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Underlying question

Let (W, S) be a finite Coxeter group. Consider the group algebra CW
as a Lie algebra, Lie(CW), via the commutator bracket

[, ] = xy — yx.
What is the structure of the Lie subalgebra generated by S?

Equivalently’ what is the structure of the Lie subalgebra generated
by the set of all reflections (i.e., conjugates of elements of S)?

Motivation
Connections to the braid group in Type A. Other types: curiosity.

To help see the equivalence, expand [s, [s, x]] and use the fact that s = 1.



Classical structure theory

First, what is the structure of Lie(CW)?

Artin-Wedderburn Theorem

Let A be a finite-dimensional associative semisimple algebra over

C, and let Vq,...,Vy, be a complete set of pairwise non-isomorphic
simple A-modules. Then as an associate C-algebra,

A= End(V4) & - & End(Vpy).

Let W be a finite group, and let V4, ...,V be a complete set of
pairwise non-isomorphic simple CW-modules. Then

Lie(CW) = gl(V4) @& - - - @ gl(Vim).



Reductivity

Let (W,S) be a finite Coxeter group.
Let Vq,...,Vny be a complete set of simple CW-modules.

Let s C Lie(CW) be the Lie subalgebra generated by the set S C W.
- Each V; is a simple s-module, because S C s and (S) = W.
- Then V; @ --- @V is a faithful, f.d. semisimple s-module.
Consequences
The Lie algebra s is reductive, s’ = [s, s] is semisimple, and
s=5®Z(s).

The center Z(s) is spanned by the class sums in CW of conjugacy
classes of elements of S.



Type A: The Lie algebra of Transpositions

I. Marin, L'algébre de Lie des transpositions, J. Algebra 310 (2007)



The symmetric group

The symmetric group as a Coxeter group
- &, is a Coxeter group with S = {(1,2),(2,3),...,(n —1,n)}.
- The set of all reflections in &, is {(i,)) : 1<i<j <n}.

The simple C&,-modules are labeled by partitions A F n.

The group algebra of the symmetric group S,
For A n, let S* be the corresponding simple Specht module. Then

C&, = PEnd(SY).
AbEn

Thus Lie(C&,) = @, ., gi()), where gl(\) = End(SY).



Type A: The Lie algebra of transpositions

Let s, C Lie(CS&,) be the subalgebra generated by the transpositions.
Then s, = s, ® Z(sp), and Z(s,) is spanned by

To = 370)).

i<j
The Artin-Wedderburn map restricts to a Lie algebra homomorphism

s, < EPsi(N)

AFn

What is the image of this map?



Factorizations: Hook partitions

Exterior powers of the reflection representation

The (n — 1)-dimensional reflection representation of &, is labeled
by a =[n—11]. Letag=[n—d,19. Thenfor0 < d < n—1,

S[nfd,wd] o Ad(sa)
as &,-modules, and also as s,-modules ( ).

Then for 0 < d < n —1, the module map pa, : s, — sl(cay) factors as

s L2 sl(a) 2% si(ag).



Factorizations: Dual partitions

Given X F n, let A* be the conjugate (transpose) partition.
Group-Theoretic Facts

As C&,-modules, (5*)* = S* and S* @ sgn = S,

Compare the action of a transposition s € s, on

- ResS®" ((S*)* @ sgn), restriction of the group-theoretic action
- (8M)*tie, dual space with contragredient Lie algebra action

(5.8)(V) = —6(s~"v) = —g(5.v)

Corollary

SN = (S*)* as s,-modules, the map s, L2NTINN gl(A\) @ gl(A\*) can
be written in the form X — (X, —=X%), and im(p,) = im(px+).



Factorizations: Self-dual partitions

Suppose A= nand A = A\*. Then there exists a linear isomorphism
sgn = S* — S
such that ¢sgn(0.v) = sgn(o)o - psgn(v) for all o € &, and v e S*.

Let (—, —)a be a non-degenerate, &,-invariant, symmetric bilinear
form on S*. Define a new bilinear form (—|—)y on S* by

(UIV)x = (U dsgn(V))r-

Lemma
The form (—|—)a is , depending
on the sign of the permutation that maps A — \*, and

pa(sn) C osp(N) := {x € gl(A) : (x.u|v) + (ujx.v) = 0 Yu,v e S*}.

Establish using Young normal form for 5* to make ¢sgn and (—|—)x explicit.



Marin’s result in Type A

Let E, = {AEn:Xisnotahookand X # \*}.
Let F, = {AFn:Xisnotahookand A = A\*}.
Let ~ be the relation on {\: A F n} generated by A ~ \*.

For n > 2, the Artin-Wedderburn map induces an isomorphism

sy 2 sl(a) ® { @ 5[()\)} ® [@ osp()\)]

AEE, [~ AEF,

Proof is by induction on n.



Ideas behind the proof: show image is simple

Step 1: Compute sy := pa(s,) C End(S?).

Consider b := pa(s,,_,) and the multiplicity-free restriction

Mes,= P S

H=<X

Marin, Lemme 15
Let V be a finite-dimensional C-vector space, and let h C g be two
semisimple subalgebras of sl(V) such that:

1. Vis irreducible for the action of g.

2. The restriction of V to each simple ideal of h admits an
irreducible factor of multiplicity one.

3. rk(g) < 2 - rk(h).

Then g is a simple Lie algebra.



Ideas behind the proof: nail down the simple image

Marin, Lemme 13
If g is a simple complex Lie algebra that admits an irreducible
representation V such that dim(V) < 2 - rk(g), then g = sI(V).

Marin, Lemme 14
Let (g, V) be a pair with g a simple complex Lie algebra and V a
simple g-module such that

2 -rk(g) < dim(V) < 4 - rk(g).
Then either

- g =so(V), or
- g =sp(V), or
- (g, V) is one of 17 exceptions with rk(g) < 6 and dim(V) < 21.
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Ideas behind the proof: surjectivity of Artin-Wedderburn map

Write s}, = s* @ ker(py ), orthogonal decomposition w.rt. Killing form

Step 2: Show that the simple ideals
{s*YU{s* 1 A€ Ey/~FU{s* : X € Fp}

are distinct. Deduce by dimension comparison that

s) 2 sl(a) ® { @ 5[()\)} ® [@ osp()\)}

)\GEn/N AEF,

Marin, Proposition 2
Let V4 and V, be simple C&,-modules of dimension > 2. TFAE:

1. Vi =2V, as C&,-modules
2. Vi =V, as sp,-modules

3. Vi 2V, as s/,-modules



Type BC: The Hyperoctahedral group

a.k.a. the signed symmetric group



The Hyperoctahedral group

B, C GL,(C) is the group of signed permutation matrices.
B, 2 Z5 x &,, where &, identifies with set of permutation matrices.

Let t; be the multiplicative generator for i-th factor of Z,, i.e,, the
diagonal matrix whose i-th entry is —1 and other entries are +1.

Coxeter generators are {sy,...,Sn—1,th}. The set of reflections is

{(,)),tt(i,)):1<i<j<n}u{t:1<i<n}

Three nontrivial linear characters ¢, €/, and &”
€(t,') =1, E’(t,') =-1, 8”(t,') = +1,
e(s)) = -1, e'(s)) = +1, e'(sj) =1

e is the sign character of B,.



Simple modules in Type BC

Simple modules labeled by bipartitions (A, u) - n, i.e,, ordered pairs
of partitions A and p such that || + |u| = n.

Considering S* as a B,-module via inflation along the quotient map
By, — &4 (and similarly for S#), one has

SO = Indg g, (SR (S* @ €)).

Effect of tensor product with linear characters

S()\’M) Re = S(/’L*vk*)’ S()\’M) (0%9) 5/ > S(/h/\)’ S(Avu) (0%9) 5” > S(A*a“*).

One-dimensional modules

S0 — ¢, SU) — o S@I) — o SO0 ¢
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Type B: The Lie algebra of reflections

Let b, € CB, be the Lie algebra generated by the reflections in B,.
Then b, = b}, ® Z(b,), and Z(b,) is spanned by

n

Xy =>_[(L)+tt(,))] and To=>_t.
i<j i=1

The Artin-Wedderburn isomorphism restricts to a Lie algebra map

b, @ s\ p).

(A,m)eBP(n)

Set by = Py (0h) C sl(A, 1) C End(SP).



Factorizations arising from dual pairs

Dual pairs (A, ) and (u*, \*)
[5(,\,#)]* =~ 5(u"A") 35 b,-modules.

Then p(u-,a+) factors through pey u), and by ) = b« xe).

Self-dual pairs (A, A*)

If A= n/2, then there is a non-degenerate bilinear form (—|—)(x,x+)
on SAAY) that is depending on
the parity of n/2, and such that

baa+) € 0sp(A, A¥)
= {x € gl(\,\*) : (x.ulv) + (ulx.v) =0 Vu,ve SO},

Establish with help of normal form on simple modules described by Mishra and Srinivasan in The
Okounkov-Vershik approach to the representation theory of G ~ S, J. Algebr. Comb. 44 (2016).



Factorizations: Arm and leg bipartitions

The natural module of B, C GL,(C) is labeled by g = ([n —1],[1]).
Let y = ([1], [n = 1]).

Exterior powers for arm and leg bipartitions
For 0 < d < n, set By = ([n — d],[19]) and ~g4 = ([19], [n — d]). Then

SPe = A9(SP) and S = A9(SY)
as by,-modules. Then the module maps pg, and p,, factor as
b, 22 s1(8) =% sl(Bs) and b} 2 sI(8) 2% si(yy).

Then bg = bg, and b, = b, for 0 < d < n.



Factorizations: Improper bipartitions

The split sequence of groups &, < B, — &, restricts to
s, <> b — 5.
As modules over the subalgebra C&, c CB,,

S()\,V)) _ Sk _ S(V),)\).

Improper bipartitions
Let A= n. Then the maps s, < b/, — s/, induce equalities

b0 = 5x = b(p,n)-

by can distinguish most simple CB,-modules, but not
pairs of the form S and SN,



Main result in Type BC

Let E(n) = {(\, ) E n: (A, p) is proper, not an A&L, and (A, p) # (™, ™)}
Let F(n) = {(A\,\") E n: (A ) is proper and not an A&L}.

Let ~ be the relation generated by (A, u) ~ (™, \*).

For n > 2, the Artin-Wedderburn map induces an isomorphism

b, = s, @sl(B) Dsl(y) @ [ @ 5[(/\aﬂ)] D [ @ 0sp(A, “)]

(A, m)€E(n) /~ (A p)€F(n)
Proof by induction on n, using the restriction formula

SOy o [@SW)] ® [@Sum]

<A T
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Type D: The Demihyperoctahedral group

(or maybe the group of even-signed permutations?)



The Demihyperoctahedral group

Dy, C By is the kernel of the character ¢’ : B, — {£1} defined by

gt)=-1 and £'(s)=1.

Coxeter generators are {sy,...,S,-1,5n}, Where S, = to_1t;Sp_1.

The set of reflections in D, is
{()), tit;(i,)):1<i<j<n}.

The sign character of D, is the restriction of the linear character ”
on B, which was induced by the sign character on &,,.
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Simple modules in Type D

Dy = ker(e’). Recall that S#) ® ¢’ =2 S(w:A),

Classification of simple CD,-modules
Up to isomorphism, each simple CD,-module arises via either:

1. If (X, 1) B nand X # g, then Resgy (SH#)) = Res?y (SV) is a simple
module, denoted StA#1,

2. If (\,\) F n, then ResZ' (S**)) is the sum of two non-isomorphic
simple CD,-modules S+ and =1,

Restriction formulas:

sl o [@S{M}} @ [@S{A,r)}

V=< T

S{A’i}i(CDn,w I~ @ glvA}

v<A\
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Tensor products with the sign character

If (A, ) = nand X # p, then
S{ABM} ® 5// = S{A*a“*}.
If (A\,A) F n, then

SEE ifn/2 s even,

S{)\,:l:} ® PN )
SWF ifn/2is odd;

22



Main result in Type D

Let E{n} = {{\, pu} En: {\ u} is proper, not an A&L, and {\, u} # {\*, u*}}.
Let F{n} = {{\, u} b n:{\, u} is proper, not an A&L, and {\, u} = {\*, n*}}.
Let ~ be the relation generated by {\, u} ~ {2\*, u*}.

o), s, @ sl(B)
ol @ sruo] @ sxHIosr -]
{(Am}eE(n}/~ {(AAYEE{n}/~
AFp
o] D owvue| D ey
{)\,;3\}#6/:{(7} {2\ A}eF{n}
m

The unspecified terms o ) are either osp{\, &} or sl{)\, +} depending the parity
of n/2, and the x means o4, _y is omitted entirely if n/2 is odd.

Rank considerations alone seem insufficient to show
0(x,+} isall of sl{\, 4} and not just esp{\, 4} if n/2 is odd.
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Types G, F,, and beyond

here be dragons



Types Gand F

The Lie algebra generated by the reflections in the Weyl group W(G;)
is 8-dimensional, with 2-dimensional center. Deduce that the rest is
two copies of sl(2).

The Lie algebra generated by the reflections in the Weyl group W(F,)
is 510-dimensional.

2%



GAP Calculations in Type F

|Character Dimension  Dual image
X1 1 X2 0
X3 1 X4 0
X5 2 X6 3
X7 2 X8 3
X9 4x12 a5
X10 4 X11 15
X13 4 X13 6
X14 6 X14 15
X15 6 X15 15
X16 8 X17 63
X18 8 X19 63
X20 9 X23 80
X21 9(X22 80
X24 12 X24 66
X25 16 X25 120
Total 544
Target 508
Defecit -36
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The Lie superalgebra of transpositions
Drupieski and Kujawa, arXiv:2310.01555



The group algebra of the symmetric group, as a superalgebra

The symmetric group &, is a supergroup, with

* (6n)g = An, the alternating group.
- (6p)7 = 6,\Ap, the set of odd permutations.

This extends to a Z,-grading on the group algebra C&,, with

- (C6p)g = CA,, the group algebra of the alternating group.
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What is the Lie superalgebra generated by permutations?

Asked 1year, 2 months ago  Modified 8 days ago  Viewed 268 times

Consider the group algebra of the symmetric group C.S,. Then there is a corresponding Lie
algebra £(,) defined by

[o.tl=6ct—7To0,

where 0,7 € S),. The structure of 8(,) in terms of simple factors has been considered in

this post. One can also ask the same question for the Lie subalgebra of 2(.S,) generated by

transpositions, which was considered in this post.

Now, since there is a Z; grading of CS,,, one can also define a Lie superalgebra s2(S,,) on
it by replacing the commutators with anti-commutators

(ot} =cet+to0,

forall s,z € S, where S is the odd part of the symmetric group, and all other
commutators remain unchanged. Now we have similar questions: what is the structure of
58(S,) in terms of simple Lie What is the of s8(S,)

by transpositions?

My attempt is for n = 3, s2(S,,) = gL(1]1) @ gl(1/0) ® gL(0|1), while the subalgebra
generated by transpositions is 8L(1]1) @ gL(1|0) @ gL(0]1). I think in general s&(S,,)
should be very similar to £(S,,), but it might be much harder to determine the subalgebra
generated by transpositions.

rt.representation-theory | | lie-algebras

Share Cite Edit Follow Flag edited Oct 4 at 16:50 asked Aug 8, 2022 at 20:26

‘ Jules Lamers

h WunderNatur
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Lie superalgebra generated by transpositions

Let g, € CS, be the Lie superalgebra generated by all transpositions.

Theorem (Drupieski and Kujawa, 2024)

gn = @((CGH) @ (C . Tﬂ7

where
C&)=[ P sWH]e[ P s
{AFNAAN*} [~ {AFN:A=A*}
sq(W) = { [ i] € gl(m|m) : tr(B) = o} m = dim(S"),

1
15 S

sI(W) = { g] € gli(m|m) : tr(A) — tr(D) = o} m = 1dim(SY).
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