The Lie superalgebra of transpositions

arXiv:2310.01555

Christopher Drupieski (DePaul University) Jonathan Kujawa (Oregon State University, née University of Oklahoma) Representation Theory and Related Geometry: Progress and Prospects

University of Georgia; Athens, GA; May 27-31, 2024

Home

PUBLIC

Questions

Tags

Users

Unanswered

Looking for your Teams?

What is the Lie superalgebra generated by permutations?

Asked 1 year, 2 months ago Modified 8 days ago Viewed 268 times

Consider the group algebra of the symmetric group $\mathbb{C}S_n$. Then there is a corresponding Lie algebra $\mathfrak{L}(S_n)$ defined by

 $[\sigma, \tau] = \sigma \circ \tau - \tau \circ \sigma$

where $\sigma, \tau \in S_n$. The structure of $\mathfrak{L}(S_n)$ in terms of simple factors has been considered in this post. One can also ask the same question for the Lie subalgebra of $\mathfrak{L}(S_n)$ generated by transpositions, which was considered in this post.

Now, since there is a \mathbb{Z}_2 grading of $\mathbb{C}S_n$, one can also define a Lie superalgebra $\mathfrak{S}\mathfrak{L}(S_n)$ on it by replacing the commutators with anti-commutators

$$\{\sigma, \tau\} = \sigma \circ \tau + \tau \circ \sigma$$

for all $\sigma, \tau \in S_n^{(1)}$, where $S_n^{(1)}$ is the odd part of the symmetric group, and all other commutators remain unchanged. Now we have similar questions: what is the structure of $s\mathfrak{Q}(S_n)$ in terms of simple Lie superalgebras? What is the subalgebra of $s\mathfrak{Q}(S_n)$ generated by transpositions?

My attempt is for n=3, $s\mathfrak{L}(S_n)\cong \mathfrak{gl}(1|1)\oplus \mathfrak{gl}(1|0)\oplus \mathfrak{gl}(0|1)$, while the subalgebra generated by transpositions is $\mathfrak{Sl}(1|1) \oplus \mathfrak{al}(1|0) \oplus \mathfrak{al}(0|1)$. I think in general $\mathfrak{SL}(S_n)$ should be very similar to $\mathfrak{L}(S_n)$, but it might be much harder to determine the subalgebra generated by transpositions.

rt.representation-theory lie-algebras permutations symmetric-groups

lie-superalgebras

Share Cite Edit Follow Flag

edited Oct 4 at 16:50 Jules Lamers asked Aug 8, 2022 at 20:26 WunderNatur

The group algebra of the symmetric group, as a superalgebra

The symmetric group S_n is a supergroup, with

- $(S_n)_{\overline{0}} = A_n$, the alternating group.
- $(S_n)_{\bar{1}} = S_n \setminus A_n$, the set of odd permutations.

This extends to a \mathbb{Z}_2 -grading on the group algebra $\mathbb{C}S_n$, with

• $(\mathbb{C}S_n)_{\overline{0}} = \mathbb{C}A_n$, the group algebra of the alternating group.

A question of WunderNatur

Question

Considering the group algebra $\mathbb{C}S_n$ of the symmetric group S_n as a superalgebra (by considering the even permutations in S_n to be of even superdegree and the odd permutations in S_n to be of odd superdegree), and considering $\mathbb{C}S_n$ as a Lie superalgebra via the super commutator,

$$[x,y] = xy - (-1)^{\overline{x} \cdot \overline{y}} yx,$$

what is the structure of $\mathbb{C}S_n$ as a Lie superalgebra, and what is the structure of the Lie superalgebra generated by the transpositions?

Super = graded by $\mathbb{Z}/2\mathbb{Z}$ with topologists' sign conventions. Compare super and non-super versions of $[\tau, \tau]$ for τ a transposition.

Classical (non-super) analogue of this question

I. Marin, L'algèbre de Lie des transpositions, J. Algebra 310 (2007).

Classical structure theory

Wedderburn-Artin Theorem

Let A be a finite-dimensional associative semisimple algebra over \mathbb{C} , and let V_1, \ldots, V_m be a complete set of pairwise non-isomorphic simple A-modules. Then as a \mathbb{C} -algebra,

$$A \cong \operatorname{End}(V_1) \oplus \cdots \oplus \operatorname{End}(V_m).$$

In particular, A is a direct sum of simple \mathbb{C} -algebras.

The group algebra of the symmetric group S_n

Given $\lambda \vdash n$, let S^{λ} be the corresponding Specht module. Then

$$\mathbb{C}S_n \cong \bigoplus_{\lambda \vdash n} \mathsf{End}(S^\lambda).$$

Thus as a Lie algebra under the commutator, $\mathbb{C}S_n \cong \bigoplus_{\lambda \vdash n} \mathfrak{gl}(S^{\lambda})$.

Does this carry over in some way to the superalgebra structure of $\mathbb{C}S_n$?

Semisimple superalgebras

A superalgebra A is semisimple if every A-supermodule V is a direct sum of simple A-supermodules.

Super Wedderburn-Artin Theorem

Let A be a finite-dimensional associative semisimple superalgebra over \mathbb{C} . Then A is isomorphic to a product of simple superalgebras.

J. Brundan and A. Kleshchev, Projective representations of symmetric groups via Sergeev duality, Math. Z. 239 (2002), no. 1, 27-68.

S.-J. Cheng and W. Wang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144, AMS 2012.

Lemma

Let A be a finite-dimensional associative superalgebra. Then A is semisimple as a superalgebra if and only if A is semisimple as an ordinary ungraded algebra.

So what are the simple superalgebras that occur as factors in $\mathbb{C}S_n$? They come in two flavors...

Type M simple superalgebras

If $V = \mathbb{C}^{m|n}$, then $\operatorname{End}(V) \cong M(m|n)$ is a simple superalgebra, where

$$M(m|n) := \left\{ \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} : \begin{array}{l} A \in M_m(\mathbb{C}), & B \in M_{m \times n}(\mathbb{C}), \\ C \in M_{n \times m}(\mathbb{C}), & D \in M_n(\mathbb{C}). \end{array} \right\}.$$

As an ungraded associative algebra, $M(m|n) \cong \mathfrak{gl}(m+n)$.

6

Type Q simple superalgebras ("isomeric")

If $V = \mathbb{C}^{n|n}$ with odd involution $J: V \to V$, then

$$Q(V) = \{ \theta \in \mathsf{End}(V) : J \circ \theta = \theta \circ J \}$$

is a simple superalgebra. One has $Q(V) \cong Q(n)$, where

$$Q(n) := \left\{ \left[\begin{array}{c|c} A & B \\ \hline B & A \end{array} \right] : A \in M_n(\mathbb{C}), B \in M_n(\mathbb{C}) \right\}.$$

As an ungraded associative algebra, $Q(n) \cong \mathfrak{gl}(n) \oplus \mathfrak{gl}(n)$ via the map

$$\left[\begin{array}{c|c}A & B\\\hline B & A\end{array}\right] \mapsto (A+B,A-B).$$

7

Two types of simple supermodules

Simple superalgebra summands in $\mathbb{C}S_n$ correspond to isomorphism classes of simple $\mathbb{C}S_n$ -supermodules.

Definition

Let V be a simple A-supermodule.

- Say that *V* is absolutely irreducible (or of Type M) if *V* is simple as an ungraded A-module.
- Say that *V* is self-associate (or of Type Q) if *V* is reducible as an ungraded *A*-module.

Self-associate simple modules

Let $\pi_V: V \to V$ be the parity automorphism, $\pi_V(v) = (-1)^{\overline{v}} \cdot v$.

Lemma

Let *V* be a self-associate simple *A*-supermodule. Then there exists an ungraded simple *A*-submodule *U* of *V* such that

$$V=U\oplus \pi_V(U),$$

with $\pi_V(U)$ also a simple A-submodule, $U \not\cong \pi_V(U)$, and

$$V_{\overline{0}} = \{u + \pi_V(u) : u \in U\}, \quad V_{\overline{1}} = \{u - \pi_V(u) : u \in U\}.$$

An odd involution $J_V: V \to V$ is defined by

$$J_V(u \pm \pi_V(u)) = u \mp \pi_V(u).$$

9

Structure of semisimple superalgebras

Super Artin-Wedderburn Theorem

Let A be a finite-dimensional semisimple \mathbb{C} -superalgebra.

If $\{V_1, \ldots, V_n\}$ is a complete set of simple A-supermodules (up to homogeneous isomorphism), such that V_1, \ldots, V_m are absolutely irreducible and V_{m+1}, \ldots, V_n are self-associate, then

$$A \cong \Big[\bigoplus_{i=1}^m \operatorname{End}(V_i)\Big] \oplus \Big[\bigoplus_{i=m+1}^n Q(V_i)\Big].$$

Structure of semisimple superalgebras

Super Artin-Wedderburn Theorem

Let A be a finite-dimensional semisimple \mathbb{C} -superalgebra.

If $\{V_1, \ldots, V_n\}$ is a complete set of simple A-supermodules (up to homogeneous isomorphism), such that V_1, \ldots, V_m are absolutely irreducible and V_{m+1}, \ldots, V_n are self-associate, then

$$A \cong \Big[\bigoplus_{i=1}^m \operatorname{End}(V_i)\Big] \oplus \Big[\bigoplus_{i=m+1}^n Q(V_i)\Big].$$

Exercise

Let D_n be the dihedral group of order 2n, viewed as a supergroup with $(D_n)_{\overline{0}}$ the subgroup of rotations. Work out the superalgebra structure of $\mathbb{C}D_n$.

Simple supermodules for the symmetric group

What do YOU think the simple $\mathbb{C}S_n$ -supermodules look like?

Simple supermodules for the symmetric group

What do YOU think the simple $\mathbb{C}S_n$ -supermodules look like?

Let
$$\mathcal{P}(n) = \{\lambda : \lambda \vdash n\}.$$

Given $\lambda \vdash n$, let λ' be the conjugate (transpose) partition.

Let $\overline{\mathcal{P}}(n)$ be a fixed set of representatives for the relation $\lambda \sim \lambda'$.

Let
$$E_n = \{\lambda \in \overline{\mathcal{P}}(n) : \lambda \neq \lambda'\}$$
 and $F_n = \{\lambda \in \overline{\mathcal{P}}(n) : \lambda = \lambda'\}$.

Simple supermodules for \mathbb{CS}_n (up to parity shift)

Simple $\mathbb{C}S_n$ -supermodules are indexed by the set $\overline{\mathcal{P}}(n)$.

$$W^{\lambda} = \begin{cases} S^{\lambda} \oplus S^{\lambda'} & \text{if } \lambda \in E_n \text{ (Type Q, self-associate case)} \\ S^{\lambda} & \text{if } \lambda \in F_n \text{ (Type M, absolutely irreducible case)} \end{cases}$$

11

Structure of simple supermodules for the symmetric group

Type Q simple supermodules $W^{\lambda} = S^{\lambda} \oplus S^{\lambda'}$ $(\lambda \neq \lambda')$

The odd involution $J_{W^{\lambda}}:W^{\lambda}\to W^{\lambda}$ can be interpreted as an even isomorphism of $\mathbb{C}S_n$ -supermodules

$$W^{\lambda} \cong \Pi(W^{\lambda}).$$

Type M simple supermodules $W^{\lambda} = S^{\lambda}$ ($\lambda = \lambda'$)

As a $\mathbb{C}A_n$ -module,

$$\mathsf{S}^{\lambda} = \mathsf{S}^{\lambda^+} \oplus \mathsf{S}^{\lambda^-},$$

These are the homogeneous subspaces of W^{λ} . Consequently, W^{λ} is not even-isomorphic to $\Pi(W^{\lambda})$ because $S^{\lambda^{+}} \not\cong S^{\lambda^{-}}$ as $\mathbb{C}A_{n}$ -modules.

"Multiplicity free" restriction

Restriction to $\mathbb{C}S_{n-1}$ in terms of Young lattice ordering $\mu \prec \lambda$:

$$W^{\lambda}\downarrow_{\mathbb{C}S_{n-1}} \cong \begin{cases} \left[\bigoplus_{\mu \prec \lambda} W^{\mu}\right] \oplus \left[\bigoplus_{\mu \prec \lambda} W^{\mu} \oplus \Pi(W^{\mu})\right] & \text{if } \lambda \in E_n, \\ \bigoplus_{\substack{\mu \prec \lambda \\ \text{cont}(\lambda/\mu) \geq 0}} W^{\mu} & \text{if } \lambda \in F_n. \end{cases}$$

Group algebra of the symmetric group, as a superalgebra

Get isomorphisms of associative superalgebras

$$\mathbb{C}S_n \cong \left[\bigoplus_{\lambda \in E_n} Q(W^{\lambda})\right] \oplus \left[\bigoplus_{\lambda \in F_n} \operatorname{End}(W^{\lambda})\right]$$
$$\cong \left[\bigoplus_{\lambda \in E_n} Q(f^{\lambda})\right] \oplus \left[\bigoplus_{\lambda \in F_n} M(\frac{1}{2}f^{\lambda}, \frac{1}{2}f^{\lambda})\right]$$

where $f^{\lambda} = \dim(S^{\lambda})$. Then as a Lie superalgebra,

$$\mathbb{C}S_n \cong \left[\bigoplus_{\lambda \in E_n} \mathfrak{q}(f^{\lambda}) \right] \oplus \left[\bigoplus_{\lambda \in F_n} \mathfrak{gl}(\frac{1}{2}f^{\lambda}, \frac{1}{2}f^{\lambda}) \right]$$

Derived Lie superalgebras

Given a Lie superalgebra \mathfrak{g} , let $\mathfrak{D}(\mathfrak{g})$ be its derived subsuperalgebra.

$$\mathfrak{D}(\mathfrak{gl}(W^{\lambda})) = \mathfrak{sl}(W^{\lambda})$$

$$\cong \mathfrak{sl}(m|m) := \left\{ \left[\frac{A \mid B}{C \mid D} \right] \in \mathfrak{gl}(m|m) : \operatorname{tr}(A) - \operatorname{tr}(D) = 0 \right\}$$

$$\mathfrak{D}(\mathfrak{q}(W^{\lambda})) = \mathfrak{sq}(W^{\lambda})$$

$$\cong \mathfrak{sq}(n) := \left\{ \left[\frac{A \mid B}{B \mid A} \right] \in \mathfrak{q}(n) : \operatorname{tr}(B) = 0 \right\}$$

Lie superalgebra generated by transpositions

Let $\mathfrak{g}_n \subset \mathbb{C}S_n$ be the Lie superalgebra generated by all transpositions. Let $T_n = \sum_{1 \leq i \leq n} (i,j) \in \mathbb{C}S_n$ be the sum in $\mathbb{C}S_n$ of all transpositions.

Main Theorem

$$\mathfrak{g}_n = \mathfrak{D}(\mathbb{C}S_n) \oplus \mathbb{C} \cdot T_n,$$

where

$$\mathfrak{D}(\mathbb{C}S_n) \cong \big[\bigoplus_{\lambda \in E_n} \mathfrak{sq}(W^{\lambda})\big] \oplus \big[\bigoplus_{\lambda \in F_n} \mathfrak{sl}(W^{\lambda})\big]$$

 $\mathfrak{g}_n \subseteq \mathfrak{D}(\mathbb{C}S_n) + \mathbb{C}T_n$ because \mathfrak{g}_n is generated by T_n and the set

$$\left\{ \tau - \frac{2}{n(n-1)} \cdot T_n : \tau \text{ is a transposition} \right\}$$

which is seen to be a subset of $\mathfrak{D}(\mathbb{C}S_n)$. Hard part is showing $\mathfrak{D}(\mathbb{C}S_n) \subseteq \mathfrak{g}_n$.

Ideas behind the proof of the Main Theorem

Let
$$\mathfrak{g} = \mathfrak{g}_n$$
. Want $\mathfrak{g} = \left[\bigoplus_{\lambda \in E_n} \mathfrak{sq}(W^{\lambda}) \right] \oplus \left[\bigoplus_{\lambda \in F_n} \mathfrak{sl}(W^{\lambda}) \right] \oplus \mathbb{C} \cdot T_n$.

1. Show by induction on *n* (and brutish force) that

$$\operatorname{im}\left(\mathfrak{g} \to \operatorname{End}(W^{\lambda})\right) = \begin{cases} \mathfrak{sq}(W^{\lambda}) + \mathbb{C} \cdot (\operatorname{cont}(\lambda) \cdot J_{W^{\lambda}}) & \text{if } \lambda \in E_n, \\ \mathfrak{sl}(W^{\lambda}) & \text{if } \lambda \in F_n. \end{cases}$$

Use description of the restrictions $W^{\lambda}\downarrow_{\mathbb{CS}_{n-1}}$, and Gelfand–Zeitlin bases for the S^{λ} given by the simultaneous eigenvectors for the action of the Jucys–Murphy elements.

2. Deduce $\mathfrak{g}_{\overline{0}}$ is reductive, hence $\mathfrak{D}(\mathfrak{g}_{\overline{0}})$ is a semisimple Lie algebra.

Observe by 1 that each W^{λ} is a semisimple $\mathfrak{g}_{\overline{0}}$ -module. Then $\bigoplus_{\lambda \in \mathcal{E}_n \cup \mathcal{F}_n} W^{\lambda}$ is a faithful, finite-dimensional, completely reducible $\mathfrak{g}_{\overline{0}}$ -module, so $\mathfrak{g}_{\overline{0}}$ is reductive.

Ideas behind the proof of the Main Theorem

3. Show that $\mathfrak{D}(\mathfrak{g}_{\overline{0}})$ is as big as it should be:

$$\mathfrak{D}(\mathfrak{g}_{\overline{0}}) = \Big[\bigoplus_{\lambda \in \mathcal{E}_n} \mathfrak{sl}(W_\lambda)\Big] \oplus \Big[\bigoplus_{\lambda \in \mathcal{F}_n} \mathfrak{sl}(W_{\overline{0}}^\lambda) \oplus \mathfrak{sl}(W_{\overline{1}}^\lambda)\Big]$$

By semisimplicity, $\mathfrak{D}(\mathfrak{g}_{\overline{0}})$ is a direct sum of special linear Lie algebras; need to show all factors are distinct. Argument uses the facts

- for $n \ge 5$, $\mathfrak{D}(\mathfrak{g}_{\overline{0}})$ can distinguish simple $\mathbb{C}A_n$ -modules. Note that $(ij)(k\ell) \in \mathfrak{D}(\mathfrak{g}_{\overline{0}})$ if i,j,k,ℓ are distinct, and elements of this form generate $\mathbb{C}A_n$ as an associative algebra.
- W^{λ} and W^{μ} have simple $\mathbb{C}A_n$ -submodules in common only if $\lambda = \mu$.
- 4. Apply semisimple action of $\mathfrak{D}(\mathfrak{g}_{\overline{0}})$ to deduce that $\mathfrak{D}(\mathbb{C}S_n)_{\overline{1}} \subseteq \mathfrak{g}_{\overline{1}}$. Since $\mathfrak{D}(\mathbb{C}S_n)_{\overline{1}}$ generates essentially all of $\mathfrak{D}(\mathbb{C}S_n)$, then $\mathfrak{D}(\mathbb{C}S_n) \subseteq \mathfrak{g}$.

End result (once more)

Main Theorem

$$\mathfrak{g}_n = \mathfrak{D}(\mathbb{C}S_n) \oplus \mathbb{C} \cdot T_n,$$

where

$$\mathfrak{D}(\mathbb{C}\mathsf{S}_n) \cong \big[\bigoplus_{\lambda \in \mathsf{E}_n} \mathfrak{sq}(\mathsf{W}^\lambda)\big] \oplus \big[\bigoplus_{\lambda \in \mathsf{F}_n} \mathfrak{sl}(\mathsf{W}^\lambda)\big]$$

Then $dim(\mathfrak{g}_n) = n! - |E_n \cup F_n| + 1$.

L'algèbre de Lie des transpositions, J. Algebra 310 (2007)

Marin studied the classical (non-super) analogue of this problem, motivated by the representation theory of the braid group.

Proposition 1. L'algèbre de Lie \mathfrak{g}_n est réductive, et son centre est de dimension 1, engendré par la somme T_n de toutes les transpositions. En conséquence $\mathfrak{g}_n \simeq \mathbb{k} \times \mathfrak{g}'_n$, et l'image de \mathfrak{g}_n dans $\mathfrak{gl}(\lambda)$ est $\mathfrak{g}_{\lambda} \subset \mathfrak{sl}(\lambda)$ si T_n agit par 0, et $\mathbb{k} \times \mathfrak{g}_{\lambda}$ sinon.

Marin can deduce right off the bat that \mathfrak{g}_n is reductive.

Théorème A. Pour tout $n \ge 3$, ϕ_n est surjectif. En particulier,

$$\mathfrak{g}_n' \simeq \mathfrak{sl}_{n-1}(\mathbb{k}) \times \left(\prod_{\lambda \in E_n/\sim} \mathfrak{sl}(\lambda)\right) \times \left(\prod_{\lambda \in F_n} \mathfrak{osp}(\lambda)\right)$$

et les représentations ρ_{λ} de \mathfrak{g}'_n sont deux à deux non isomorphes.

Marin's E_{Π}/\sim and F_{Π} don't include any hook partitions. His \mathfrak{osp} is the French notation for " \mathfrak{o} or \mathfrak{sp} ."

Overall, the Lie algebra of transpositions is less than half the size of the Lie superalgebra of transpositions.

May 19, 2010

May 21, 2010