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Underlying question

Question
Let (W, S) be a finite Coxeter group. Consider the group algebra CW
as a Lie algebra, Lie(CW), via the commutator bracket

[x, y] = xy− yx.

What is the structure of the Lie subalgebra generated by S?

Equivalently1, what is the structure of the Lie subalgebra generated
by the set of all reflections (i.e., conjugates of elements of S)?

Motivation
Connections to the braid group in Type A. Other types: curiosity.

1To help see the equivalence, expand [s, [s, x]] and use the fact that s2 = 1.
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Classical structure theory

First, what is the structure of Lie(CW)?

Artin–Wedderburn Theorem
Let A be a finite-dimensional associative semisimple algebra over
C, and let V1, . . . , Vm be a complete set of pairwise non-isomorphic
simple A-modules. Then as an associate C-algebra,

A ∼= End(V1)⊕ · · · ⊕ End(Vm).

Corollary
Let W be a finite group, and let V1, . . . , Vm be a complete set of
pairwise non-isomorphic simple CW-modules. Then

Lie(CW) ∼= gl(V1)⊕ · · · ⊕ gl(Vm).
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Reductivity

Let (W, S) be a finite Coxeter group.

Let V1, . . . , Vm be a complete set of simple CW-modules.

Let s ⊆ Lie(CW) be the Lie subalgebra generated by the set S ⊆ W.

• Each Vi is a simple s-module, because S ⊆ s and 〈S〉 = W.
• Then V1 ⊕ · · · ⊕ Vm is a faithful, f.d. semisimple s-module.

Consequences
The Lie algebra s is reductive, s′ = [s, s] is semisimple, and

s = s′ ⊕ Z(s).

The center Z(s) is spanned by the class sums in CW of conjugacy
classes of elements of S.
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Type A: The Lie algebra of Transpositions
I. Marin, L’algèbre de Lie des transpositions, J. Algebra 310 (2007)
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The symmetric group

The symmetric group as a Coxeter group
• Sn is a Coxeter group with S = {(1, 2), (2, 3), . . . , (n− 1,n)}.
• The set of all reflections in Sn is {(i, j) : 1 ≤ i < j ≤ n}.

The simple CSn-modules are labeled by partitions λ ` n.

The group algebra of the symmetric group Sn
For λ ` n, let Sλ be the corresponding simple Specht module. Then

CSn ∼=
⊕
λ⊢n

End(Sλ).

Thus Lie(CSn) ∼=
⊕

λ⊢n gl(λ), where gl(λ) = End(Sλ).
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Type A: The Lie algebra of transpositions

Let sn ⊆ Lie(CSn) be the subalgebra generated by the transpositions.

Then sn = s′n ⊕ Z(sn), and Z(sn) is spanned by

Tn =
∑
i<j

(i, j).

The Artin–Wedderburn map restricts to a Lie algebra homomorphism

s′n ↪→
⊕
λ⊢n

sl(λ)

What is the image of this map?
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Factorizations: Hook partitions

Exterior powers of the reflection representation
The (n− 1)-dimensional reflection representation of Sn is labeled
by α = [n− 1, 1]. Let αd = [n− d, 1d]. Then for 0 ≤ d ≤ n− 1,

S[n−d,1
d] ∼= Λd(Sα)

as Sn-modules, and also as s′n-modules (different coproduct).

Then for 0 ≤ d ≤ n− 1, the module map ραd : s
′
n → sl(αd) factors as

s′n
ρα−−→ sl(α)

∆d−−→ sl(αd).
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Factorizations: Dual partitions

Given λ ` n, let λ∗ be the conjugate (transpose) partition.

Group-Theoretic Facts
As CSn-modules, (Sλ)∗ ∼= Sλ and Sλ ⊗ sgn ∼= Sλ∗ .

Compare the action of a transposition s ∈ sn on

• ResCSn
sn

(
(Sλ)∗ ⊗ sgn

)
, restriction of the group-theoretic action

• (Sλ)∗,Lie, dual space with contragredient Lie algebra action

(s.φ)(v) = −φ(s−1.v) = −φ(s.v)

Corollary

Sλ∗ ∼= (Sλ)∗ as sn-modules, the map sn
ρλ⊕ρλ∗−−−−−→ gl(λ)⊕ gl(λ∗) can

be written in the form X 7→ (X,−Xt), and im(ρλ) ∼= im(ρλ∗).
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Factorizations: Self-dual partitions

Suppose λ ` n and λ = λ∗. Then there exists a linear isomorphism

φsgn : Sλ → Sλ

such that φsgn(σ.v) = sgn(σ)σ · φsgn(v) for all σ ∈ Sn and v ∈ Sλ.

Let 〈−,−〉λ be a non-degenerate, Sn-invariant, symmetric bilinear
form on Sλ. Define a new bilinear form (−|−)λ on Sλ by

(u|v)λ = 〈u, φsgn(v)〉λ.

Lemma
The form (−|−)λ is either symmetric or anti-symmetric, depending
on the sign of the permutation that maps λ 7→ λ∗, and

ρλ(sn) ⊆ osp(λ) := {x ∈ gl(λ) : (x.u|v) + (u|x.v) = 0 ∀u, v ∈ Sλ}.

Establish using Young normal form for Sλ to make ϕsgn and (−|−)λ explicit.
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Marin’s result in Type A

Let En = {λ ` n : λ is not a hook and λ 6= λ∗}.

Let Fn = {λ ` n : λ is not a hook and λ = λ∗}.

Let ∼ be the relation on {λ : λ ` n} generated by λ ∼ λ∗.

Theorem [Marin, J. Algebra 310 (2007)]
For n ≥ 2, the Artin–Wedderburn map induces an isomorphism

s′n
∼= sl(α)⊕

[ ⊕
λ∈En/∼

sl(λ)
]
⊕
[ ⊕
λ∈Fn

osp(λ)
]
.

Proof is by induction on n.
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Ideas behind the proof: show image is simple

Step 1: Compute sλ := ρλ(s
′
n) ⊂ End(Sλ).

Consider h := ρλ(s
′
n−1) and the multiplicity-free restriction

Sλ↓CSn−1
∼=

⊕
µ≺λ

Sµ.

Marin, Lemme 15
Let V be a finite-dimensional C-vector space, and let h ⊂ g be two
semisimple subalgebras of sl(V) such that:

1. V is irreducible for the action of g.
2. The restriction of V to each simple ideal of h admits an
irreducible factor of multiplicity one.

3. rk(g) < 2 · rk(h).

Then g is a simple Lie algebra.
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Ideas behind the proof: nail down the simple image

Marin, Lemme 13
If g is a simple complex Lie algebra that admits an irreducible
representation V such that dim(V) < 2 · rk(g), then g ∼= sl(V).

Marin, Lemme 14
Let (g, V) be a pair with g a simple complex Lie algebra and V a
simple g-module such that

2 · rk(g) ≤ dim(V) < 4 · rk(g).

Then either

• g ∼= so(V), or
• g ∼= sp(V), or
• (g, V) is one of 17 exceptions with rk(g) ≤ 6 and dim(V) ≤ 21.
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Ideas behind the proof: surjectivity of Artin–Wedderburn map

Write s′n = sλ ⊕ ker(ρλ), orthogonal decomposition w.r.t. Killing form

Step 2: Show that the simple ideals

{sα} ∪ {sλ : λ ∈ En/∼} ∪ {sλ : λ ∈ Fn}

are distinct. Deduce by dimension comparison that

s′n
∼= sl(α)⊕

[ ⊕
λ∈En/∼

sl(λ)
]
⊕
[ ⊕
λ∈Fn

osp(λ)
]

Marin, Proposition 2
Let V1 and V2 be simple CSn-modules of dimension ≥ 2. TFAE:

1. V1 ∼= V2 as CSn-modules
2. V1 ∼= V2 as sn-modules
3. V1 ∼= V2 as s′n-modules
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Type BC: The Hyperoctahedral group
a.k.a. the signed symmetric group
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The Hyperoctahedral group

Bn ⊂ GLn(C) is the group of signed permutation matrices.

Bn ∼= Zn2 ⋊Sn, where Sn identifies with set of permutation matrices.

Let ti be the multiplicative generator for i-th factor of Z2, i.e., the
diagonal matrix whose i-th entry is −1 and other entries are +1.

Coxeter generators are {s1, . . . , sn−1, tn}. The set of reflections is{
(i, j), titj(i, j) : 1 ≤ i < j ≤ n

}
∪ {ti : 1 ≤ i ≤ n}

Three nontrivial linear characters ε, ε′, and ε′′

ε(ti) = −1, ε′(ti) = −1, ε′′(ti) = +1,
ε(sj) = −1, ε′(sj) = +1, ε′′(sj) = −1.

ε is the sign character of Bn.
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Simple modules in Type BC

Simple modules labeled by bipartitions (λ, µ) ` n, i.e., ordered pairs
of partitions λ and µ such that |λ|+ |µ| = n.

Considering Sλ as a Ba-module via inflation along the quotient map
Ba ↠ Sa (and similarly for Sµ), one has

S(λ,µ) = IndBn
Ba×Bb

(
Sλ ⊠ (Sµ ⊗ ε′)

)
.

Effect of tensor product with linear characters

S(λ,µ) ⊗ ε ∼= S(µ∗,λ∗), S(λ,µ) ⊗ ε′ ∼= S(µ,λ), S(λ,µ) ⊗ ε′′ ∼= S(λ∗,µ∗).

One-dimensional modules

S([n],∅) = C, S([1n],∅) = ε′′, S(∅,[n]) = ε′, S(∅,[1n]) = ε.
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Type B: The Lie algebra of reflections

Let bn ⊆ CBn be the Lie algebra generated by the reflections in Bn.

Then bn = b′n ⊕ Z(bn), and Z(bn) is spanned by

Xn =
∑
i<j

[
(i, j) + titj(i, j)

]
and Tn =

n∑
i=1

ti.

The Artin–Wedderburn isomorphism restricts to a Lie algebra map

b′n →
⊕

(λ,µ)∈BP(n)

sl(λ, µ).

Set b(λ,µ) = ρ(λ,µ)(b
′
n) ⊆ sl(λ, µ) ⊂ End(S(λ,µ)).
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Factorizations arising from dual pairs

Dual pairs (λ, µ) and (µ∗, λ∗)

[S(λ,µ)]∗ ∼= S(µ∗,λ∗) as bn-modules.

Then ρ(µ∗,λ∗) factors through ρ(λ,µ), and b(λ,µ) ∼= b(µ∗,λ∗).

Self-dual pairs (λ, λ∗)

If λ ` n/2, then there is a non-degenerate bilinear form (−|−)(λ,λ∗)

on S(λ,λ∗), that is either symmetric or anti-symmetric depending on
the parity of n/2, and such that

b(λ,λ∗) ⊆ osp(λ, λ∗)

:= {x ∈ gl(λ, λ∗) : (x.u|v) + (u|x.v) = 0 ∀u, v ∈ S(λ,λ
∗)}.

Establish with help of normal form on simple modules described by Mishra and Srinivasan in The
Okounkov–Vershik approach to the representation theory of G ∼ Sn , J. Algebr. Comb. 44 (2016).
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Factorizations: Arm and leg bipartitions

The natural module of Bn ⊂ GLn(C) is labeled by β = ([n− 1], [1]).

Let γ = ([1], [n− 1]).

Exterior powers for arm and leg bipartitions
For 0 < d < n, set βd = ([n− d], [1d]) and γd = ([1d], [n− d]). Then

Sβd ∼= Λd(Sβ) and Sγd ∼= Λd(Sγ)

as b′n-modules. Then the module maps ρβd and ργd factor as

b′n
ρβ−→ sl(β)

∆d−−→ sl(βd) and b′n
ργ−→ sl(β)

∆d−−→ sl(γd).

Then bβ ∼= bβd and bγ ∼= bγd for 0 < d < n.
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Factorizations: Improper bipartitions

The split sequence of groups Sn ↪→ Bn ↠ Sn restricts to

s′n ↪→ b′n ↠ s′n.

As modules over the subalgebra CSn ⊂ CBn,

S(λ,∅) = Sλ = S(∅,λ).

Improper bipartitions
Let λ ` n. Then the maps s′n ↪→ b′n ↠ s′n induce equalities

b(λ,∅) = sλ = b(∅,λ).

Difference from type A: b′n can distinguish most simple CBn-modules, but not
pairs of the form S(λ,∅) and S(∅,λ).
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Main result in Type BC

Let E(n) = {(λ, µ) ⊢ n : (λ, µ) is proper, not an A&L, and (λ, µ) ̸= (µ∗, λ∗)}.

Let F(n) = {(λ, λ∗) ⊢ n : (λ, µ) is proper and not an A&L}.

Let ∼ be the relation generated by (λ, µ) ∼ (µ∗, λ∗).

Theorem (Drupieski and Kujawa, 2025)
For n ≥ 2, the Artin–Wedderburn map induces an isomorphism

b′n ∼= s′n ⊕ sl(β)⊕ sl(γ)⊕
[ ⊕
(λ,µ)∈E(n)/∼

sl(λ, µ)
]
⊕

[ ⊕
(λ,µ)∈F(n)

osp(λ, µ)
]
.

Proof by induction on n, using the restriction formula

S(λ,µ)↓CBn−1
∼=

[⊕
ν≺λ

S(ν,λ)
]
⊕

[⊕
τ≺µ

S(λ,τ)
]
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Type D: The Demihyperoctahedral group
(or maybe the group of even-signed permutations?)
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The Demihyperoctahedral group

Dn ⊂ Bn is the kernel of the character ε′ : Bn → {±1} defined by

ε′(ti) = −1 and ε′(sj) = 1.

Coxeter generators are
{
s1, . . . , sn−1, s̃n

}
, where s̃n = tn−1tnsn−1.

The set of reflections in Dn is{
(i, j), titj(i, j) : 1 ≤ i < j ≤ n

}
.

The sign character of Dn is the restriction of the linear character ε′′
on Bn, which was induced by the sign character on Sn.
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Simple modules in Type D

Dn = ker(ε′). Recall that S(λ,µ) ⊗ ε′ ∼= S(µ,λ).

Classification of simple CDn-modules
Up to isomorphism, each simple CDn-module arises via either:

1. If (λ, µ) ⊢ n and λ ̸= µ, then ResBnDn
(S(λ,µ)) ∼= ResBnDn

(S(µ,λ)) is a simple
module, denoted S{λ,µ}.

2. If (λ, λ) ⊢ n, then ResBnDn
(S(λ,λ)) is the sum of two non-isomorphic

simple CDn-modules S{λ,+} and S{λ,−}.

Restriction formulas:

S{λ,µ}↓CDn−1
∼=

[⊕
ν≺λ

S{ν,λ}
]
⊕

[⊕
τ≺µ

S{λ,τ}
]
,

S{λ,±}↓CDn−1
∼=

⊕
ν≺λ

S{ν,λ}
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Tensor products with the sign character

If (λ, µ) ` n and λ 6= µ, then

S{λ,µ} ⊗ ε′′ ∼= S{λ
∗,µ∗}.

If (λ, λ) ` n, then

S{λ,±} ⊗ ε′′ ∼=

{
S{λ∗,±} if n/2 is even,
S{λ∗,∓} if n/2 is odd;
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Main result in Type D

Let E{n} = {{λ, µ} ⊢ n : {λ, µ} is proper, not an A&L, and {λ, µ} ̸= {λ∗, µ∗}}.

Let F{n} = {{λ, µ} ⊢ n : {λ, µ} is proper, not an A&L, and {λ, µ} = {λ∗, µ∗}}.

Let ∼ be the relation generated by {λ, µ} ∼ {λ∗, µ∗}.

Theorem (Drupieski and Kujawa, 2025)

d′n ∼= s′n ⊕ sl(β)

⊕
[ ⊕
{λ,µ}∈E{n}/∼

λ ̸=µ

sl{λ, µ}
]
⊕

[ ⊕
{λ,λ}∈E{n}/∼

sl{λ,+} ⊕ sl{λ,−}
]

⊕
[ ⊕
{λ,µ}∈F{n}

λ ̸=µ

osp{λ, µ}
]
⊕

[ ⊕
{λ,λ}∈F{n}

d{λ,+} ⊕ d⋆{λ,−}

]
,

The unspecified terms d{λ,±} are either osp{λ,±} or sl{λ,±} depending the parity
of n/2, and the ⋆ means d{λ,−} is omitted entirely if n/2 is odd.

Difference from types ABC: Rank considerations alone seem insufficient to show
d{λ,+} is all of sl{λ,+} and not just osp{λ,+} if n/2 is odd.
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Types G2, F4, and beyond
here be dragons
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Types G and F

The Lie algebra generated by the reflections in the Weyl group W(G2)
is 8-dimensional, with 2-dimensional center. Deduce that the rest is
two copies of sl(2).

The Lie algebra generated by the reflections in the Weyl group W(F4)
is 510-dimensional.
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GAP Calculations in Type F
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The Lie superalgebra of transpositions
Drupieski and Kujawa, arXiv:2310.01555
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The group algebra of the symmetric group, as a superalgebra

The symmetric group Sn is a supergroup, with

• (Sn)0 = An, the alternating group.
• (Sn)1 = Sn\An, the set of odd permutations.

This extends to a Z2-grading on the group algebra CSn, with

• (CSn)0 = CAn, the group algebra of the alternating group.
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Lie superalgebra generated by transpositions

Let gn ⊂ CSn be the Lie superalgebra generated by all transpositions.

Theorem (Drupieski and Kujawa, 2024)

gn = D(CSn)⊕ C · Tn,

where

D(CSn) ∼=
[ ⊕
{λ⊢n:λ ̸=λ∗}/∼

sq(Wλ)
]
⊕
[ ⊕
{λ⊢n:λ=λ∗}

sl(Wλ)
]

sq(Wλ) ∼=

{[
A B
B A

]
∈ gl(m|m) : tr(B) = 0

}
m = dim(Sλ),

sl(Wλ) ∼=

{[
A B
C D

]
∈ gl(m|m) : tr(A)− tr(D) = 0

}
m = 1

2 dim(Sλ).
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