MULTIPLE TRIGONOMETRIC SERIES
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1. INTRODUCTION

ob;l;l;zls: r&gie of this article is to give the reader a feeling for the
well-develo eda:}llse when one tries to extend the far-reaching and
higher dimf:)nsio COIT)’ of one dimensional trigonometric series 10
areas | have WOI;(S.d Teadily confess to slanting this talk towards
Furthermore, | r "131 m_and make no Qlaim of comprehensiveness.
or “best os;'b]“:5 resist the temptation of stating a best known
un derstanrc)j bl te .EeSlﬂt whenever a less good result is easier to
example, the }111 still captures the spirit of the situation. (For
hypothe;is su })l'pOthesls of f % L” might be used when a weaker
cases, [ will ti ?; f.e L(log* L)* would be sufficient.) In such
reader can t Y 10 give enough references so that the interested
I will n trace dow’? the stronger version of the result.

Whoselgerrlrel:;T'lt)l explicate the theory of double Fourier series,
firma of one :i'y and difficulty is intermediate between the rerra
Sions, At the rxmenspn and the terra incognita of three dimen-
sions se present time, the.passage from two to three dimen-

ems far more substantial and non-trivial than that from
one to two or than that from three to more.
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Let f(x., y) be a measurable complex valued function defined on

the unit square 72 = [~ 1. 1) x [~ 1, 1)
If the Lebesgue integral fflf(.x.y)[” dv dy (where p 2 1) is
;2

finite, we say f € L7, In this case. f has a Fourner series given at
each (x, ») of T2 by

S[f](r.y) = 2 ;neZﬂl(m.14n1'). (11)

where the Fourier coefficients fmn are given by

Fom = [ [ f(s. )€™ 20"+ gs dr, (12)
T2

and the summation is indexed by the m-n lattice plane—the set of
all ordered pairs of integers. This Fourier series is a very special
case of a double trigonometric series where the f,,, are replaced by
arbitrarily chosen complex constants c,,,. As in the one dimen-
sional case, the set of all double Fourier series is only a very, very,
tiny subset of the set of all double trigonometric series.

The lattice plane has no natural ordering and many important
trigonometric series are not absolutely convergent, so the first
order of business is to determine an ordering.

We will take the terms corresponding to the four points (m, n),
(m. — n), (—m, n), and (—m, — n) together (just as one takes
fetmin 4 f_,e 2" as a term in the one dimensional theory).
Even this is less natural than in the one dimensional case as our
later discussion of the failure of Plessner’s theorem will indicate.

This grouping of the four terms reduces the problem of ordering
the lattice plane to that of ordering the lattice quadrant. How shall
we do this? The answer is far from clear. In fact, there very
probably is no one answer.

To get a feel for the situation we will consider some numerical
series that ought not to converge, but which do with respect to

some of the usual orderings.
Lets, , = ) southwest of (m. md; b€ the rectangular partial sums.
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Example 1. Let q -
ure 1), k0= —k, ay 3 =k, a,, = 0 otherwise (Fig-
A numeri .
exists. g5 nnctal goublq SCTIES 18 Square convergent if the limit of s,,
doesin lends to infinity. Here Sskotsk—y = k $0 lm,_ oS
: : . =1, - n—>
oSy filslt. This series is not square convergent. Let
r . A
gent i the 1 nf'ftam}. Then a numerical series is circularly conver-
1L OF 5 exists as r tends to infinity. However, in

example 1, for ali .
. r, § = O SO l _ ) .
circularly convergent, = My +5, = 0, so the series iS
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Example 2. Let a, = —k, a,y = k, a,, = 0 otherwise.

Here s,, = 0 for all n so the series is square convergent. (Draw a
picture.)

A third method of convergence is restricted rectangular conver-
gence. Here we are interested in the “limit” of the not too
eccentric rectangular partial sums—rectangles that are “sort of”
close to squares. Since the set of all such rectangles is not linearly
ordered the definition requires some fancy footwork. We say that
the series converges restrictedly rectangularly to s if for every fixed
E > 1, SUpg, mew,w)lSmn — 5| =0 as N — oo, where Wg(N)
(={(m,n):m > N,n> N,Em > n > E"'m)) are a sequence
of wedges cut out of the lattice quadrant shown in Figure 2.

(NN

FiG. 2
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The intuitive idea behind this picture is that if £ is not too much
bigger than 1, then a rectangle with southwest corner at (0, 0) and
northeast corner in W (N) is pretty nearly a square. Furthermore,
the point of the N is that as N becomes very large you are looking
at a “late” partial sum.

It is equivalent to demand that S, — s for every sequence
(m;, n;) tending to (0, o0) in such a way that the two ratios m;/n,
and n,/m;, remain bounded.

Observe that example 2 is not restrictedly rectangularly con-
vergent since s, ,_, = k.

The last method of convergence I will discuss is that of unre-
stricted rectangular convergence. We say S,., — § unrestrictedly
rectangularly if limmm(m, nysoSmn = $, 1€, if sup,, o yls,., — 5
— 0 as N increases,

Exqmp[e 3 Letaay=k a2, = —k, a, =0 otherwise.
This example converges (to 0) restrictedly rectangularly, but

fails to converge unrestrictedly rectangularly since Sz -y =k
(Draw a picture.)

Example 4. Let a, , = k, %, = —k, a,, = 0 otherwise.

This is a nasty series—it causes a lot of trouble. Here the
rectangular sums, as soon as they are at least n X 2, are zero. So
the series 2a,  is unrestrictedly rectangularly convergent to zero.
Nevertheless, it has some pretty horrible partial sums. Just think
about any partial sum involving only the bottom line S0 = Zi=0%0
= n(n + 1)/2. So this series has terribly bad partial sums; it has
big .terms, and yet it is unrestrictedly rectangularly convergent.
(Incidentally, it is, of course, circularly divergent.)

. The relations between modes of convergence for two dimen-
sional series can be visualized by Figure 3.

In Figure 3, A B means that convergence of a numerical
series with respect to method A forces convergence of that series
with respect o method B; while C o D means there is a series
converging with respect to method C and diverging with respect to

ethod D. These introductory remarks already show a separation
between the one and two dimensional situations—things will usu-
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ally remain worse for the two dimensional case than for the one
dimensional case when we throw some exponentials in and begin

our study of trigonometric series. . _
The main body of my discussion will be broken into five areas.

They will be convergence and divergence pf Fourier.ser.ies, the
effect of convergence on the size of coefficients, locahzatlon, the
relative behaviors of a trigonometric series and its conjugates, and
the uniqueness of the representation by trigqnom;trlc series. In
each area, I will very quickly run over the main points of the one
dimensional theory, and then tell you how far the results can be
extended into higher dimensions.

2. CONVERGENCE AND DIVERGENCE OF TRIGONOMETRIC SERIES

Here the one dimensional theory is pretty clear. The positive
result is the

CARLESON-HUNT THEOREM: If f € LP(T).p > 1, @
then S,[ f](x) converges at almost every poini X.

Carleson did the p =2 case in 1965 and Hunt ex'tended to
all p > 1 in 1967 [4], [12]. | want to mention two negative results.
The first is the very well-known counterexample of A. N.
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Kolmogorov:

There is a function k in L' (T) whose Fourier 22
series diverges everywhere. 22)

The other negative result, which is due to J. Marcinkiewicz, is
possibly not quite as familiar. It is

There is a function m € L'(T) which is finitely 23)

oscillating and divergent almost everywhere [ 18].

F%nitely oscillating means that if we fix a point x and look at the
partial sums s, = S [ f](x), they wiggle (i.e., lim sup s, — lim inf s,
> 0) but they do not go off to infinity (i.e., there is a finite number
M (x) such that sup |s,| < M).

lKolmo.gorov.in 1923 produced a weaker counterexample of an
L function with series divergent only almost everywhere [15].
(This means that there was an exceptional set of zero Lebesgue
measure on which convergence might occur.) Three years later, he
was able to construct the perfectly divergent function of (2.2)
above [16]. We emphasize this point because the “almost” of (2.3)
cannot 'b'e dropped. For suppose there were an L'(T) function
m(x) finitely oscillating at each x. Then the union of the closed
sets Ey = {x € T :sup,|S,[m](x)] < N} as N ranges over the
positive integers would be all of T, so that by the Baire category
theorem some Ey, would contain an open interval (a, b) in which
all the S, {m,](x) and so also m\(x) would be bounded by N,
(Recall m, is the (C, 1) limit of its partial sums almost every-
where.) Hence replacing m, by 0 outside (a, b), we would obtain a
new function m, bounded on T and thus by (2.1) convergent
almo.st gverywhere on T. But my = m, on (a,b) so that by
localization (see section 4 below) m, must diverge almost every-
where on (a, b)—a contradiction.

Ip twq dimensions, the answer to the question of convergence
varies with the method of summation. To start with let’s look at
restricted rectangular convergence. There is a tremenaousty gooa
function f with an everywhere divergent Fourier series. How good
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is f? This good:

(1) fis continuous,

(ii) f has a Fourier series of power series type, 2.9
(iii) f has everywhere uniformly bounded rectangular partial
sums.

Condition (i) is much stronger than f € L?, so we have a marked
contrast to (2.1). By condition (ii) we mean that in f’s Fourier
expansion (see 1.1) the coefficients f,, are zero if (m, n) is not in
the first quadrant. The one dimensional analogue of this—f, =0
if m < 0—often improves things greatly; it doesn’t seem to help
much here. The impossibility of dropping the “almost” from the
conclusion in Marcinkiewicz’s example (2.3) shows that condition
(iti) is in very dramatic contrast to the one dimensional case. If,
however, you prefer your examples more divergent, it is easy to
change f so that (iii) is replaced by “f has lim sup,_,|S,[f}(x)|
= oo everywhere”. This example is essentially due to Fefferman in
1970 [10] with a few of the frills added in {1].

You can get positive results if you shift gears by changing the
method of convergence. Recall from our discussion of numerical
series that it would seem easier for a series to be square con-
vergent; and, sure enough, it is a lot easier. Here is a theorem
which indicates this:

If fel?, p>1, then S,[fl—f almost @5)

everywhere.

This was proved around 1970 simultaneously by Fefferman (in
the United States), Sjolin (in Sweden), and Tevzadze (in the
USSR) [9], [22], [25]. The method of proof is quite interesting. We
would like to do induction starting from Carleson’s theorem (2.1)
but for technical reasons this doesn’t work. So we introduce a
“butterfly”. If

f~ 2 2 :MeZﬂi(mx-l-ny)’
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Fic. 4

decompose the sum into

|m] o0

§ > o+ S . (2:6)

m==% p=—im| M=~ jnj>|m|

Tg both terms correspond functions which are also in L? (M.
Rxe_sz's the.orem) and for both these functions the lattice plane
regions being summed over are now butterflies (e.g., the first
summand’s index set looks like Figure 4), and the technical
obstacle to the induction vanishes, as is easily seen.
’ I will mention in passing that for double Walsh-Fourier series it
is not clear if both of the sums in (2.6) represent L” functions if
# # 2, 5o the analogue of theorem (2.5) for double Walsh series
follows c?asnly only for p = 2. If p < 2, the question remains open.
For' circular convergence there are some negative results but
tbere is still an open question. Here if f € L? withp < 2, circular
divergence may occur. This follows from Fefferman’s counterex-
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ample for the multiplier problem (7], [8]. If p = 2, the question
remains open. I think this is a nice question to work on.

There are various ways to clean up the counterexample (2.4).
One thing we can do is to put more stringent restrictions on the
function f. For example, we might demand that fe LXT? and
that one of its partial derivatives exist and also belong to LXT?)
(22]. A second approach is to work with summability instead of
convergence. For example, for fin L7 the (C. 1. 0) means of the
Fourier series—

1
-1 4+ 8
Omn m+ 1 (SOn + Sln mn)
do converge to f unrestrictedly rectangularly almost everywhere
[3]. (We were able to get away with averaging only in the m
direction because of Carleson’s theorem.)

3. CONVERGENCE AND GROWTH OF COEFFICIENTS

The point here will be to see how bad coefficients can be for a
convergent trigonometric series.

The one dimensional situation is very nice. We assume that
T = Sa,e*™™* converges on the set E, where |E|—the Lebesgue
measure of E—is greater than 0. By definition this means that

a,e¥™™ + a_"e—b"'""_,o, x € E E| >0 (3.1

The Cantor-Lebesgue theorem postulates (3.1) and concludes that
a,—0 as |n|—> .

So convergence on a set of positive measure forces the coefficients
to go to 0. Again, the answer as o whether this works in higher
dimensions depends on the method of convergence. We will
assume throughout this section that a double trigonometric series
T = Sa, e*™+w is convergent (under the mode of conver-
gence being discussed) at each x € E, where |E} > 0.
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For circular convergence the conclusion is very nice. Not only
do the coefficients go to zero, but, in fact, the sum of the squares
of the coefficients lying on a circle

{(m, n): miew?=r?}

tends to 0 as the radius r tends to co. This was first proved when E
has full measure by Roger Cooke in 1971 and the hypothesis of
|E} = 1 was weakened to |E| > 0 by Antoni Zygmund in 1972 {6},
(28]. The partial sums are no problem because we are dealing with
a one.-parameter family. For one parameter methods (e.g., circular
—which is indexed by r—and square—which is indexed by (n, n))
convergence implies that the partial sums tend to a limit by
definition.

Let us now pass to the unrestricted rectangular case. Here

;:onvergence doesn’t quite force the coefficients to go to 0. It does
orce

a,,, — 0 in the northeast.

We can prove this as fast as we can explain what is meant. Fix
(x,y) € E and take a rectangular partial sum S, , = S,, »(x.¥)
which is close to the limit (this will be true if m and n are both
big); add §,,_, ,_,; then subtract S, _, , and S,, ,_,. All 4 of
these partial sums are near the limit, so since 2 aré" 'tzlken positive
and 2 are taken negative the resultant expression is small. But 2
moment’s thought will show that this expression has all terms 0
except for the (m, n) one:

a, "EZm'(mx +m) 4 a, _ "e2m‘(mx - ny)

+a_m_uez"’"(‘m+’ly) +a —2mi{mx + my) (3.2)

~m, —n€

verl:ioanrg:;nent, wl:wh is nothing more than the two dimensional
a,=27_,a,— 2"”la, is what we call the Mondrian

f}::roef. '(See 3 p. 4_“] fo‘t a picture and further details.) Finally,
15 an easy inductive extension of the Cantor-Lebesgue
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theorem that deduces from (3.2) that the coefficients themselves
must be small. But notice that the reasoning that made (3.2) small
required both m and n to be large —that is (m, n) to be in the
northeast.

Example 4 above might seem (0 contradict this proof. What's
going on, of course, is that the terms are not in the northeast;
rather they are all due east—that is, down on the m axis. It looks
as though you have no control at all over what happens in the
east. However, it turns out that using a very clever lemma of Paul
J. Cohen, you can prove that the coefficients are all bounded

regardless of where they are:
la,..| < M for some M and all (m, n),

[3, p. 410]. If we keep thinking about numerical example 4 we can
see that this is a little bit surprising. Near the end of section 1, we
said that double trigonometric series were usually just as bad as
double numerical series. Here is one case where they are better.
We can use the positive measure of the set E to disallow possibili-
ties like those of example 4.

Square convergence is awful. The series can square COnverge on
a set of positive measure, even on a set of full measure and still
have incredibly big coefficients. Here is the example:

o n .
T=" n'%Gin® 7x) ™. (3.3)
n=1

This looks like a single series—we can see an x and a y in it but
there is only one summation sign. To see what's going on, I'll
change the sines into exponentials via Euler’s formula:

10° 2 e
n j — 2winy
T=3 L (e - ey e

(2i
If we apply the binomial theorem, we find
(em'x _ e—m‘x)z"= e2m‘nx 4o+ (_1)"(2nn)
4+ + e—21inx (34)
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so that the n-th term of the summation actually includes terms
associated to the lattice points on the “up” butterfly wing at height
n:

(—nmn)y(=n+1Ln),...,0,n),...,(nn).

Thus the partial sums of the single series (3.3) are exactly the
square partial sums of 7 thought of as a double trigonometric
series; so if we want to know whether T is square convergent we
simply have to ask whether the single series (3.3) is convergent.
Well you can tell we’re up to tricks with the #'® term. On the
other hand the size of the n-th term is being driven down much
faster, in fact geometrically by the (sinwx)" term. We're in
trouble only if sin® 7x = 1 and this occurs only on the extreme
edge of T2, that is, only on the line x = — 1. So T is convergent
on (=1, 4)X[~4,{), which is certainly almost everywhere.
_Now how about the coefficients? This sounds like a horribly messy
Job, but it’s not. In fact, we’ll take only one term from the

expansion (3.4)—the middle term (— 1)"( 2n” )—which corresponds

to the coefficient g, ,. To avoid worrying about i’s and minus
signs we’ll look only at absolute values. We have

and = 2o (20).

From Stirling’s formula it easily follows that

L(zn)g 1

2 n Van
so that
1
4,0 = —= n*995,
Vo

which is quite unbounded; coefficients of square convergent series
can be pretty bad. (See [3, p- 408] for details.)
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Recall the diagram at the end of the introduction which
summarized the incompatibility of the four convergence methods
for numerical series. Examples such as 3.3 allow us to construct a
similar diagram in which, for example, “A -+ B™ means “There is
a trigonometric series T converging at each point of some set E of
positive measure by method A, but not converging at any point of
E by method B”. All the arrows (and non-arrows) are the same
except that it may be that the circular convergence of T on a set
forces the square (or perhaps even the unrestricted rectangular)
convergence of T at almost every point of that set. This is an open
question [3, p. 420].

It is interesting to compare the results of sections 2 and 3 for the
various methods of summation. In section 2 we wanted a function’s
goodness to force its Fourier series convergence. Since it i1s very
easy for series to square converge, in section 2 one gets the best
theorem for square convergence—in fact one gets essentially no
theorem at all for the other rectangular methods. Conversely in
section 3 the assumption is convergence and the hoped for conclu-
sion is good behavior of the series coefficients. Here since unre-
stricted rectangular convergence is the most difficult of the rec-
tangular methods, it provides the strongest hypothesis and hence
the best theorems, while square convergence yields the poorest
conclusions. In short, which method of summation is best depends
on what you’re trying to do.

4. LOCALIZATION

We again start with the one dimensional case, letting our
function f belong to LY(T"). If f=0in a neighborhood of the
point x; then, regardless of how bad f is anywhere else, its Fourier
series converges to 0 at x. This phenomenon is called localization.
In other words, the behavior of the partial sums of the Fourier
series only depends on how the function looks right near the point.

Now for 2 variables and rectangular methods, localization fails.
In fact, there is an f with a differential at each point (so that in
particular at each (x, y) of/0x and 3f/dy exist), a point (xp, ¥o),
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and neighborhood N of (x,. y,) on which f = 0, for which even
the square partial sums (and hence a fortiori the other two types)
get out of hand:

supl, o[ 1150 7o)l = 0.

For circular convergence localization fails again. I'm not sure if
you can do it with a differentiable function (I wouldn’t be
surprised if you could), but 1 know it fails with a continuous
function [13}, [14).

So localization is a complete failure—the exact analogue of the
one dimensional result is simply false.

Well, as usual there are a lot of ways around the problem—at
least three. One is to demand that f be very, very smooth. For
example, we can demand that the two partial derivatives be
themselves L' functions—i.e., that f belong to the so-called Sobo-

Fig. §
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lov space W, ,. There is a 1972 work of Goffman and Liu[11} and
another paper of Liu (also in 1972 [17]) on this.

A second way out is to make f more zero. If it's not 0 enough
already, make it more 0—make it 0 on an entire cross-neighbor-
hood of (x4, y,). We won’t define a cross-neighborhood but it
looks like Figure 5. The cross may be very thin but it has to go all
the way to the boundary of T?in all 4 directions. If f = 0 on such
a neighborhood, then you will get localization for all the rectangu-

lar methods.
A third way is to make f a little bit good—say continuous—and

to replace convergence by summability. For example, the (C, 1, 1)
partial sums

L _L_ S35, f](x0r)

m+1 n+1 .25/
will converge to 0 when f is 0 on an (ordinary) neighborhood of

(xp ¥o) [27, vol 2, p. 305]). There are similar results for circular
summability [24].

S. PLESSNER’S THEOREM
Again in one dimension, this is fun, easy to state, and pretty,

although somewhat hard to prove. We look at a trigonometric
series

o0
T = z anemec
n=—00

and we look at its positive half

0
T+ = 2 ane2mux‘
n=0

If this general trigonometric series T converges on a set E of
positive measure, then 7 * will also converge on the same set up to
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a set of measure 0. Equivalently, we can look at the trigonometric
series conjugate to T

. 00 ) l, n>0
T=- 3 (isgnn)ae’™, sgnn=; 0, n=0.
n=oe -1, n<0

If we look at T, T*, and T we can see simple algebraic relation-
ships between them (such as T + iT = 2T*) from which it im-
mediately follows that the connection between T and T is the
same as that between T and T*. So another equivalent statement
of Plessner’s theorem is that if T converges on E, then T converges
almost everywhere on E [27, vol 2, p. 216].

In two variables we start with a double series

o0 o0
T = 2 2 amne2vri(mx+ny)'

m=—00 n=—o0

Now, what are our analogues of T* and T going to be? Well by
T* we might mean

o0 0
TH* = 2 2 amnezm(mx+ny)
m=
(this is chopping off half the lattice plane) or we might mean

oo [e o]
T++= 2 2 am"e2ﬂi(mx+ny)
m=0 n=0

(which amounts to just grabbing a quarter of the lattice plane).

lior all four methods of convergence, these extensions of Pless-
ner s.theor.em are false. In fact, we can actually let T be the
Fourier series of an L!(T?) function and get it to converge on a set
E, |[E| >0, and get both T*+* and T+* to diverge almost
everywhere on E [2]. (This may clarify my introductory remark
about the lack of naturality in grouping the (m, n), (m, — nh
(=m, (l) and (—m, — n) terms of a series together.)

Again we can salvage something here in a variety of ways. One
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way is to improve the series to be actually the Fourier series of a
function in LP(T?) for p > 1. Then the theorem will be true for
unrestricted rectangular convergence but only in two dimensions.
(Not in 3 or more [2].) That’s one way—improve T. Or, we can
add additional technical hypotheses such as the following: If we
assume that T+ is a little bit good and that T converges on a set
E, then we can make it. (For example, that 77~ be summable
(C, 1, 0) [2].) Or, another way out of the bag is to use some other
notion of conjugate altogether [19].

6. UNIQUENESS

The last topic is the best, or the worst, because here almost all
the good theorems are questions. Professor Zygmund's article
points out that the problem of uniqueness in one variable is a long
way from over because of all the difficulty with sets of uniqueness.
Well, in several variables it’s even further from being over because
we haven’t even been able to resolve the higher dimensional
analogues of the primitive, simple-minded, first draft version
theorem due to Riemann which says that if a trigonometric series
converges to 0 at every x € T, then actually it isn’t there—all its
coefficients were 0. That’s the beginning of the subject and we
can’t even do that, in several variables, very often. So

if T, (x) —> 0 for every x, then all coefficients are 0,  (6.1)

is the very pretty one dimensional theorem. It's very simple and
nice—we just integrate twice formally and observe that the twice
integrated series has second generalized derivative equal to 0, so
the twice integrated series is convex, concave, and hence linear,
and therefore the original series was 0. This is a very clean
argument, but the only known argument. There is no other known
way to do it, so far. It would be really nice to have another way of
doing this.

In two dimensions we have a couple of positive results; and
they’re only good for two dimensions. One is

If T, — O unrestrictedly rectangularly everywhere, then all a,,, = 0.
(6.2)
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The other one is
If T, - O circularly everywhere, then all a,,, = 0. (6.3)

_Basnc to bot‘h of these proofs is some work of Victor Shapiro
involving uniqueness for spherical Abel summability—a very nice
paper [21]. Roger Cooke used his fact about coefficients tending to
0 (Fhat I mentioned earlier) together with Shapiro’s theorem
(which has an assumption concerning coefficient size) to obtain
(6..’?) [6]. Theorem (6.2) was obtained also using Shapiro’s theorem
which is really kind of crazy when you think about it—to use
something about circular means to end up with a rectangular
lr\fl::],h t[ﬁ lp. 422]. Examples 1 and 4 seem to emphasize this point.
e }f(r)dse_f:so ;I‘hbeorem (6.2) cannot be done directly by rectangular
e severaly me, anyway. That’s the end of the positive
G 10 sev variables. Notice 1 was very careful to say “two
o ns” in Fhose tvsfo theorems. So that leaves just about every
o sr qu;snon in the fleld. wide open. For example, what if you
’es”zli ;1 a: thte series is still two dimensional, but converges only
eomieted ly rec angularly. to 0 everywhere—what then? And what if
You look at a triple trigonometric series which converges to 0

eve
thex?)lWhere and you name the method of convergence—what
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