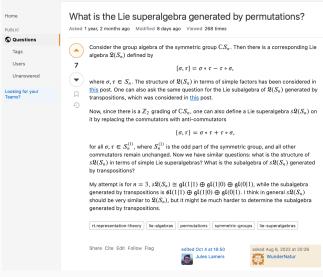
The Lie superalgebra of transpositions

arXiv:2310.01555

Christopher Drupieski (DePaul University) Jonathan Kujawa (University of Oklahoma) AMS Spring Western Sectional Meeting, May 4–5, 2024

Special Session on Representations of Lie Algebras and Lie Superalgebras

MathOverflow: August 8, 2022



A question of WunderNatur

Question

Considering the group algebra $\mathbb{C}S_n$ of the symmetric group S_n as a superalgebra (by considering the even permutations in S_n to be of even superdegree and the odd permutations in S_n to be of odd superdegree), and considering $\mathbb{C}S_n$ as a Lie superalgebra via the super commutator,

$$[x,y] = xy - (-1)^{\overline{x} \cdot \overline{y}} yx,$$

what is the structure of $\mathbb{C}S_n$ as a Lie superalgebra, and what is the structure of the Lie subsuperalgebra of $\mathbb{C}S_n$ generated by the transpositions?

Classical Artin-Wedderburn Theory

Structure of finite-dimensional semisimple algebras over $\ensuremath{\mathbb{C}}$

Let A be a finite-dimensional associative semisimple algebra over \mathbb{C} , and let V_1, \ldots, V_m be a complete set of pairwise non-isomorphic simple A-modules. Then as a \mathbb{C} -algebra,

$$A \cong \operatorname{End}(V_1) \oplus \cdots \oplus \operatorname{End}(V_m).$$

In particular, A is a direct sum of simple \mathbb{C} -algebras.

The group algebra of the symmetric group S_n

Given a partition $\lambda \vdash n$, let S^{λ} be the corresponding simple Specht module for $\mathbb{C}S_n$. Then

$$\mathbb{C}S_n \cong \bigoplus_{\lambda \vdash n} \mathsf{End}(S^\lambda).$$

Superalgebra

The prefix super indicates that an object is grade by $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$.

Denote the decomposition of a vector superspace (over \mathbb{C}) into its homogeneous (even and odd) components by $V = V_{\overline{0}} \oplus V_{\overline{1}}$.

Write $\overline{v} \in \mathbb{Z}_2$ to denote the superdegree of an element $v \in V_{\overline{0}} \cup V_{\overline{1}}$.

If V and W are vector superspaces, then $\operatorname{Hom}(V,W)=\operatorname{Hom}_{\mathbb{C}}(V,W)$ inherits a \mathbb{Z}_2 -grading: $\operatorname{Hom}(V,W)_{\bar{j}}=\Big\{f\in\operatorname{Hom}(V,W):f(V_{\bar{i}})\subseteq W_{\bar{i}+\bar{j}}\Big\}.$

If V is a vector superspace, then $\Pi(V)$ is its parity shift:

$$\Pi(V)_{\overline{0}} = V_{\overline{1}}$$
 and $\Pi(V)_{\overline{1}} = V_{\overline{0}}$.

Consider ${\mathbb C}$ as a superspace in even superdegree, and write

$$\mathbb{C}^{m|n}=\mathbb{C}^m\oplus\Pi(\mathbb{C}^n).$$

(Semi)simple superalgebras

Unless specified otherwise, all superalgebras are associative, and all superalgebras and supermodules are finite-dimensional over \mathbb{C} .

Definition

A superalgebra A is simple if it has no nontrivial superideals.

Definition

A superalgebra A is semisimple if every A-supermodule V is a (direct) sum of simple A-supermodules.

Simple superalgebras and simple supermodules come in two flavors.

Type M simple superalgebras

If $V = \mathbb{C}^{m|n}$, then $\operatorname{End}(V) \cong M(m|n)$ is a simple superalgebra, where

$$M(m|n) := \left\{ \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} : \begin{array}{l} A \in M_m(\mathbb{C}), & B \in M_{m \times n}(\mathbb{C}), \\ C \in M_{n \times m}(\mathbb{C}), & D \in M_n(\mathbb{C}). \end{array} \right\}.$$

As an ungraded associative algebra, $M(m|n) \cong \mathfrak{gl}(m+n)$.

Type Q simple superalgebras

If $V = \mathbb{C}^{n|n}$ with odd involution $J: V \to V$, then

$$Q(V) = \{ \theta \in \mathsf{End}(V) : J \circ \theta = \theta \circ J \}$$

is a simple superalgebra. One has $Q(V) \cong Q(n)$, where

$$Q(n) := \left\{ \left[\begin{array}{c|c} A & B \\ \hline B & A \end{array} \right] : A \in M_n(\mathbb{C}), B \in M_n(\mathbb{C}) \right\}.$$

As an ungraded associative algebra, $Q(n) \cong \mathfrak{gl}(n) \oplus \mathfrak{gl}(n)$ via the map

$$\left[\begin{array}{c|c}A & B\\\hline B & A\end{array}\right] \mapsto (A+B,A-B).$$

Two types of simple supermodules

Definition

Let V be a simple A-supermodule.

Say that *V* is absolutely irreducible (or of Type M) if *V* is simple as an ungraded *A*-module.

Say that V is self-associate (or of Type Q) if V is reducible as an ungraded A-module.

Self-associate simple modules

Let $\pi_V: V \to V$ be the parity automorphism, $\pi_V(v) = (-1)^{\overline{v}} \cdot v$.

Lemma

Let *V* be a self-associate simple *A*-supermodule. Then there exists a (ungraded) simple *A*-submodule *U* of *V* such that (canonically)

$$V = U \oplus \pi_V(U),$$

with $U \ncong \pi_V(U)$ as ungraded A-modules, and

$$V_{\overline{0}} = \{u + \pi_V(u) : u \in U\}, \quad V_{\overline{1}} = \{u - \pi_V(u) : u \in U\}.$$

An odd involution $J: V \rightarrow V$ is defined by

$$J(u \pm \pi_V(u)) = u \mp \pi_V(u).$$

Super Artin-Wedderburn Theory

Super Artin-Wedderburn Theorem

Let A be a finite-dimensional semisimple superalgebra A.

If $\{V_1, \ldots, V_n\}$ is a complete set of simple A-supermodules (up to homogeneous isomorphism), such that V_1, \ldots, V_m are absolutely irreducible and V_{m+1}, \ldots, V_n are self-associate, then

$$A \cong \Big[\bigoplus_{i=1}^m \operatorname{End}(V_i)\Big] \oplus \Big[\bigoplus_{i=m+1}^n Q(V_i)\Big].$$

Lemma

Let A be a finite-dimensional associative superalgebra. Then A is semisimple as a superalgebra if and only if A is semisimple as an ordinary ungraded algebra.

The group algebra of the symmetric group, as a superalgebra

The symmetric group S_n is a supergroup, with

- $(S_n)_{\overline{0}} = A_n$, the alternating group.
- $(S_n)_{\bar{1}} = S_n \setminus A_n$, the set of odd permutations.

This extends to a \mathbb{Z}_2 -grading on the group algebra $\mathbb{C}S_n$, with

• $(\mathbb{C}S_n)_{\overline{0}} = \mathbb{C}A_n$, the group algebra of the alternating group.

Simple supermodules for the symmetric group

Let $\mathcal{P}(n) = \{\lambda : \lambda \vdash n\}.$

Given $\lambda \vdash n$, let λ' be the conjugate (transpose) partition.

What do YOU think the simple $\mathbb{C}S_n$ -supermodules look like?

Simple supermodules for the symmetric group

Let $\mathcal{P}(n) = \{\lambda : \lambda \vdash n\}.$

Given $\lambda \vdash n$, let λ' be the conjugate (transpose) partition.

What do YOU think the simple $\mathbb{C}S_n$ -supermodules look like?

Let $\overline{\mathcal{P}}(n)$ be a fixed set of representatives for the relation $\lambda \sim \lambda'$.

Let
$$E_n = \{\lambda \in \overline{\mathcal{P}}(n) : \lambda \neq \lambda'\}$$
 and $F_n = \{\lambda \in \overline{\mathcal{P}}(n) : \lambda = \lambda'\}$.

Simple supermodules for \mathbb{CS}_n (up to parity shift)

Simple $\mathbb{C}S_n$ -supermodules are indexed by the set $\overline{\mathcal{P}}(n)$.

$$W^{\lambda} = \begin{cases} S^{\lambda} \oplus S^{\lambda'} & \text{if } \lambda \in E_n \text{ (Type Q, self-associate case)} \\ S^{\lambda} & \text{if } \lambda \in F_n \text{ (Type M, absolutely irreducible case)} \end{cases}$$

Structure of simple supermodules for the symmetric group

Type Q simple supermodules $W^{\lambda} = S^{\lambda} \oplus S^{\lambda'}$ $(\lambda \neq \lambda')$

The odd involution $J:W^{\lambda}\to W^{\lambda}$ can be interpreted as an even isomorphism of $\mathbb{C}S_n$ -supermodules

$$W^{\lambda} \cong \Pi(W^{\lambda}).$$

Type M simple supermodules $W^{\lambda} = S^{\lambda}$ ($\lambda = \lambda'$)

As a $\mathbb{C}A_n$ -module,

$$\mathsf{S}^{\lambda} = \mathsf{S}^{\lambda^+} \oplus \mathsf{S}^{\lambda^-},$$

These are the homogeneous subspaces of W^{λ} . Consequently, W^{λ} is not even-isomorphic to $\Pi(W^{\lambda})$ because $S^{\lambda^{+}} \not\cong S^{\lambda^{-}}$ as $\mathbb{C}A_{n}$ -modules.

"Multiplicity free" restriction

Restriction to $\mathbb{C}S_{n-1}$ in terms of Young lattice ordering $\mu \prec \lambda$:

$$W^{\lambda}\downarrow_{\mathbb{C}S_{n-1}} \cong \begin{cases} \left[\bigoplus_{\mu \prec \lambda} W^{\mu}\right] \oplus \left[\bigoplus_{\mu \prec \lambda} W^{\mu} \oplus \Pi(W^{\mu})\right] & \text{if } \lambda \in E_{n}, \\ \bigoplus_{\substack{\mu \prec \lambda \\ \text{cont}(\lambda/\mu) \geq 0}} W^{\mu} & \text{if } \lambda \in F_{n}. \end{cases}$$

Super Artin-Wedderburn Theorem for the symmetric group

From the classification of the simple supermodules, get isomorphisms of associative superalgebras

$$\mathbb{C}S_n \cong \left[\bigoplus_{\lambda \in E_n} Q(W^{\lambda})\right] \oplus \left[\bigoplus_{\lambda \in F_n} \operatorname{End}(W^{\lambda})\right]$$
$$\cong \left[\bigoplus_{\lambda \in E_n} Q(f^{\lambda})\right] \oplus \left[\bigoplus_{\lambda \in F_n} M(\frac{1}{2}f^{\lambda}, \frac{1}{2}f^{\lambda})\right]$$

where $f^{\lambda} = \dim(S^{\lambda})$. Then as a Lie superalgebra,

$$\mathbb{C}\mathsf{S}_n\cong\left[igoplus_{\lambda\in E_n}^{}\mathfrak{q}(f^\lambda)
ight]\oplus\left[igoplus_{\lambda\in F_n}^{}\mathfrak{gl}(rac{1}{2}f^\lambda,rac{1}{2}f^\lambda)
ight]$$

Lie subsuperalgebras

Given a Lie superalgebra \mathfrak{g} , let $\mathfrak{D}(\mathfrak{g})$ be its derived subsuperalgebra.

$$\mathfrak{D}(\mathfrak{gl}(W^{\lambda})) = \mathfrak{sl}(W^{\lambda})$$

$$\cong \mathfrak{sl}(m|m) := \left\{ \left[\frac{A \mid B}{C \mid D} \right] \in \mathfrak{gl}(m|m) : \operatorname{tr}(A) - \operatorname{tr}(D) = 0 \right\}$$

$$\mathfrak{D}(\mathfrak{q}(W^{\lambda})) = \mathfrak{sq}(W^{\lambda})$$

$$\cong \mathfrak{sq}(n) := \left\{ \left[\frac{A \mid B}{B \mid A} \right] \in \mathfrak{q}(n) : \operatorname{tr}(B) = 0 \right\}$$

Lie subsuperalgebra generated by transpositions

Let $\mathfrak{g}_n \subset \mathbb{C}S_n$ be the Lie subsuperalgebra generated by transpositions. Let $T_n = \sum_{1 \le i \le j \le n} (i,j) \in \mathbb{C}S_n$ be the sum in $\mathbb{C}S_n$ of all transpositions.

Main Theorem

$$\mathfrak{g}_n = \mathfrak{D}(\mathbb{C}\mathsf{S}_n) \oplus \mathbb{C} \cdot \mathsf{T}_n,$$

where

$$\mathfrak{D}(\mathbb{C}S_n) \cong \big[\bigoplus_{\lambda \in E_n} \mathfrak{sq}(W^{\lambda})\big] \oplus \big[\bigoplus_{\lambda \in F_n} \mathfrak{sl}(W^{\lambda})\big]$$

 $\mathfrak{g}_n \subseteq \mathfrak{D}(\mathbb{C}S_n) + \mathbb{C}T_n$ because \mathfrak{g}_n is generated by T_n and the set

$$\left\{\tau - \frac{2}{n(n-1)} \cdot T_n : \tau \text{ is a transposition}\right\}$$

Ideas behind the proof of the Main Theorem

$$\mathfrak{g}_n = \mathfrak{D}(\mathbb{C}S_n) \oplus \mathbb{C} \cdot T_n$$

Argue by induction on n to show $\mathfrak{D}(\mathbb{C}S_n) \subseteq \mathfrak{g}_n$.

Hard bit: Compute im $(\mathfrak{g}_n \to \operatorname{End}(W^{\lambda}))$

• Use description of the restriction $W^{\lambda}\downarrow_{\mathbb{C}S_{n-1}}$, and Gelfand–Zeitlin bases for the S^{λ} given by the simultaneous eigenvectors for the action of the Jucys–Murphy elements.

Deduce that $(\mathfrak{g}_n)_{\overline{0}}$ is a reductive Lie algebra.

Show that the semisimple Lie algebra $\mathfrak{D}((\mathfrak{g}_n)_{\overline{0}})$ is as large as we want it to be, and then use the action of this semisimple Lie algebra to deduce that all of $\mathfrak{D}(\mathbb{C}S_n)$ is contained in \mathfrak{g}_n .

L'algèbre de Lie des transpositions (J. Algebra 310 (2007) 742–774)

Marin studied the classical (non-super) analogue of this problem, motivated by the representation theory of the braid group.

Proposition 1. L'algèbre de Lie \mathfrak{g}_n est réductive, et son centre est de dimension 1, engendré par la somme T_n de toutes les transpositions. En conséquence $\mathfrak{g}_n \simeq \mathbb{k} \times \mathfrak{g}'_n$, et l'image de \mathfrak{g}_n dans $\mathfrak{gl}(\lambda)$ est $\mathfrak{g}_{\lambda} \subset \mathfrak{sl}(\lambda)$ si T_n agit par 0, et $\mathbb{k} \times \mathfrak{g}_{\lambda}$ sinon.

Théorème A. Pour tout $n \ge 3$, ϕ_n est surjectif. En particulier,

$$\mathfrak{g}_n' \simeq \mathfrak{sl}_{n-1}(\mathbb{k}) \times \left(\prod_{\lambda \in E_n/\sim} \mathfrak{sl}(\lambda)\right) \times \left(\prod_{\lambda \in F_n} \mathfrak{osp}(\lambda)\right)$$

et les représentations ρ_{λ} de \mathfrak{g}'_n sont deux à deux non isomorphes.

Overall, Marin obtain a Lie algebra that is on the order of half the dimension of the Lie superalgebra we get.