% .
cos(cx—](—)[)

By I',,(x) we mean the domain I m rotated through an angle x around

=0. Finally I', (x) =T, (x) x r, (.

If z=re'® we will systematically write §=1—r. Let A,, be the open set
which is the convex hull (denoted as CH) of the disjoint open sets

{z=1e'r<l—n2"m)
and
{z=re'?| l=-n2""<r<i—|6|27"}.
It is clear that
Am=CH({z=re“’[n2""<8}U{z=rei°I]9[2""<8<n2""}).

This domain is more suited to polar coordinates and is equivalent to T,
in the sense that A, =" mSA; mis. These containments are proved in the
appendix. It is immediate that the sequences {T',} and {A,)} are
increasing, i.e. m’>m implies T, =T, and A, 2A,. Define A, (x) as a
product of two rotated A’s as was done for I (x). Let

Q={z’%<]z[<1} and  Q=QxQ.

Associated to a biharmonic function 4 on the bidisc D will be several
[0, co}-valued functions defined on its distinguished boundary 72 For n
fixed we have the non-tangential maximal function

Nn (u) (X) =Supz €Iy (x) ] u (Z) "'

and the area function

[4, () (x)]* = f \AXTCIE

I'p (x)nQ
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here

2
62u 5 azu )2 ( alu >2 < azu >
2_ + + ’
|V1 V2u(@) I (5)61 6x2> +<6x1 dy, 0y 0%, 1053

2=(x,+iy,, X5 +1iy,) and dz=dx,dy, dx,dy,;

and for each fixed A >0 there is the function

Se s i(x=8) i(r—e) |2
. =| | ) Vi Vou(re'*™®, sel 0= |24y
(g () (x, ) L<(5+|el)(g+|<pl)>l P

where

z=(re'®, se'®), d=1—r and e=1-s.

We will use the summation by parts formula

— N-1 ik
© Y, S carp=Yar YAt AL sk,

M-1 j N—1 201 Mk MN
+Zj=m AJII\? S‘:H]gl—*_zk:" AMk Smn +)\‘MN Son
where _ .

ik _\J
S{nn—szm Zv=nCPV’

10
AjN =)“jN_7”(j+ N>

01
A=Ky — Ay (k+1)

and

A}kl = A’(j+ 1 k+1)" )"(j+ k™ )\’j(k+ 1) + )“jk‘
The usual generic constant C will be used. Its exact value can change
from line to line, but it is always an absolute constant unless otherwise

indicated,
All sets will Lebesgue measurable.

3. Results

The main result is:

THEOREM 1. — If the double trigonometric series s(x) converges UR on
4 set E, then its double Riesz conjugate s,,(x) converges UR almost eve-
Tywhere on E.
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184 J. MARSHALL ASH AND R. L. JONES
To prove this we will have to control some g¥ (1) (x) where u is the
Poisson integral of s.

THEOREM 2. — If the maximal partial sum function s* (x) of s is finite
on a set E, then g%, (u) (x) is also finite a.e. on E.

Since g¥ is essentially a weighted sum of area functions the proof of
theorem 2 rests on the following two results.

THEOREM 3. — Assume that the maximal partial sum function s* (x) of s
is finite on a set E and let >0 be given. Then there is a set F< E,
[E\F] <& and a constant M >0 so that for all n>0 and all xeF,

(1 N, @) (x) <M 24+,
where u is the Poisson integral of s.

THEOREM 4. — Let u be a biharmonic function satisfying
2 N, (W) (x) <A,
Jor all xeF and all =0, and let >0 be given. Then there is a GCF,
| F\G|<e, and a constant C>0 such that for all n>0,
3) f [4, (X dx<CAZ,, (210 ),

G

The proof of theorem 3 follows from a Tauberian lemma which is

essentially due to PETERSON and WELLAND [11].

LEMMA A. — Let s(x)=ZAlIl (x) be a real-valued double trigonometric
series. Let s*(x) be finite for x€E and let >0 be given. Then there is
a set FSE with | ENF|<e and a constant K such that for all xe F and all
N=(M, N)=0

1
(4) ‘—MZOSnSNmBn(X) <K
1
(5) INZOSnSNnCn(X) =K
(6) 'ﬁZosnsN’""Dn(x) <K
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If further, s converges at each point of E, then we can arrange to have
equations (4), (5) and (6) hold and also have an integer N, so that if
"N“;NO, for all xe F

<E,

1
M lﬂZosnsmen(x)

<E.

1
® ‘WZA)&st”Dn(X)

Kent Merryfield has proven what amounts to theorem 4 for R" instead
of T" with his biharmonic function living on a product of upper half
planes instead of on a product of disks [9]. We simply translate his proof,

" line by line, to our setting and keep track of constants somewhat more

closely than he does. Work in this area has also been done by MALLIAVAN
and MaLLIAVAN [7] and Okapa [10].
The next lemma is very much like a result of GUNDY and STEIN [5].

LeMMA B. — If g%, (u) is finite on a set, No(uy,) is also finite almost
everywhere on that set.

The last link in the chain of results leading to theorem 1 is our Tauberian
lemma.

Lemma C. — If the double series Y .5 ¢ ay is rectangularly unrestrictedly
Abel summable, i.e. if there is a number a such that

: m .n__
9 hm(r,s)—»u‘,x*)znzoanr s =a,
and if the Tauberian conditions

(10) hmlt“n“_, 008“:0
(11) all e, bounded,

(Where ey =1/MNY g <n<n|n|?a,) hold, then Za, is UR convergent to a.

Here is a heuristic “‘diagram” of the proof of theorem 1.

2

U > U,
1] 13
s Sia
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186 J. MARSHALL ASH AND R. L. JONES

Arrow 1 refers to theorems 2, 3, 4, all of which deduce good behavior . .

- ensional ones given for lemmas 4. 12 and 4. 18 in volume 2 of Trigono-
: dlg:ric Series [14], pp. 217-219. PerersoN and WELLAND have already
m b

of u from good behavior of 5. In other words, these theorems are of an

Abelian type. Arrow 2 represents lemma B.  Finally arrow 3 represent :

our Tauberian lemma C.

One would, of course, like to replace s;, by s, in the conclusion of

theorem 1. (In particular one could immediately deduce theorem 1 as |
stated by an iteration of that result.) The problem with extending oy §

proof to the case of s, lies entirely with the analogue of arrow 3. (Kent
Merryfield has observed that there is also a minor point involved i,
extending Lemma B. 1In the definition of gt |ViVu [* must be replaceg

by |V, VyulP+|V ul*+|V,ul? in order to also control the behavior of |

No(uw), i=1,2) By comparing equations (4) and (7) with the correspon-
ding equations (6) and (8) it is clear what the analogue of lemma C mug
be. Unfortunately this analogue is false. In fact we have the following
example.

Example. — There is a numerical series Za, which is rectangularly |

unrestrictedly Abel summable, and UR divergent, even though o, are
bounded and satisfy

my 5L .%=0  where aN=$ZOSnSN|n[an.

This example shows that we can’t get our desired analogue of theorem 1
by the methods of this paper, but is by no means decisive. (For example

there could be Tauberian conditions stronger than (4) and (7) lurking in |

the hypothesis of s converging on a set.) The negative evidence of the
example coupled with the contravening positive evidence of the Peterson-
Welland result stating that §; converges restrictedly rectangularly a.e.
where s does led us to state our open question concluding the introduction
as a problem rather than as a conjecture one way or the other.

4. Proofs

In theorems 1-4 and lemmas A and B the conclusions are all true by
default if the hypotheses hold on a set of measure 0, so we will always

assume implicity that the given set on which the hypotheses hold has
positive measure.
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piscussion of Lemma A. — The proof of this result follows the one

ketched the two dimensional argument [11]. For these reasons we will
sot give the proof here, but will restrict ourselves to some remarks. One
zses the notion of stable convergence and identifies such as these.

A, (x+s, ¥)=A, (x)cosms— B, (x) sinms

A (x+s, y+t)=A,(x) cosmscosnt
n
— B, (x) sinms cos nt

—C, (x) cosmssinnt + D, (x) sin mssin nt.

One delicate point in the proof is that from
Tu()= = TocaenmBa(®) =0 a5 [|N]| = oo,

it does mot trivially follow that there is a constant K(x) so tha(;
|Th(x)|<K(x) for all N. (See [3], p.406 for a frelate
example.) However, if Ty(x) - 0 as || N|| - o f.or' all xeE, .then ora.e.
x€E there is a K(x) so that | Ty (x)| <K(x). This is proved in very much
the same way as is lemma 2.3 of [3].

Proof of Theorem 3. — By virtue of lemma A and routine uniformizing
arguments we may assume that a large subset F and a constant K have
been found so that equations (4)-(6) are valid on F and also that

(12) s*(x)<K forall xeF.

Let

BN=ZQSnSNmBn and 8N=ZO$nSNmnDn‘

Fix x=(x, y)in F.
A point of
I, (x) may be written (re' ®*7), se! 0% D) =(ze™, we")
where

(Z, W) € I_‘m X Fn'
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188 J. MARSHALL ASH AND R. L. JONES

Then
u(@=A,+Y"_ A,,cosmprm ~Y B, sinngs"

% m
+ 2 ey A COSTP COS NG ™ 5

fvel
m, n=1

B,.sinmpcosngrms"

o

1 m .n
m, n=1 Cmn COSMPSin ng ™ s

+ ) Dy sin mpsin ngrm s

m,n=1
=I+II—III+IV—V—VI+VH.

Each of these terms is estimated in a way which directly generalizes the
proof of a lemma in Zygmund’s book. (See Lemma 4.15, p. 218,
(14]). We will give the details for terms V and VIL

For V we start with the identify
1 4 -
V= 2Re{f Do ey M B W 2y dp},
where z is the conjugate of z, and the identity

P
sinmp= f m cos mp dp has been used.

Summation by parts (see (0)) gives

Zminet MBa 2w =T LI h g 2 (1 2) (1 - w)
+ wN Z,l:lz_ll an z" (l _Z)
+z" ZnN=_11 Bara W (1 — W)+ By 2™ wh.
The inequality (4) and the identity

,
13 o mrt=
(13) o T

give
limy o WYY Bw 2" (1—2)| < K| 1—z]

xlimy, v s (Z::ll mr™)
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K|1—zl
<______

< o limy _, , s =0.
(1-—r

’ Similarly the third and fourth terms in the last equation also —0 as
M, N) = (00, 0). Applying this to V, we have

= lRe{jP o Bm,,(z"'w”(l—Z)(l—w)+z"’w"(l—z)(l—w))dp}
2

m,n=1
0

p
. _ <1
4) and (13) agam,j dp=p,and r £ 1,
so by (4) a ( .

1 1
o = N L
7V|<§K|1—W|(11—Zl+i1 Zl)(l_r)z 1_51’.

|12 M)(lﬂ)
=K I—r 1—s 1—r
< C22m+2n+2m < C24M+4"

since |1 —z|=|1—Z| and geometry facts (37) and (38) apply.

Next the same methods show

VII=1Re{‘rr - _lmnDn(z"‘w"+5’"w")dpdq},
2 e
—_-lRe{J‘pJq "y =18,.(1—w)(z"‘(l~z)—+—z_"‘(1—zﬁ))dpdq}
2 odo "
<L k@z mm @ n 1-w|2 12| {p] ] 4]
2 "=
Il—Zl lpl |1~W|><l_q|_)<(:24m+4n.
<K 1—r 1—r 1—r 1—s

Proof of Theorem 4. — Let g=|V, V,u|*8,8,. We have to study

I

By geometric lemma 1 it suffices to study jL,, ) ng= “;)g T
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Following Merryfield we will first deal with an easier integral where th,
function y, ., is replaced by a smooth approximation called

v®. Lemma 4.1 will be the easier version of Theorem 4.

Its proof will follow the proof of lemma § of Merryfield’s thesis (8].

vo= e ! @eﬁzf(v)[—2'"V5'(2'"6v)e,+

or r Ox

r

LeMMA 4.1. — Let beC® (R) be even, positive, decreasing on [0, ] ang
have support T:=[—n, n]. Let

ba(x)=1b<f)
a a

0,0 T-R by (pa(x)=z;’°:_wb,,(x+2nn).

where e, and e, are unit vectors in the radial and angular directions
respectively.  Define a vector valued function ¥ by

0 6 0 m >
= i ), — — ms), 2 m
U} 3<8 5r((p2 m;) r o (9, mjp) Pams

and define
so that

W f?=9]6Vo|>+9|w|>
Let u be biharmonic on D and satisfy

if is continuous on Q and harmonic on Q,
N2n+4(u)(X)<}\.2n+4=:}\' forall XEEET‘. S Then i u(z)

Write (1) f]Vu|2ﬁ25<f|uf2|W*f|25_l
- 0 o
v(z, W)=[@ms ool ¥ Xz (x, y)=ﬂthzms(x—S)@zng(y—t)xE(s, fdsde. +2j u202+j |fu|2+CJ |uv 2.
- T } Q 5=0 3=1/2
en
jf IV1 v, u,z V2 8E < C24mtany2 To prove (14), apply Green’s theorem in the form
Q -

where C is an absolute constant.

JVu-gz—J udivg+f u(g-m
Q QO oQ

g7 = (V) (9ymy ¥ /) =(Va) 2.

Proof of lemma 4.1. — We may, without loss of generality, assume that
u is also continuous on the closure of Q. (If necessary, replace u by #
where u,(r, 8)=u(r—¢, 0), prove lemma 4.1 for u, and then let
€0 We begin by establishing a one dimensional result (statement (14)
below) which will be used twice, once to prove the one dimensional
analogue of 4.1, and a second time to reduce 4.1 to the one dimensional
case. Let

z=re', d=1—-r,  feL?*(D), V=Q,mz*f,
P(X)=Z(x+2nv)b(x+27v) and w=2"p,mg * f.

where

We get

2 0u
|Vu20?8= 2| wVuVos+ | u*=
o o a Or

ou

+f _1U2_u=A+B+C
lzi=12 2 Or

Note

v=2f(v)b (2"" dv)e''*  where f=Zf(v)ei'* Note that §=0 on |z|=1 eliminated another term like C.

. B .
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192 J. MARSHALL ASH AND R. L. JONES

By the Peter-Paul inequality (2ab < 1/4a>+4b?),
A< 2-[ (32 vVu). (ud*? Vo) < lf ]Vu|2025+4f |u[2|5VU|21.
Q 4 Q Q )

To treat B we need a further integration by parts:

1 2n 1 a
B=—j <J (rvz)(uz)dr)dx
2J)o 12 or
2n 1 1
=1f <ru2v2 —j u2<v2+2rv—a—v>dr>dx
2Jo 1/2 1/2 or
-1J2"ﬁ(x)u2(x O)dx—ljznv:’(x 1)dx
2J)o ’ 4), 2

1 2p? 0
——j 20 —j uzu—v=:B1+B2+B3+B4.
2Jo T a or

For B,, note that v(x, 0)=f(x) a.e. and u is assumed continuous at
6=0.
Since
1 2.2
rz- on €, B, < | u'v”
2 2

We must still integrate B, by parts again. However this integration by
parts will be done in the angular direction by means of the identity

’ 0
%((Pz"'a *f)=— a(zm Pom s * f).
Then

0
B4=f wo—Q2" Pam s * f)
a Ox

1
=J‘ <u2 vw
12

2n 2= a
—J w— (u? v)) rdr
o 0 0x

= —ZJ u?ﬂvw—J uzw@ =:B,; +Bax
Q Q 0x
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since the integrated terms vanish by periodicity.
Apply the Schwarz inequality and then the Peter-Paul inequality to B,

to get
2 1/2 1/2
025> <j u2w26'1>
Q

Slj |Vu[21;28+4J‘ |ul?w?8 1,
4 Q Q

du

[ [Bur] < 2(L ox

©. since
: 2
<

~

2

ou < | Vul?

1 du
0x

r 0x

! ~ Apply the Schwarz inequality and |ab| < 1/2(a*+b?) to By,.

4 2 2 -1 1z 2 2451 1z
il ([ Jup[a 25 ) ([ uriwean)
Q 0

<1J|u|2|8VU|25_1+1J‘ |u|2‘w|25‘1.
2], 2)o

5
0x

We turn our attention to C. Even if m=0, I, ,,,=I, contains an
origin centered circle of radius cos((rn/4).(1/2%)) > .99 so for any x and
m >0, the entire circle |z|=1/2 is contained in I',,,,(x). In fact if
|z|= 1/2, there is a circle of radius at least .99—.75=.24 about z within
. each Iy sa(X)

-~ By a standard argument involving the mean value property of harmonic
- functions (see [12], p. 275, c.3), it follows that |éu/ér| < C|u| on |z|=1/2
for some constant C. Hence

lC|<1£ZImlu[(C|u|)|v’2<CJ

2 lzi=1/2

[ul?|v]2
Combining our estimates for A, B, B,, B;, B,,, B, and C,

1 2n
IS—I+;f |f(x)|2i”(x’ 0)|2dx

2 0
2n
+1J‘ vz<x,]>u2<x,]>dx+f u? v?
4J 2 2 o
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9 1 1 ou =:18n) {A(v, 3, m, b, P W]
+~J‘ uZ(ISVu|2+Iw[2)—+-f UL |

2Ja 8 lzl=1/2  Ox multiply by 8 ! and by the Jacobian r. Use 1/r <2 gnd r<1to
gi‘l)::;nate any powers of r. Integrate in 8 from 0 to 1/2 (which amounts

ol the definition of V, (1o 2L To the et hand side. and o integrating in v from 1/2 to 1) and note that the substitution t=2"vd

multiply by 2 to get equation (14).

‘shows

% dd
s: jz A(V, 55 m, b) p)g‘ <2J

0

The one dimensional version of lemma 4.1 is the following,

o0

(15) Let u be harmonic on Q and continuous on its closure, and let
feL*(TY. If Ny,..(u) <) for xesupp(f), then there is an absolyte
constant C such that

. d
<| tll;’(t)[2+21'—nltb(t)|2>7t-

— o0

2

(Sincc 6(0)=J "p(x)dxzo and p is C®, p(t)=0(t) near t=0 so that
.

f'V“H(Pz’"s*flz(s<C4mxzf2nlf(x)’2dx‘

° ° | this last integral is dominated by 4™ C-) We conclude that
Let F:=supp(f) = T% and let S={,, rA, (x) be the associated “saw- ’

tooth region”. Then

w e
(16) suppuv(x, 8) < S. a

We are now ready to prove (15). From (14) and the assumptions in

This is trivial if 2"§ > © since then each A,, contains the entire circle of
radius 1—3§, while if

(19) j[vﬂzvzssvj | f87"
Q Q

2n
+2x2Jvl+k2f |f|2+C7~2j |of?,
Q lz]=1/2

1 {™ 1 x—t
2"y < ; v(x, §)= — ——b| —— t)dt
(s 9) 2n)_,2"8 <2'"8)f()
and support b=[—m, 7J.

(1]
Since A, (x) S T, 4(x) by geometric lemma 1 we always have

l5 ¢ 'Where the domination lul < M is justified by relation (16). ‘ Young’s ine-
uality (|| @ * f||, <|l@|l,|| f,) for each 8, 0 <& < 1/2, gives

f o < (f(cpzma))z LGif(x)l2dx=|| fI
1ms

Set §=1/2 to estimate J‘ v2.  Multiply by the Jacobian r and

jzl=1
ntegrate from 1/2 to 1 to get

[ 2 <Us1e ] rar=vih s

(17) [4(2)| < Ny pua(W)(x) forall zin A, (x).

From the definitions of  and p and our expansion of Vv, Plancherel’s
formula gives

2n
J I‘l’*flzdx=21tzv|\ﬁ(v) | fv) 2
=2“'92.,{(2"'v8)2|5’(2"‘v8)]2+(_M
r
1/2

+27p (2" 5v) P}lf m*

; EMATIQUES
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Inequalities (18) and (19) then imply the validity of statement (15).

We now pass to the proof of lemma 4.1 itself. For our ori
Q, define u,(z):=u(z, w). Then for each W, u,, is harmonic a

(20) Ny (N (1, () () =N, (x, y).
In particular, if (x, y, 8, €)esupp (Q,m 5. 27¢ ¥ f), then
(21) Nm(uy,a(x))Sinf[y—ylSznan(u)(x’ y)g}“

We also define the following vector-valued function:

gw(x):f "\l’z"s(V‘Y)f(xa J’)dy,

where Y,n,(») is an R3-valued function defined in the same way as
Yrymg (x) was. In exactly the same manner as inequality (18) was derived

we have
2n
f ‘gw(x)fzs‘ldw < C4”J | f(x, y)|?dy.
Q 0
But this implies

(22) f ”gw (x) “22 € Ydw
Q

- j [ f ﬁgw(x)lza~1dw]dx <o) [
0 Q

In particular, || g, (x)||22 rty < oo for almost every we Q.
Now equation (14) applied to the second variable gives

11=f [ViVaul?(9yms, an, d x)? 56 dz dw
Q
=f [j IVZ (Vl u)lzl(pz'"s, 2"5*XE'28dW]5dZ
Q Q .
51
<f [f ,Vlulz"l’z”e*((sza*XE)lzdW:,(Sdz
Q Q S
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+2j I:j |V ul? (@yms, n . Y X) dW} ddz
Q Q

+f U IV1u|2((P2’"a*XE)2dY:l8dZ
QLJiw|=1

+Cf [j [V1u|2((p2m5’ e K Ap)” dJ/:| ddz
Q lwl|=1/2
=:A+B+C+D.

terchange the z and w integrations in all four integrals. Then by (15)

d (21),

|
J‘ I:J\ !VI uw|2 ((sza*\llzngX.E)Z Sdzilgdw
Q Q

1
= J [C A? 4'"(J (Ypn, % XE)2>:| gdw.
o lz1=1

pply (22) with f=1y; to get

2=n 2= n
A< cx24'"4"f f (g (x, Y2 dydx < CA24mtn,
4] 0

Next by (15) and (21) again,

=2J |:j |V1uwl2|@2m5*(@2"5*X5)25d2]dW
alJo

<2 j | C4mR2 (o, % 12 (.. )2 d.

Again Young’s inequality gives

I(oar . S xe) (., w2

2n .
sf | 2e(x, »)|?dx  for each w=(, ¢) in Q.
0

Thus

2n
f | xe (%, ) |2dx> dy] ds < CA* 4™,

0

1 2n
pecen] [
1/2 0
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Our third integral is by (15) and (21),

2n
C=J l:f IV1 Uy, 0) ’2 ((Pz’"a*XE)Z 5d2:| dy
Q

0

0 0

Once again by (15), (21), and Young’s inequality
1 2x 5 s
DZE IV1 “(y,(l/z))l (92-19% xg))* 8dz | dy
0 Q

2n 2n
< J C4mi? f (@2n-19% xx (x, ¥)? dxdy < C4™)\2
0

0

This proves lemma 4.1.

The following lemma follows one of MERRYFIELD [9], Lemma 4.2
tracking his constants line by line.

LemMMA 4.2. — Let x be a point of strong density for a set E S T2 Let
E,={X€E[(@sms n.dxp) (x) 227"
for all (m, n) = 0 and all (x, 8, e)e A, (x)}.

Then xe E, for some 1 > 0.

Proof. — Fix x, a point of strong density of E. Find d,0<d<1,so
that whenever (8, €) < d, then

(23) lR(X; 8¢ N EI > 1 whenever xe R(x; §, &),
|R(x; 8, €] 2

where R(x; 8, €)=[x—§, x+8] x[y—¢, y+el.  To do this simply pick d so

small that |R(x; 28, 2e) N E|/|R(x; 25, 2e)| > 78
(6, €) <d. Then (23) follows from this picture:

whenever

I
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Fix (x, 8, e)€ A, (x). Then xeR(x; 2™3, 2"¢). (Note if 2" = n, that
xe[x—2"8, x+2" 8] is trivial.) Let

(g, h): =(min {d, 2™ 3}, min {d, 2"¢}).

Then

2"y 2%e
(24) |R@ g h)|=4gh>ad ==~

=d*27""|R(0; 273, 2"¢);
since if g=d, note 8 < 1, while if g=2"0, note d/2" < d < 1, so that
g d-8=(2”‘6)<~2‘—1;>.
Since (g, h) < (2™, 2"¢) for some ze T? we have
R(z g, h) = R(x; 2"3, 2"¢).

Combining this with (23) and (24) we get

(25) |R(x;2"5,2"e)NE|>|R(m g HNE]

?%'R(zy g, h)l ?%dzz'm—n“{((}; 28, 2"8)'.

Next note that

(Pz"‘“a(“)=z : b<—u—+2m>

v2m+18 2m+18
SR (R P b<l>
2m+18 2m+18 2m+18 2

if |u| < 2™ so that

b2 (1/2)
|R(0; 23, 2re)|

Qam+1g o+t (W) =

ifu € R (0; 235, 2"¢).
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This and inequality (25) imply

(@am 5, 200 % Xg) (x)=j Pamg, on, (E‘Z) dz
E

ZJ (Pz"'a,z"e(f—z)dz
R(X;2™M5,2"e)~ E

2 (inf @, g x; m g n ). | R (x; 28, 2"e) N E|

>;.(412.1)2(1/2))
om n 2 ‘

This proves lemma 4.2 with 1 =d? b2 (1/2)/2.

We can now prove theorem 4. Almost every point of F is a point of
strong density [6]. Hence by lemma 4.2, |Fo| 7 |F| as 00O, so by
plclfmg n sufficiently small we have jF\an <& Fixing such an 7 and
setting G=F N F, it suffices to show that

(26) f [4, (X)]?dx < CAZ,, 24 mtm,
G

Working from the definitions, using geometric lemma ! and Fubini’s
theorem we have with pP=2n+4=(p, q),

f[A..(X)]de=f (f IVleulzdz)dx
G G\JI(x) A Q
<f <f ]VIVzulzdz)dx
G Ap(x)nﬂ

=_L2 XG(O)(lel Vzu(z)lsz(X, 28, qu’(z)dz)de
=LIV1 Vyu(z)|? {IZXG(G)XR(O’ZM' 2qa)(l)de}ﬂll
T
<4'2P+qf [V.Vou(r, s 8, &) |2 8¢ dz,
Sl’

where Sp=(U,. ; Ar(0)) N Q since the quantity in curly brackets is boun-
ded by |R(0; 275, 24 £)| and is zero whenever z¢S,.
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Now apply first lemma 4.2 and then lemma 4.1 to this last integral.

have

J [A, (0T dx < 4-27
G

2m+n 2
Xf IV1 Vz“lz[ (@ams, ZHS*XE)(X)] dedz
s n

s4,28.24-m+4n<2m+n>2
n

P

X J‘ 1 V,Vyu |2 (@ams, 2 K X) (x))*dedz
Q
< C 26 (m+n), 24 (m+n) )\'2 — C 210 (m+n) )\’2.
This proves theorem 4.
Proof of theorem 2. — It suffices to show that for each £>0 there is a

subset Fc E with gig(x)<co on F and |ENF|<e Let £>0 be
given. By virtue of theorems 3 and 4 we may assume that an F < E has

been chosen so that
|ENF|<g;
N, () (x)<M2**" for all n>0 and xe F;

and

J (4, (X)]2dXx<CAE,, 210" for all nz0,
F
where A, <M 2*™*" Combining the last 2 inequalities,
j[A,l X)) dx < C 226 m*m,
But this, together with (40) from geometric lemma 2 gives us

J; 35 (X)) dx

TR
Pla\ G+ 0D E+ o)/ T ’
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se' v~ IzddeSCf

F

xf |V, Vyu(re! ®=9, soi 0-w) lzdz]dx
Th(x)n Q

—28 (m+n)
I:Zn>02

[4, (%)])* dx

=Czn>02—28(m+n)J\

F

C

SCanoz-Z(m+n)=

The first inequality follows from writing
Q=[ToNYx(Te NIV U (To N Q) x((T,~T, ) N Q),
UUn=1 (TN ) N Q) x (T N )
U Unn= 1t G\ ) NQ) x (C,\T, - ) N Q),

bounding §/(8+/61) by 1=2° on T, and by 2~ on I',\I',_,, and finally
by bounding

er\rm_nnmx«rn Tp-1)n Q) ’

J;l"m A x(Tyn Q)

This proves theorem 2.

f and so forth.
hnQ

Remark. — It is clear from the above proof that 836+, is finite for any
£>0.

Discussion of lemma B. — Let

m
+n

mn

m; (n) = —_
! m?+n?

and m, (n) =
m

The functions u; and u,, may be thought of as convolutions over T*
of u with M, and M, respectively, where

M (x,r,s)=Zm, (m)e™xrimiglnl
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M, (x,7,5)=Zm, @)e>rImsin],

It is easy to prove by induction that for a=(o, B)=0in Z?,

« P

Tol2a+2p+1’
n|2u+2fi

where P, is a homogeneous polynomial of degree o+ B+1, and

<i>am12(“)= %0
ox |

YT
n|2(u+B+1)

where @, is a homogeneous polynomial of degree a+ B+2.
From these relations it easily follows that there are constants B, and
C, such that

x|y

<

and

Co
<

() a0 <55

In particular, these inequalities are true for 0<a<14,20<[3§14. It
then can be shown by transferring lemma 8 of [5] from R* to T that at
every point x of T2

Ag (uy) (x) <cg3y (u) (X)
and

Ag (uy5) (x) <cg3s (u) (X).

Theorem 4 on page 1029 of [5] states that N, (v) is finite almost everywhere
that A, (v) is, for any harmonic function v. Thus lemma B follows from
the last two inequalities. '
Both lemma B and lemma 8 of [5] are proved following the reasoning
used in the proof of relation (41) of section 3.4.1 of [12],
P. 233-235. That reasoning used lemma 2 of section 2. 5.2‘ of [.12],
P. 216-217. The proof of lemma 2 given there is in slight
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error.  Professor Stein has orally communicated a corrected version
us. To ease our conscience over failing to present a detailed proof of
lemma B, we will prove lemma 2’, which is a correct version of Stein’s
lemma 2. Our notation for lemma 2’ will be local to its proof only.

LemMmA 27 [13). — Let xe R", >0, and Ty={(x, y)e R x|<By} be
a cone with vertex 0. With Xo=y, write

ou
Vk*l axj
Suppose u is harmonic in Iy and [Vu| -0 as y - %, for (x,y)eTy.  Thep
Jor each k> 1,

2
leu!2=Z" ) k=l,2,3’,,,

j=0

|
27 ff ]Vu}zyl‘”dxdygckjf IV"u]Zy“"‘“dxdy,
g Tp |
i
where ¢, =TT @m—1)-1, @
Proof. — Tt suffices to prove that for j=0,1, .. .»n and for
m=1,2.. k-1 (assume k=2, since k=11is trivial)
m 2
(28, ) ff T — | Vi ax dy
rgl0x;0ym
m+1 2
S;ff _u y2”+1‘"dxdy.
2m—1) rgl0x;0 " lf
For fixing j and concatenating equations (28, ) form=1,2, .. L k=1,
we get
2 k 2
(29) O y'iTrdy<e, _Tu yHe gy,
ox; W ox,
I‘B j FB Jj
forj=0,1,...,n Sum inequalities (29) forj=0,1, . . SN
Inequality (27) follows since
ou 2 Hu |2
ol —| =|Vu 2, while 7 == | <lyk,l2
ZJ—O axj l ' ZJ—O ayk¥1 axj ’ ’

The  hyperplane y=1 intersects T g in  the  p-disk

D:={{(y, 1)3\/m"7<[5} so that I'; is a union of rays of the form
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(Vs y)[ y>0} with each ray starting at .0 and passigg tl.lrotgnhd D ]2:
(w1)- To verify equations (28) fix mand ] e s
.,=6"‘u/6x-6y’"_1. For each v, [v|<|3, .the filstan(':e. from (yv,y e

s lemenjt of I'y becomes larger than 1 if y is sufficiently larg.e. Hence
?Onll;p is a ball of radius 1 about (yv,y), our hypothes1.s implies
L |Vu(z)|>0 as y->o. This in turn implies that
lsil:s:iB; ofldy (yv,y)=0. (See [12], p. 216, formula (18).) Hence

o0

fOov, )= —J gf(sv, s)s™s™™ds.

y

By Schwarz’s inequality, therefore,

a0

2 o]
s2™ds | sT2mds.
¥y

g (sv, 5)
Js

o) < J

y

Multiply by 3™~ ! and integrate from 0 to o to get

r |fOov, ) [2y2m Ty
0

g(sv, s)[zsz"’ds>dy

1 ve) @
<
2m——1J‘0 <J; os

3} ®© 2
__ 1 if(sv,s) sz’"x{Py}ds)dy
2m—1J, o |0s
@ 2
- ! j D )| 21 ay.
2m—1), |0y

The last equality is immediate from interchanging the I(:rder oi
0
integration. Finally integrate over {|v|<p} and make the change

Variables x=yv, y "dxdy=dvdy to obtain equations (28, ;). Lemma 2
| IS proved.
Proof of Lemma C. — The proof of this Tauberian lemma involves

! Several applications of the summation by parts formula in two variables,

that is to say, equation (0).
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We also need the following simple lemma:

Lemma D. — If

Fe =2+ = my (= -
m n

then for x and Y non-negative x ¢ (0, 1), y ¢ (0, Dand m=1, n=1 we haye
S (x,»)20.
Proof of Lemma D. — Note that (0, 0) =f(1,00=0. We also have

;—sz(x,y)z(l —1/m) (1 —1/n)’In*(1~1/m) > 0.
x

Consequently f(., 0) is convex. Hence f (x, ) >0 on [1,00) x{0}.
Similarly f (x, ¥)>0 on {0} x[1, o). For x and y in [1, 00) x[1, 00) we
can write

SO D206 9)~(x, 00~ £(0, ) + (0, 0).

However

2
) (o x,ny),

T 7)) =1 (x, 00— £(0, )+ £(0, 0) = xy
Ox dy

for some choice of ¢ and n between 0 and 1, and

2

/ (o x,my)=(1 —l/m)“”‘(l~l/n)'"’ln(l—1/m)ln(1—1/n)>0.
Ox dy

We now continue with the proof of Lemma C.  We will show that
(30) Z;‘n=1 Z:=1ajk_2;0=1 Zl?:laikrjskﬁ’o’

with r=1~1/m and s=1— 1/n. Given >0, select p so large that if m>p’
and n>p® then |¢,,|<e.  We can also assume that 1/p<e,

There are four regions that must be studied. We will assume that
m>p’ n>ps,
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" Region A is the only place where both of the sums of expression (30)

{':a«rc involved. We first study

3" " . k
”1(31) Z;‘":leﬂaik(l"rjs)
S e PP T
=Z;"=1Zk=1{;2—+;(7}{(] +k )a_lk}
= Z;n= s 2= Mk o

 where

1—risk
- j2+k2

Ay and =0+ k) aje
J

We now use the summation by parts formula (0) and the estimates

jk(l—rjs"’)

rjsk kerk jrjsk
(]-2 +k2)3

lA}kll<C(mn(jz+k2)+m(jz+k2)2 n (> +k*?
j(]—rjsk)+ Hsk )
(]-2+k2)2 m(iz+k2)

jajel<c(

k(l—rjs")+ s )
(P+k%?  n(P k)

The first term of the summation by parts formula in region A is

| AG <C(

J ok
<CYTTIYRT rs |5 jk

m—1 "—1__k.rigi_
+CLi= “=Um (12 + k2)?

ik
w1 jr's ik
+C j=1 k=1n02+k2)2|8ﬂct.}

-1 n—ljk(l_rjsk)

—|gjk|jk

=1 k=1 (jz+k2)3

m-— 1 n—1 11 _jk
=1 Zk=1Aﬂ‘ S11

& ijk

n—1

m

+CY7
=I+11+II+1V.
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We now estimate each piece. First,

rfsk]k
ISCZ Zk 1 n(]2+k2)

r’s1k
+C
Z IZk 1 n(]2+k2)

mogn stk
R e
=l +1,+1,

It is necessary to consider each of these pieces because the estimate

)ejk|<8]k 1s not valid if j or k is too small. For small J, k the best we
know is that | g |< Cjk.

Since

<—L> sk<1,1, <C—mp<C < ¢ 7 <C
JA+k? mn m p* N

The second term, I, is estimated in exactly the same way. We also
have

I <£C—Z°O 0 Dne oM =Ce.

(Recall the choice of r and s.)

To estimate II, we again break up the sum into three pieces:

jk g
II<CZ IZk 1 (]2+k2)2
]erJ k
+C
Z IZk 1 (]2+k2)2
]kzr’ k

+8CZ Zk P (]2+k2)2
=10, +11, + 1L
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The term II, can be estimated by

Jk?
R o

where the substitutions j=ky and dj=kdy stet used. Using the same
method, we can bound both II, and 11, by Cs.

The estimate for III is exactly the same as that for II with the rolls of j
and k reversed.

The last term in our expression, IV, is also broken up into three
pieces. Since IV involves the expression (1—r/ s*), with r=1—1/m and
s=1—1/n, Lemma D implies that we can replace 1—r/s* with
(j/m+k/n). Thus,

1 [*® ¥y J4
roo ———dy<C— <Csg,
“-lmL 1+y2° " m

m J2 k2 jim

IV CZ 121: 1(]2 k2)3
P Rjm SR jm
+Czp 1Zk 1(’2+k2)3 Z} ka p(12+k2)3

+ similar terms with j/m replaced by k/n.
The first of these terms is estimated by
@ 2
Pk dj
(]2+k2)3

Cli-r

which by a change of variables, is seen to be controlled by Cp/m < Ce.
The second term can be estimated by

3k2 .
CZk 1 J‘ (]2+k2)3

Let j=ky, dj=kdy, and we can bound this second term by

o yidy

C o
_Z" —— < 3" (p/k)*<Cp*/m<Ce.
k=1 0 (1 y2)3 Zk—l /) P/

The third piece is bounded by

k2 .
f j(] kz)sdkd]'
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If jy=k, jdy =dk, this is less than

m foo 3 C m
EJJ Zy—3dydj<—8f 4,<™CE _ce
mJ, Jo (041 mJ, m

This and the fact that the terms with j/m replaced by k/n yield the same
estimates concludes the estimate for IV.

The second term in the summation by parts formula for region A jg
estimated by

m—1 j(]_rjsn) er" .
AR st <C { + jne;,
j=1 z (nZ _1_‘]'2)2 m (nZ +JZ) J

This by Lemma D, and the definition of D, 1s less than

C[ o Pn@m+1)

m J2n(i/m)+1)
j=1 (n2+j2)2 Z

(n*+j%)?
inrd s jnprd s
;]=1 y 2, 22 +e ;'n=p ! 2,22 :l
m(n”+j%) m (n* +j°)
Estimate the first two sums by the corresponding integrals, using the

substitutions j=ny, and dj=ndy. Bound jn/(n>+j% by 1 in the last two
sums. The upper bound for this term is now

pin 3 p/n 2
C ﬁﬁy—d + ykd
232 Y 232 Y
o m(1+y%) o (I+y9)
min 3 m/n 2
+sf Ehyzzdyﬁ-a‘( h—yzzdy
p/n m (1 +y) p/n (1 +y)
+Y0 -—+ Z ]

For the first and third integrals use y* (1+y%) 2<1. For the second
use y*(1+y%) 2<y® 1In the last integral expand the interval of integra-
tion to (0, o0). In the last sum expand the limits of summation to 0 and

0. This term is then bounded by

1 3
C[ﬁl—)Jr <—> +8£T+Cs+£+£m]<Ca
mn 3\n mn m m
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The third term in the summation by parts formula for region A is

exactly symmetrical to the second. Simply interchange j and k, and m
" and n. The estimate is then exactly as above.

The last term in the summation by parts formula for region A is

l—r™s" mn
An ST1 = —5—— MNEp, < ——— E<E.
m?+n? m?+n?

This completes the proof for region A.
For region B we must study

k

](12+k2) aj

s
j2+k2.

o n —_
mdi=1MCi where Ay

Again apply (0). We need estimates for A}, A%, and A%L.

These are:
. 1 k
|AL < Crist ot =
g mn(:+k®  m@G*+k?
RN R—— }
n(]'2+k2)2 (]'2+k2)2 ’
[ 1 1
;0 I*l k +
|A1k1<c § _(/'2—|—k2)2 m(jz+k2):]
and

|AW|<(%%k— I }
Jk _(]'2+k2)2 n(]'2+k2)

The first term in the summation by parts formula for region B is
estimated by
n41rjsk|sf,"‘1|k
=1 m (iz + k2)2
noy M sE st |
k=1 n(jz+k2)2

CYL. "Llﬁiiﬂ_+c -

(]2+k2)2 =

+C2ﬁm
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1er
+Cz; m k 1(,2 ' Z)IZI_

Since spyy=s¥;—s{17 V% and m—1 and j exceed p, we may boung
|s¥, | by Cjk if k<p and by Cejk if k>p.
To estimate I we have:

I+ 11+ +1v.

I ]kr’s
I<C
Z mZk 1mn(]2+k2)
n—1 ]kr’s ©
+C82} m bk =p 2 2 j= 0
mn (j +k) mn
Cs C
o Y oS <—m+imn<Ca
mn mn
To estimate II we have
© » jkZrisk
II<CZj=m Zk=1 m(iz+k2)2
2
+Ceyn, Yo, SErS
P (]2+k2)2 (]2 k2)2
Sl
(]2+k2)2

Using the substitutions k =jy and dk =jdy yields
2
n< € yo yidy | Ce o

JP/J y2dy
m Ty (14y T m S

J'H/J
ai (1 +yH?

Replace the denominator in the first integral by 1, and extend the limits
of the second integral to (0, oo) to obtain

3 3
n<® 2 p_+§_a P or< cr
Y L M A m-m

3 +Ce<Ce.

For III we have
w » j2 kel s*
IH<CZj=m Zk=1 n(lz k2)2
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- 2 ik
, w yn _J kr's
. +C€Zj=m zk:ﬂ n(j2+k2)2

lj‘oo Jzkdj
1 nl, (I-2+k2)2

© 22 :
Ecn & J*kdj
+C22k=ps J:n (iz+k2)2'

<CYr_

Let j=ky dj=kdy and extend both domains of integration to [0, c0),
and extend the second sum from 0 to co, to get

1 [® y*dy
I J‘ 2z
nJo (1+y9)
Upon bounding jk/(j* + k?) by C, we have

P " " dk
IV<Cy?” J S5 +Ced7, fz
o J

P4k

[} 2
€ cw y-dy P
{ cy? c=Y> s* <C-+Ce<Cs.
m< Zk= n Zk-O L (1+y2)? n

dk
+k?

Expand the limits of the second integral to [0, o0), and use the substitu-
tions k =yj and dk =jdy in both integrals to get

- 1 (el dy © ri[ dy
IV<C2j=m _.j s TCeL _-J‘ 1412
jdo 14y jJo 1+y

1 <CZ} " 2+C Zw r’<C‘D +Ce<Ce.

Now consider the second term in the summation by parts formula for
region B. This is less than

. jnri s*
n?)? 7= m (4 n?)

©  j?ndj l —oo
<Csj T 2)2+Ca—zj:mr’.

0 m

Letting j=ny in the integral, and using the fact that in the region of
Interest, 1/j< 1/m allows us to estimate this term by

0 2d C w
CeJ‘ J y+_s
0 1+y2 m
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The third and fourth terms in the summation by parts formula are zerq
since for fixed k,

. k 1
lim,, , ™ s"[ + =
M M kY |

and

limM_,wr"’s"[ ! =
M?+k?

For region C write

Z] m Zk n+1CJk (. Zk 0o~ Jim ZZ:OZZN_ZH‘

By the argument for region B, | <Ce and |}, | <Ce where C is
independent of N. Letting N go to infinity shows the whole sum to be
controlled by C¢ also.

‘ Region D is the same as region B with the two coordinates
interchanged. This completes the proof of Lemma C.

Proof of theorem 1. — Let u be the Poisson integral of s. By theorem
2, gig(u)<oo a.e. on E. By lemma B, Ny(u,;,)<oo a.e. on E. By
Théoréme [4], p. 95, u,, converges a.e. on E non-tangentially and a fortiori
radially, that is to say rectangularly unrestrictedly Abel. In other words,
there is a set F<E so that the series s,, (x)=—Zmn/|n|? D, (x) is rectan-
gularly unrestrictedly Abel summable for all xeF and |E|=|F|
lemma A, parts (6) and (8) we also know that there is a set GcE,

as || N|| — o0 at each point of G. (The bound and the rate of convergence

may vary as X varies over G.) By lemma C, s,, (x) converges for every X
in FMNG.  Since

Example. — One might expect that an argument similar to that given
above would work for the discrete analogues of the two single Riesz
transforms, namely the multipliers

m n
—_— and ———
m-+n m+n
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© For these everything works as above until the Tauberian theorem C. The
~ patural Tauberian condition that arises for the first multiplier is

1 -
M Zj‘il Zivzl N +kPa;—~0

and the natural Tauberian condition that arises for the second is

1 ;
sz\'f:l ZkN=1\/] +k ai"_)o'

Unfortunately, these Tauberian conditions are too weak. The following
example shows that the Tauberian condition associated with the second
multiplier can hold for an unrestrictedly Abel summable but UR divergent
series. (An example for the first multiplier can be obtained by interchan-
ging the roles of M and N in the example given.) The series fails to
converge UR by having a column of positive terms followed immediately
by a similar column of negative terms. Selecting M so that only one
column from such a pair is included leads to a large partial
sum. Increasing M by 1 to include the additional column leads to a
partial sum of zero. The series is Abel summable to zero because we use
both columns of every column pair, and for r close to 1, r* and r**1 are
almost the same. The Tauberian condition is satisfied because if we use
both columns of a column pair, the sum is small, and if we split a column
pair, the partial sum is not too large, and dividing by N forces it to
zero. The details are given below.

There is a numerical series S =) a;, satisfying

(32) S is rectangularly unrestrictedly Abel summable to 0.

1 .
(33)N ijz1 SN SR ag—0 as [ M, N||=min {M, N} - 0.
(34) S diverges UR.

Define S=} aj, as follows:

for je{l1,2,3 ...}

1
Ayi_q, 2=
k

and
kel{jj+1l, ..., 2j}
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for je{l,2,3 ...}

Ayi o= ——
2, 2
k

and
ke{ij+1,...,2j}

a; =0 otherwise.
Proof. — For (34) note that

om 22m 2m 22m_ 4 2m 1
Zj=1 k=1%, k_ijl k=1 4 k=0—Zj=m ]_._’_ln ).

For (32) we must estimate
R 1 ..
(35) Z;il lfj=j Erzquzk_;ryszk'
— l_r 0 2j 1 27 2k C 1 5] 24
= D Yal; L < =Ny r

N . © :
<CA-N2, P+Y2 . r)

I— 2N N o 2N j
<C(l-r) - r+r ) Lo {rt )
1—r)r"
<c-rty Uz
1—72

But,

1—r¥"=(1 —r(A+r+ri4. .. +r2N‘1)
>(1=rr(1+... 41

2(1-r2¥ "

Using this we obtain an estimate for (35)of C(1 —rZN)+(C/2N).
Given £>0, pick N so that C/2Y<g/2. Then pick r so close to 1 that
C(1—r" <gp2.
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2+ .
2 1 -1 _1_‘ -1
j42 4z j+2 j*2
23‘1 ) '—1 N ,_1
341 541 j+1 j+1
zj ..
Y
o3
¥ Ji*1
Fig. 1.

For (33) we must show that
1 -
N Zfil Yomr S H R a—Epy =0

UR. If M>N then Neyny=Neyy (See Fig. 1), whence £y,y=€xy so it
Suffices to show that g,y >0 U.R. for N>M. Choose m a positive
integer so that 2"~ 1 <M < 2", and define n (not necessarily an integer) so
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0

M{l
L
-~

that 2"=N. Define

if M#£2"—1

otherwise } - Then

m—1
EMn

i 1
L‘—Z;’””<k (21_1) +(2)

i=1

- % @7 T (2“)2>

+62}le2mm, [n]||% (2"—1) +(2 ) }

where || 2j, [n]||=min {2j, []}. Use

|\/(x—1)2—a2—\/x2~a2'<1 for x» 1 and ||2m, [n]||<2m
for the first term, and [§|<1 and ||2m, [n]]|<[n] for the second to get
| R JR— i1 a1
'8MN|<2'1[ j=11 Ziij;+ ][(im; /2.2 }
2
<C[(m—1) In (2)+£Z£":‘ 21
2" m m
220
< 2Cn|:n In (2) + \/— 25:02":'

m

which goes to zero as | M, N|| goes to c.

Appendix

GEOMETRICLEMMA 1. — A, =T, S A

Proof. — For 0Za<n/2, we have

2m+4-

2 2
o o

1——=Zcosagl——,
2 n

(36)
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since the functions 1 —(a*/n)—cos o and cos o+ (a?/2) —1 are both 0 at
“* y=0 and have positive derivatives on (0, n/2).
7 gssume 00

Let z=re®cA,. We may

If <0 <7 (recall a=n/4-1/2™), then

4
r<l—02"<l—a2 m"=1-—-—o3
T

Hence by (36), r<cos a and zel,,.
Now look at the functions

g, 0): =—3a02+(4a?+1)0+a(1—0a?)
and

f(a 0): =cos a—cos (x—0)(1-62"™)

on the triangular region

T={(oc, eﬂogegg%}

in the (o, 6) plane. Since g=2a=0 on the top of

T(={(x )}), g=o(l—a’)20
on the bottom of
T<={(oc, m]oggi}),

and
Zs=—6a=<0o0n T gz0on T.
Also

Jo=—sin(a—0){1—20a0)+ 2 cos (x—6)
80 that

foz0on TN {1-206<0},

whereas if
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(o, )e TN {1-206>0} from (36),

fiz —(a—e)(1—2a9)+20c[1— (“_29)2

]=g(a, 8)=0.

Since f=0 on the bottom of T and f;=0 on T, f=0 on all of T so that

| _po-m< _COSQ

< which implies A, € T,
cos (a—6)

Now let z=re®el’,. Assume 0<0<n. If a<0<n, r<cosa By
(36), cos a<1—(o*/n*)n. From a?/n?=2"2""4 follows zeA,, ., The
remaining case requires showing

%% <1-p2me

cos (a—8)
for (o, )€ T. But the function
h(a, ) : =(1—-0272""%) cos (0 —8) —cos «
x has k(a, 0)=0,

h(a, )=1—a2 2™ *—cos o

3 2
o o o
=1———cosaz—(1-— )20,
T T n

and hge=0on T. Thus h=z0on T.

GEOMETRIC LEMMA 2. — Let z=re"®eT,. There is an absolute constant
C so that

(37) 11=z| < C4m,
1—r

and

(38) —lﬂ < C4™,
1—r

There is an absolute constant ¢>0 so that if p is the radius of the
largest circle centered at z and contained in I, ;, then

(39) p>c(l—r).
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If, further, z¢I",,_,, then

1—r
—_— < (C2™™
(40) 1—r+ I 0 [
Proof. — Let 8=1—r, and without loss of generality assume

0<0<m. Equation (40) can be rewritten 1/(14(6/3))<C2™™ and so is
equivalent to

0

Tig ->C2™
(40) 5
First let ze B,,={w||w| <cos a} where a=mn/4-1/2"
Then
0
]e z|< 2 and 0 < i ,
l—r 1—r l—r 1—r

but 1—r>1—cos a>Ca? by (36) so (31) and (38) hold. For (39) note
that p is greater than or equal to p*, the radius of the largest disc about
z contained in B, ;. But
P*=COS iy —F and C()Sd—m+1—1
1—r
_cos(a/2) 1

5 +1~ asdN1l—cosa or r . 7cosa,

80 to prove (39) for ze B,, it suffices to prove (39) for zedB,,

If ze[,\B,, so that z is in the part of I, near its apex 1, let
2*=re!” 4TI, have 6*>0 and |z| =|z*| Then the left sides of (37) and
(38) are both larger at z* than at z. Apply the law of cosines to the

triangle (0, 1, z*); noting that the side lengths are 1, 1—8 and | 1 —z*|=: b,

and that cos(n/2—a)=sino. We get b*—2 (sina)b+ (2—8)5=0, or
since b <sin o (1Phas lengthsin o),

_ 8(2—9) <(2—8)6<C§
b=sin a—\/sinza—6(2—8) " sin a4+ _/sin? a—3(2—90) sin o o

or
E<C.1<C4’",
) o
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Fig. 2

which proves (37). For (38), apply the law of sines to the same triangle,
getting

b _ r
sin 8*  sin((n/2)—o)
whence
o* H *
7§Crsm9 :Cbcosoc<cé’
) ) ) )

where r=cos a2 /1/2 is used for the first inequality. Then (38) follows
from (37).

As mentioned above, (39) fi all ze B,, will follow from verifying (39)
atz=P. (See Fig. 2.) If ze PQ, p(z)= cos a/2—r. We have

V<4pw>=v<cos(ot/2)—r> =8<gs(a/2)—r>er=<l—cos a/2>e,
1—r 1—r or 1—r (1—r)?
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Since as z moves along PQ from P to Q r increases, the directional

[ —
- derivative of p/(1—r) in the direction PQ is negative. Thus

(p/(1— M(P)>(p/(1—1)(Q). Further if zeI' N\ B,, then the fraction
(p/(1—7))(z*) has a smaller numerator than, but the same denominator
as, (p/(1—7))(z). In conclusion, (39) will follow from (p/(1—r))(z)>c for
all zeQ L.

Let now zeQ 1. Let S be the closest point of R1 to z so that
zS LS1and p(z)=|zS| Looking at the triangle (z, S, 1) shows that

— o
p(z)=|z1]|sin 5 =bsing

3(2—19) sin o/2

_ >6-1-sin o2 ) )
sin a+\/sin2a—8(1—5)

= Py
2 sin o 4cosa/2 4

This proves (39).

For (40') we will show 6/8>c2™*! for all zeT,,,,/T',. (The index
shift allows us to use figure 2.) If o/2<0=n, r=cos a and

77(“/2) >C2m+1
1—cos a

8
5

v

by (36). If 0<B<a/2, z is inside triangle (1, Q, R). So if
2 =Q 1M OZ, then 0(z')=0(z) while §(z')>5(z). Hence we need only
deal with the case of ze1 Q. As in the proof of (38) above, for such a z
we have

in 0 b
rsin® . bcosa

) )

C

ol @
1%

coSs o 3(2-9)
§ 'sin o+ _/sinZa—0(2—0)

=C

>C cos o >C2mrt

2 sin o

This proves (40'), hence (40), and hence geometric lemma 2.
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Remark 1. — In the proof of this lemma, we tried to avoid “geometri,
intuition.”  Only strict dominations and equalities were used, except for

the intuitive estimates

. 1 1
sin x<Cx and —<C-,
sinx x

which can be made precise by using elementary calculus to show the
functions x —sin x and sin x —(2/%) x nonnegative on [0, n/2].

Remark 2. — The constant 4™ in (37) and (38) is sharp at certain points
far away from the apex of I, Near z=1, the above proof shows that
2™ will do.
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