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Abstract We study the distribution of the maximal height of the outermost path in the
model of N nonintersecting Brownian motions on the half-line as N → ∞, showing that it
converges in the proper scaling to the Tracy-Widom distribution for the largest eigenvalue
of the Gaussian orthogonal ensemble. This is as expected from the viewpoint that the max-
imal height of the outermost path converges to the maximum of the Airy2 process minus a
parabola. Our proof is based on Riemann-Hilbert analysis of a system of discrete orthogonal
polynomials with a Gaussian weight in the double scaling limit as this system approaches
saturation. We consequently compute the asymptotics of the free energy and the reproducing
kernel of the corresponding discrete orthogonal polynomial ensemble in the critical scaling
in which the density of particles approaches saturation. Both of these results can be viewed
as dual to the case in which the mean density of eigenvalues in a random matrix model is
vanishing at one point.

Keywords Brownian excursions · Airy process · Random matrix theory · Discrete
orthogonal polynomials · Painlevé II

1 Introduction

1.1 Nonintersecting Brownian Motions on the Half-Line

Consider a model of N nonintersecting Brownian motions {bj (t)}N
j=1 which remain non-

negative for 0 < t < 1 and whose initial and terminal points are at zero. That is,

b1(0) = b1(1) = b2(0) = b2(1) = · · · = bN(0) = bN(1) = 0,

0 ≤ b1(t) < b2(t) < · · · < bN(t) for 0 < t < 1.
(1.1)

There are two standard ways to enforce the condition that the Brownian motions remain
non-negative: an absorbing wall and a reflecting wall at zero. The transition probability for
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a single Brownian motion with an absorbing wall at zero to pass from y to x over the time
interval t is given by

pabs(t, x|y) = 1√
2πt

[
exp

(
− (y − x)2

2t

)
− exp

(
− (y + x)2

2t

)]
, (1.2)

and the transition probability for a single Brownian motion with a reflecting wall at zero to
pass from y to x over the time interval t is given by

pref (t, x|y) = 1√
2πt

[
exp

(
− (y − x)2

2t

)
+ exp

(
− (y + x)2

2t

)]
. (1.3)

For the positions at time t ∈ (0,1) of the N nonintersecting Brownian motions with an
absorbing wall at zero, we will use the notation

0 < b
(BE)

1 (t) < b
(BE)

2 (t) < · · · < b
(BE)
N (t). (1.4)

The superscript BE stands for Brownian excursion, which is the name for a Brownian motion
with an absorbing wall which is conditioned to return to its starting point. For the positions
at time t ∈ (0,1) of the N nonintersecting Brownian motions with a reflecting wall at zero,
we use the notation

0 ≤ b
(R)

1 (t) < b
(R)

2 (t) < · · · < b
(R)
N (t), (1.5)

where the superscript R stands for reflecting. The ensembles of nonintersecting Brownian
motions can be derived from the transition probabilities (1.2) and (1.3) using the Karlin-
McGregor formula [30]. Even though it seems like a degenerate condition to force all of
the Brownian motions to begin and end at zero, it is possible to define these models of
nonintersecting Brownian motions with such a condition by starting with a model for which
the starting and ending points are all distinct and positive, and taking a limit as they go to
zero. Let us now give a precise definition of the two models of nonintersecting Brownian
motions in terms of their transition probabilities. See [34] for a derivation of these transition
probabilities in the absorbing case. The reflecting case is similar. Introduce the notations

xk = (xk,1, xk,2, . . . , xk,N ), x2
k = (x2

k,1, x
2
k,2, . . . , x

2
k,N

)
, (1.6)

and let

�(x) =
∏

1≤j<k≤N

(xk − xj ), (1.7)

be the Vandermonde determinant. Define the probability density functions

p
(BE)

0 (t,x1) = (t (1 − t))−N2−N/22N/2

πN/2
∏N−1

j=0 (2j + 1)!
(
�
(
x2

1

))2( N∏
j=1

x2
1,j

)

× exp

(
− 1

2t (1 − t)

N∑
j=1

x2
1,j

)
,

p
(R)

0 (t,x1) = (t (1 − t))−N2+N/22N/2

πN/2
∏N−1

j=0 (2j)!
(
�
(
x2

1

))2
exp

(
− 1

2t (1 − t)

N∑
j=1

x2
1,j

)
,

(1.8)
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and

p(BE)(t1,x1; t2,x2) =
(

1 − t1

1 − t2

)N2+N/2
(

N∏
j=1

x2,j

x1,j

)
�(x2

2)

�(x2
1)

exp

{
−1

2

N∑
j=1

(
x2,j

1 − t2
− x1,j

1 − t1

)}

× det
[
pabs(t2 − t1, x2,j |x1,k)

]N
j,k=1

,

p(R)(t1,x1; t2,x2) =
(

1 − t1

1 − t2

)N2−N/2
�(x2

2)

�(x2
1)

exp

{
−1

2

N∑
j=1

(
x2,j

1 − t2
− x1,j

1 − t1

)}

× det
[
pref (t2 − t1, x2,j |x1,k)

]N
j,k=1

.

(1.9)

Let us adopt the convention that bj (t) with no superscript refers to either the model with
the reflecting or absorbing wall at zero. For any time t ∈ (0,1), the ordered particles
(b1(t), . . . , bN(t)) must lie in the region in R

N

WN = {(b1, . . . , bn): 0 ≤ b1 < b2 < · · · < bN

}
. (1.10)

The meaning of the probability density functions above is the following. For some sequence
of times

0 < t1 < · · · < tK < 1, (1.11)

and some sequence of regions �k ⊂ WN , k = 1, . . . ,K , we have

P
[(

b1(tk), b2(tk), . . . , bN(tk)
) ∈ �k, k = 1, . . . ,K

]

=
∫

�1

· · ·
∫

�K

p0(t1,x1)

(
K−1∏
k=1

p(tk,xk; tk+1,xk+1)

)
dx1 · · ·dxK, (1.12)

where xk is the vector of integration variables corresponding to the region �k , p0 = p
(BE)

0

(resp. p
(R)

0 ), and p = p(BE) (resp. p(R)) for the model of nonintersecting Brownian motions
with an absorbing (resp. reflecting) wall at zero.

From (1.8) it is immediate that for fixed t ∈ (0,1), the particles b
(BE)
j (t) are distributed

as the eigenvalues of a random matrix from the Laguerre unitary ensemble (see e.g., [24]).
As such, the largest particle at each fixed time, in the proper scaling limit, is distributed
according to the distribution which describes the largest eigenvalue in the Gaussian unitary
ensemble (GUE) of random matrices as the size of the matrix tends to infinity. In this paper
we study the distribution of the random variable

max
0<t<1

bN(t), (1.13)

the maximal height of the outermost path for both the absorbing and reflecting case. To
obtain a formula for the distribution of this random variable, one can apply the Karlin-
McGregor formula in the affine Weyl alcove of height M

WM
N = {(b1, . . . , bn): 0 ≤ b1 < b2 < · · · < bN < M

}
. (1.14)

In the absorbing wall case, the formula obtained is

P

(
max
0<t<1

b
(BE)
N (t) < M

)
= 2−N/2π2N2+N/2

MN(2N+1)N !∏N−1
k=0 (2k + 1)!

×
∑

x∈ZN

(
�
(
x2
))2( N∏

j=1

x2
j

)
exp

{
−π2

2M2

N∑
j=1

x2
j

}
, (1.15)
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where

x = (x1, x2, . . . , xN). (1.16)

Notice that this is the Hankel determinant

2−N/2π2N2+N/2

MN(2N+1)
∏N−1

k=0 (2k + 1)! det

[(
∂j+k−2

∂λj+k−2

∞∑
x=−∞

xeλx2

)∣∣∣∣
λ=−π2/2M2

]N

j,k=1

. (1.17)

This formula first appeared in the paper [39], in which the authors use a path integral tech-
nique to derive it. A derivation using the Karlin-McGregor formula appeared soon after
in [34]. See also [22] in which an equivalent formula is derived from lattice paths. In the
case that there is a reflecting wall at zero, the formula is

P

(
max
0<t<1

b
(R)
N (t) < M

)
= 2−N/2π2N2−3N/2

MN(2N−1)N !∏N−1
k=0 (2k)!

×
∑

x∈{Z−1/2}N

(
�
(
x2
))2

exp

{
−π2

2M2

N∑
j=1

x2
j

}
. (1.18)

To our knowledge, the formula (1.18) has not appeared in the literature before, but it can be
derived in a manner similar to those used in [39] and [34] to derive (1.15).

In the case of an absorbing wall, this model was first introduced in the papers [31]
and [26], and is often called the model of nonintersecting Brownian excursions, or non-
colliding Bessel bridges. It is also sometimes referred to as “watermelons with a wall,”
although this sometimes refers to the discrete time and space (simple random walk) version
as well [26]. See [26] and [32] for a derivation of this model as a scaling limit of an ensemble
of simple random walks conditioned not to intersect and to stay positive.

Our analysis of (1.15) and (1.18) is based on analysis of the discrete Gaussian orthogonal
polynomials {P (α)

k (x)}∞
k=0 and their normalizing constants {h(α)

k }∞
k=0 defined via the orthog-

onality condition

∑
x∈{Z−α}

P (α)
n (x)P (α)

m (x)w(x) = h(α)
n δmn, w(x) = exp

{−π2

2M2
x2

}
,

P (α)
n (x) = xn + · · · .

(1.19)

A routine calculation (see [13]) shows that (1.15) and (1.18) can be written as

P

(
max
0<t<1

b
(BE)
N (t) < M

)
= 2−N/2π2N2+N/2

MN(2N+1)
∏N−1

k=0 (2k + 1)!
N−1∏
k=0

h
(0)

2k+1,

P

(
max
0<t<1

b
(R)
N (t) < M

)
= 2−N/2π2N2−3N/2

MN(2N−1)
∏N−1

k=0 (2k)!
N−1∏
k=0

h
(1/2)

2k .

(1.20)

In a recent paper of Forrester, Majumdar, and Schehr [25], an analogy between noninter-
secting Brownian excursions and Yang-Mills theory on the sphere is made, and the authors
use some non-rigorous methods from gauge theory [12, 20] to deduce that the maximal
height of the outermost path in this ensemble is, in the proper scaling limit, distributed as the
largest eigenvalue in the Gaussian orthogonal ensemble (GOE) of random matrices. A main
result of this paper is a rigorous verification of this fact. In order to state this theorem, let us
review the Tracy-Widom distributions which describe the location of the largest eigenvalue
in the classical random matrix ensembles. These distributions may be described in terms
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of the Hastings-McLeod solution to the Painlevé II equation. The homogeneous Painlevé II
equation is the second order nonlinear ODE

q ′′(s) = sq(s) + 2q(s)3. (1.21)

The Hastings-McLeod solution to this equation [27] is characterized by its behavior at pos-
itive infinity. In particular, it is the solution satisfying

q(s) = Ai(s)
(
1 + o(1)

)= e− 2
3 s3/2

2
√

πs1/4

(
1 + o(1)

)
as s → +∞, (1.22)

where Ai is the Airy function. The distribution functions F1 and F2 are defined as

F1(x) = F(x)E(x), F2(x) = F(x)2, (1.23)

where

E(x) = exp

(
−1

2

∫ ∞

x

q(s) ds

)
, F (x) = exp

(
−1

2

∫ ∞

x

R(s) ds

)
,

R(x) =
∫ ∞

x

q(s)2 ds,

(1.24)

and q(s) is the Hastings-McLeod solution to the Painlevé II equation. The function F1 de-
scribes the distribution of the largest (or smallest) rescaled eigenvalue in GOE, while F2

describes the distribution of the largest (or smallest) rescaled eigenvalue in GUE (see [41–
43]). We now state our main theorem.

Theorem 1.1 (Distribution of the maximal height of the outermost particle) Consider ei-
ther of the models of nonintersecting Brownian motions described in (1.8) and (1.9). The
maximal height of the outermost particle has the limiting distribution

lim
N→∞

P

[
211/6N1/6

(
max
0<t<1

bN(t) − √
2N
)

< k
]

= F1(k), (1.25)

where F1, defined in (1.23) and (1.24), is the limiting distribution function for the location of
the largest eigenvalue in the Gaussian orthogonal ensemble of random matrices, and bN(t)

is either b
(BE)
N (t) or b

(R)
N (t).

This theorem is widely expected from the point of view that the distribution of the up-
permost curve in the model of N nonintersecting Brownian bridges should converge (after
rescaling and recentering) to the Airy2 process, which was first introduced in [36]. In the
case of an absorbing wall, the framework to prove this convergence at the level of finite
dimensional distributions was given by Tracy and Widom in [44], although they stopped
just short of stating it as a theorem (their main interest in that paper was the asymptotics
of the bottom curve). It is known that the maximum of the Airy2 process over a continuum
of times is given by the Tracy-Widom GOE distribution. Such a result was first proved by
Johansson [29] by first proving a functional limit theorem for the convergence of the polynu-
clear growth (PNG) model to the Airy2 process and using connections between PNG and
the longest increasing subsequence of a random permutation found by Baik and Rains [4].
A more direct proof was recently given by Corwin, Quastel and Remenik [11]. See also [35].
Thus Theorem 1.1 could be proved by establishing the functional convergence of the top
curve to the Airy2 process. In fact, for the absorbing boundary case, given the finite di-
mensional convergence implied by [44] the functional convergence follows from a result of
Corwin and Hammond [10], who showed that finite dimensional convergence of a line en-
semble implies functional convergence given some fairly mild local condition. In this sense,
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at least in the absorbing case, Theorem 1.1 is not new, but here we give an alternative direct
proof by analyzing the formula (1.15) asymptotically. Moreover, the analysis is uniform for
both the absorbing and reflecting boundaries. The rigorous result for the reflecting boundary
case does seem to be new. Our proof is based on the asymptotic evaluation of the formulas
(1.20) by Riemann-Hilbert methods.

Let us note here that in the paper [25] the authors give expressions similar to (1.15) for
the normalized reunion probabilities for nonintersecting Brownian motions with periodic
boundary conditions and with reflecting boundary conditions, which are shown to corre-
spond to partition functions of 2-d Yang-Mills theory on the sphere with the gauge groups
U(N) and SO(2N), respectively. These expressions do not have a probabilistic interpreta-
tion, but can also be expressed in terms of discrete Gaussian orthogonal polynomials and
their asymptotic evaluation is a straightforward application of Theorems 1.1 and 1.3.

1.2 Discrete Gaussian Orthogonal Polynomials

For asymptotic analysis, it is convenient to use a rescaling of the polynomials (1.19). Con-
sider the infinite regular lattice of mesh 1/n,

Ln,α =
{
xk = k − α

n
, k ∈ Z

}
, α ∈

[
−1

2
,

1

2

]
, (1.26)

and the polynomials orthogonal with respect to a discrete Gaussian weight on this lattice.
More specifically, consider the system of monic polynomials {P (α)

n,j (x)}∞
j=0 and the normal-

izing constants {h(α)
n,j }∞

j=0 satisfying the orthogonality condition

1

n

∑
x∈Ln,α

P
(α)
n,j (x)P

(α)
n,k (x)e−n π2a

2 x2 = h
(α)
n,kδjk. (1.27)

As usual, P
(α)
n,k (x) is a polynomial of degree k, and a > 0 is a positive parameter. As the

mesh of the lattice goes to zero these polynomials converge to the (monic and rescaled)
Hermite polynomials. The polynomials P

(α)
n,k (x) and the normalizing constants h

(α)
n,k depend

on the parameter a. To highlight that dependence, let us write

h
(α)
n,k ≡ h

(α)
n,k(a). (1.28)

The relation to the polynomials (1.19) is

P
(α)
k (nx) = nkP

(α)
n,k (x), h

(α)
k = n2k+1h

(α)
n,k(a), M =

√
n

a
. (1.29)

The main distinguishing feature between the asymptotic analysis of discrete orthogonal
polynomials and that of continuous ones is the phenomenon of saturation. If we denote by
μn the normalized counting measure on the zero set of the polynomials P (α)

n,n (x), it is known
that, as n → ∞, μn converges to a probability measure with finite support and piecewise
smooth density, known as the equilibrium measure. It is a general fact that for any system of
polynomials orthogonal with respect to a measure which lies on a discrete subset of R, call
it D, all zeroes of the polynomials are real and there can be no more than one zero between
two consecutive nodes of D. This leads to an upper constraint on the distribution of zeroes.
For polynomials orthogonal with respect to a continuous weight, there is no such constraint.

If the discrete orthogonal polynomials are such that the equilibrium measure does not ap-
proach this upper constraint, then their asymptotic properties match those of a corresponding
continuous system. If the upper constraint is active, then they do not, see [3, 7]. In the case
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Fig. 1 The equilibrium measure density for discrete Gaussian orthogonal polynomials in the subcritical case
a < 1, the supercritical case a > 1, and the critical case a = 1

of the discrete Gaussian orthogonal polynomials described in (1.27), the mesh of the lattice
is 1/n and thus the upper constraint on the equilibrium measure is that it should have a
density which is no greater than 1. In the case that the parameter a is greater than 1, this
upper constraint is realized, meaning that there is an interval on which the density of the
equilibrium measure is identically 1, see Fig. 1.

In [3] and [7] the authors present the asymptotic properties of very general classes of
discrete orthogonal polynomials on the real line assuming some “regularity” condition on
the equilibrium measure. The proof of Theorem 1.1 requires that we explore the critical
case in which the upper constraint is approached in a double scaling limit, which is not
considered in [3] or [7]. For the continuous weight case, a similar double scaling limit was
studied in the seminal paper of Baik, Deift, and Johannson [1] in the context of the longest
increasing subsequence of a random permutation. In the context of random matrix theory,
this type of double scaling limit appears when the limiting mean density of eigenvalues in
a random matrix model vanishes at one point, see [5, 9]. In the present paper we adapt the
analysis to a discrete weight where the lower constraint is replaced by the upper constraint.
A similar double scaling limit was considered recently by Baik and Jenkins [2] for a system
of discrete orthogonal polynomials on the circle when the upper constraint is about to be
active.

The orthogonal polynomials (1.28) satisfy the recurrence relation (see e.g., [40])

xP
(α)
n,k (x) = P

(α)

n,k+1(x) + A
(α)
n,kP

(α)
n,k (x) + B

(α)
n,kP

(α)

n,k−1(x),

B
(α)
n,k ≡ B

(α)
n,k (a) = h

(α)
n,k(a)

h
(α)

n,k−1(a)
.

(1.30)

In the case that α = 0 or α = 1/2, the lattice is symmetric about zero and A
(α)
n,k is zero. The

polynomials P
(α)
n,j of course depend on the parameter a, and if we show that dependence by

writing P
(α)
n,j (x;a), then we have the lattice rescaling relations

P
(α)
n,j (ξ±x;a) = ξ

j
±P

(α)

n±1,j (x;aξ±), h
(α)
n,j (a) = ξ

2j+1
± h

(α)

n±1,j (aξ±),

A
(α)
n,k(a) = ξ±A

(α)

n±1,k(aξ±),
(1.31)

where

ξ± = 1 ± 1

n
. (1.32)



Nonintersecting Brownian Motions on the Half-Line and Discrete 589

A basic physical model described by these orthogonal polynomials is the discrete
orthogonal polynomial ensemble with Gaussian weight, which is a discrete version of
GUE. This ensemble is described as the probability distribution on n-tuples of points
λ = (λ1, λ2, . . . , λn) ∈ (Ln,α)

n

P(there are particles at each of the points λ1, . . . , λn)

= (Z(DOPE)
n

)−1∏
k>j

(λj − λk)
2

n∏
j=1

e−nV (λj )

n
, (1.33)

where

Z(DOPE)
n =

∑
λ∈(Ln,α)n

∏
1≤j<k≤n

(λk − λj )
2

n∏
j=1

e−nV (λj )

n
= n!

n−1∏
k=0

h
(α)
n,k, (1.34)

and

V (x) = π2a

2
x2. (1.35)

As proved in Appendix C, the partition function Z(DOPE)
n satisfies the deformation equation

∂2

∂a2
logZ(DOPE)

n =
(

nπ2

2

)2

B(α)
n,n

(
B

(α)

n,n−1 + B
(α)

n,n+1 + (A(α)
n,n + A

(α)

n,n−1

)2)
. (1.36)

The deformation (1.36) is one of the isospectral flows in a general system known as the Toda
lattice hierarchy, see [15, 17] and references therein. For a derivation of the Toda lattice from
the Riemann-Hilbert problem for orthogonal polynomials, see [3], and for a broad descrip-
tion of differential equations related to orthogonal polynomials, see [21]. Let us note that
there also exist similar deformations with respect to other parameters in the weight which
yield closed form expressions for the first logarithmic derivative of the partition function,
see [14, 28, 33].

If we define the free energy as

F (DOPE)
n = − 1

n2
logZ(DOPE)

n , (1.37)

then (1.36) reads as

∂2

∂a2
F (DOPE)

n = −
(

π2

2

)2

B(α)
n,n

(
B

(α)

n,n−1 + B
(α)

n,n+1 + (A(α)
n,n(a) + A

(α)

n,n−1(a)
)2)

= −
(

π2

2

)2( h(α)
n,n(a)

h
(α)

n,n−2(a)
+ h

(α)

n,n+1(a)

h
(α)

n,n−1(a)

+ h(α)
n,n(a)

h
(α)

n,n−1(a)

(
A(α)

n,n(a) + A
(α)

n,n−1(a)
)2)

. (1.38)

In light of the deformation equations (1.36) and (1.38), let us write

Z(DOPE)
n ≡ Z(DOPE)

n (a), F (DOPE)
n ≡ F (DOPE)

n (a). (1.39)

All correlation functions for this ensemble can be written in terms of a reproducing kernel
which is defined in terms of orthogonal polynomials. Introduce the ψ -functions

ψn,k(x) = 1√
h

(α)
n,k

P
(α)
n,k (x)

e−nV (x)/2

√
n

, (1.40)
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and the Christoffel-Darboux kernel

Kn(x, y) =
n−1∑
k=0

ψn,k(x)ψn,k(y). (1.41)

Then the m-point correlation function Rm,n(λ1, . . . λn) is defined by the formula

Rm,n(λ1, . . . λm) = det
(
Kn(λk, λl)

)m
k,l=1

. (1.42)

The proof of Theorem 1.1 requires an asymptotic formula for h
(α)
n,k(a) in the scaling limit

a → 1 as n → ∞. In order to state that expansion, let us first fix some notations. Let the
parameter s be defined in terms of a as

s ≡ s(a;n) = −
[
(3πn)

(
z1 −

∫ z1

0
ρ(η)dη

)]2/3

, (1.43)

where

z1 = 2

πa

√
a − 1, ρ(η) = πa

2

√
4

π2a
− η2. (1.44)

One may check that as a → 1,

s = 22/3n2/3

(
(1 − a) + 4

5
(1 − a)2 + 122

175
(1 − a)3 + O

(
(1 − a)4

))
, (1.45)

and thus if

a = 1 − xn−δ + O
(
n−ε
)
, 0 < δ < ε, (1.46)

then

lim
n→∞ s =

⎧⎨
⎩

(sgnx)∞ if 0 < δ < 2/3,

22/3x if δ = 2/3,

0 if 2/3 < δ.

(1.47)

Let q(s) be the Hastings-McLeod solution to the Painlevé II equation, and R(s) be as defined
in (1.24). We then have the following proposition.

Proposition 1.2 (Asymptotics in discrete Gaussian orthogonal polynomials) Consider the
orthogonal polynomials defined in (1.27) such that (1−a)n2/3 remains bounded as n → ∞.
Let s be defined in terms of a as in (1.43). The normalizing constants for the orthogonal
polynomials (1.27) satisfy, as n → ∞,

h(α)
n,n(a) = 2√

a

(
1

π2ae

)n(
1 − 22/3

n1/3
Tn(s) + 21/3

n2/3
Un(s) + O

(
n−1
))

,

h
(α)

n,n−1(a)−1 = 1

2
√

aπ2

(
π2ae

)n(
1 + 22/3

n1/3
Tn−1(s) + 21/3

n2/3
Un−1(s) + O

(
n−1
))

,

(1.48)

where

Tn(s) = R(s) − (−1)n cos(2πα)q(s),

Un(s) = R2(s) − (−1)n cos(2πα)
(
q ′(s) + 2q(s)R(s)

)− q2(s) sin2(2πα).
(1.49)

The recurrence coefficients A
(α)

n,n−1 satisfy

A
(α)

n,n−1(a) = (−1)n24/3 sin(2πα)

πn1/3

(
21/3q(s) + q ′(s)

n1/3
+ O

(
n−2/3

))
. (1.50)
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Let us also note a formula for ratios of normalizing constants which will be useful in the
proofs of Theorems 1.1 and 1.3. Introduce the notations

s+ = s(aξ+;n + 1), s− = s(aξ−;n − 1), s = s(a;n), (1.51)

where s(a;n) is defined in (1.43), and ξ± is as defined in (1.32). Assume that a = 1−xn−2/3

for x ∈ R. A direct application of Proposition 1.2 gives

h(α)
n,n(a)

h
(α)

n−1,n−2(ξ−a)
= 1

π4a2e2

(
1 + 22/3

n1/3

(
Tn(s−) − Tn(s)

)

+ 21/3

n2/3

(
Un(s−) + Un(s) − 2Tn(s)Tn(s−)

)+ O
(
n−1
))

,

h
(α)

n+1,n+1(ξ+a)

h
(α)

n,n−1(a)
= 1

π4a2e2

(
1 + 22/3

n1/3

(
Tn+1(s) − Tn+1(s+)

)

+ 21/3

n2/3

(
Un+1(s+) + Un+1(s) − 2Tn+1(s)Tn+1(s+)

)+ O
(
n−1
))

.

(1.52)

From (1.45) we see that

s − s± = ± 22/3

n1/3
+ O

(
n−1
)
, (1.53)

and thus we can rewrite (1.52) as

h(α)
n,n(a)

h
(α)

n−1,n−2(ξ−a)
= 1

π4a2e2

(
1 + 24/3

n2/3

(
T ′

n(s) + Un(s) − Tn(s)
2
)+ O

(
n−1
))

,

h
(α)

n+1,n+1(ξ+a)

h
(α)

n,n−1(a)
= 1

π4a2e2

(
1 + 24/3

n2/3

(
T ′

n+1(s) + Un+1(s) − Tn+1(s)
2
)+ O

(
n−1
))

.

(1.54)

In fact, it easy to see, using R′(s) = −q2(s), that Un(s) − Tn(s)
2 = T ′

n(s), and thus we have

h(α)
n,n(a)

h
(α)

n−1,n−2(ξ−a)
= 1

π4a2e2

(
1 + 27/3T ′

n(s)

n2/3
+ O

(
n−1
))

,

h
(α)

n+1,n+1(ξ+a)

h
(α)

n,n−1(a)
= 1

π4a2e2

(
1 + 27/3T ′

n+1(s)

n2/3
+ O

(
n−1
))

.

(1.55)

A study of the asymptotic properties of the discrete Gaussian orthogonal polynomials
in the critical scaling above naturally leads to asymptotic results for the discrete Gaussian
orthogonal polynomial ensemble (1.33) in the critical scaling such that the distribution of
particles is approaching saturation. The theorems below give such results, and we note that
they are nearly identical to the results in [5, 6, 9], which concern a random matrix model for
which the distribution of eigenvalues is vanishing at a single point.

We first compare the free energy in the discrete Gaussian orthogonal polynomial ensem-
ble with that of the Gaussian unitary ensemble. The free energy of GUE is defined as

F (GUE)
n = − 1

n2
logZ(GUE)

n ,

Z(GUE)
n =

∫
· · ·
∫

Rn

∏
1≤j<k≤n

(xk − xj )
2 exp

(
−

n∑
j=1

x2
j

)
dx1 · · ·dxn.

(1.56)
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Theorem 1.3 (Free energy in the discrete Gaussian orthogonal polynomial ensemble) Let
the parameter a be such that (1−a)n2/3 remains bounded as n → ∞. The free energy of the
discrete orthogonal polynomial ensemble, F (DOPE)

n (a), defined in (1.34) and (1.37), satisfies
as n → ∞

F (DOPE)
n (a) − F (GUE)

n = log(a)

2
− 1

2
log

(
2

nπ2

)

− 1

n2
log
[

F2

(
22/3n2/3(1 − a)

)]+ O
(
n−δ
)
, (1.57)

where F2(x) is the Tracy-Widom distribution function associated with the largest eigenvalue
of GUE, and 2 < δ < 7/3.

We would now like to describe the Christoffel-Darboux kernel (1.41) close to the origin
as n → ∞. In order to state the theorem, we need to fix some notation. Let Φ1(ζ ; s) and
Φ2(ζ ; s) be defined via the system of differential equations

∂

∂ζ

(
Φ1(ζ ; s)
Φ2(ζ ; s)

)
=
(

4ζq 4ζ 2 + s + 2q2 + 2r

−4ζ 2 − s − 2q2 + 2r −4ζq

)

×
(

Φ1(ζ ; s)
Φ2(ζ ; s)

)

∂

∂s

(
Φ1(ζ ; s)
Φ2(ζ ; s)

)
=
(

q ζ

−ζ −q

)(
Φ1(ζ ; s)
Φ2(ζ ; s)

)
,

(1.58)

satisfying the properties that Φ1(ζ ; s) and Φ2(ζ ; s) are real for real ζ and s,

Φ1(−ζ ; s) = Φ1(ζ ; s), Φ2(−ζ ; s) = −Φ2(ζ ; s), (1.59)

and have the real asymptotics

Φ1(ζ ; s) = cos

(
4

3
ζ 3 + sζ

)
+ O

(
ζ−1
)
,

Φ2(ζ ; s) = − sin

(
4

3
ζ 3 + sζ

)
+ O

(
ζ−1
)
,

(1.60)

as ζ → ±∞. These are the so-called psi-functions associated with the Painlevé II equation.
We then define the functions

Φ1(ζ ; s) = Φ1(ζ ; s) + iΦ2(ζ ; s), Φ2(ζ ; s) = Φ1(ζ ; s) − iΦ2(ζ ; s), (1.61)

and the critical kernel

Kcrit(u, v; s) = −Φ1(u; s)Φ2(v; s) + Φ2(u; s)Φ1(v; s)
2πi(u − v)

. (1.62)

Let us also give two other expressions for Kcrit which may be useful for analysis (see
e.g., [9]),

Kcrit(u, v; s) = Φ1(u; s)Φ2(v; s) − Φ2(u; s)Φ1(v; s)
π(u − v)

= 1

π

∫ s

−∞

[
Φ1(u; ξ)Φ1(v; ξ) + Φ2(u; ξ)Φ2(v; ξ)

]
dξ. (1.63)
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As shown in [5] and [9], this is the limiting correlation kernel of a random matrix model in
the case that the limiting distribution of eigenvalues vanishes at a single point. We have the
following expression for the kernel (1.41) as n → ∞.

Theorem 1.4 (Limiting Christoffel-Darboux kernel near the point of saturation) Let
Kn(x, y) be the Christoffel-Darboux kernel defined in (1.41) for the discrete orthogonal
polynomial ensemble (1.33) with potential V (x) given by (1.35). Consider the scaling

a = 1 − Ln−2/3, x = kn − α

n
∼ u

cn1/3
,

y = mn − α

n
∼ v

cn1/3
, c = π2−5/3,

(1.64)

where kn and mn are integers. Then, for u �= v,

lim
n→∞(−1)kn+mn+1 n2/3

c
Kn(x, y) = Kcrit(u, v; s∞), (1.65)

where

s∞ = 22/3L. (1.66)

The diagonal terms satisfy

lim
n→∞

n2/3

c

(
1 − Kn(x, x)

)= Kcrit(u,u; s∞), (1.67)

where Kcrit(u,u; s∞) is obtained from (1.62) using L’Hospital’s rule or directly from
(1.63).

Theorem 1.4 may have some application to nonintersecting Brownian excursions. In a
recent paper of Rambeau and Schehr [37], the authors derive a formula for the joint distri-
bution of the maximal height of the outermost path and the time at which it occurs. Their
formula can be written in terms of the Christoffel-Darboux kernel (1.41) [38], and thus
Theorem 1.4 may be of use in the asymptotic analysis of this joint distribution. In fact, very
recently Schehr gave a limiting formula for this joint distribution in the critical scaling which
involves the Painlevé II psi-function [38]. The argument of [38] is based on a differential
Ansatz, and it would be interesting to see if one could give a rigorous verification of that
result using Theorem 1.4.

The rest of this paper is organized as follows. In Sect. 2, we derive an integral formula
for the distribution of the random variable max0<t<1 bN(t) in terms of discrete Gaussian
orthogonal polynomials and use Proposition 1.2 to evaluate it in the large N limit, which
proves Theorem 1.1. In Sect. 3, we prove Theorem 1.3 in a similar way. In Sect. 4, we
present the steepest descent analysis of a Riemann-Hilbert problem for the discrete Gaus-
sian orthogonal polynomials by the method of Deift and Zhou [18], and in Sect. 5 we ex-
plicitly compute the first two error terms of this analysis in the critical scaling limit. Fi-
nally, in Sect. 6 we use the results of Sects. 4 and 5 to prove Proposition 1.2 and Theo-
rem 1.4.
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2 Proof of Theorem 1.1

2.1 Integral Formula for the Distribution of the Maximal Height of bN(t)

We would like to study the double scaling limit of (1.20) as N → ∞, and M = √
2N +

kN−1/6 for some k ∈ R. With that in mind, we scale M as M =
√

2N
a

, and will study the

limit as N → ∞ and a = 1 − LN−2/3 + O(N−4/3). Then formulas (1.20) become

P

(
max
0<t<1

b
(BE)
N (t) < M

)
= aN2+N/2π2N2+N/2

2N2
NN2+N/2

∏N−1
k=0 (2k + 1)!

N−1∏
k=0

h
(0)

2k+1,

P

(
max
0<t<1

b
(R)
N (t) < M

)
= aN2−N/2π2N2−3N/2

2N2−NNN2−N/2
∏N−1

k=0 (2k)!
N−1∏
k=0

h
(1/2)

2k .

(2.1)

As proved in Appendix C, the products of normalizing constants in (2.1) satisfy the defor-
mation equations

d2

da2

(
log

N−1∏
k=0

h
(0)

2k+1

)
=
(

π2

4N

)2 h
(0)

2N+1

h
(0)

2N−1

,

d2

da2

(
log

N−1∏
k=0

h
(1/2)

2k

)
=
(

π2

4N

)2
h

(1/2)

2N

h
(1/2)

2N−2

.

(2.2)

It follows that, if we denote

F
(BE)
N (a) = log

[
P

(
max
0<t<1

b
(BE)
N (t) <

√
2N

a

)]
,

F
(R)
N (a) = log

[
P

(
max
0<t<1

b
(R)
N (t) <

√
2N

a

)]
,

(2.3)

then we have the deformation equations

d2

da2
F

(BE)
N (a) = −2N2 + N

2a2
+
(

π2

4N

)2 h
(0)

2N+1

h
(0)

2N−1

,

d2

da2
F

(R)
N (a) = −2N2 − N

2a2
+
(

π2

4N

)2
h

(1/2)

2N

h
(1/2)

2N−2

.

(2.4)

In the scaling of M described above, we can write the orthogonality condition (1.19) as

∑
x∈Ln,α

P
(α)
k (nx)P (α)

m (nx)e−nV (x) = h
(α)
k δkm, V (x) = π2ξa

2
x2, ξ = n

2N
. (2.5)

This is the same orthogonality condition as (1.27) with a �→ aξ , and thus using (1.31) we
can write the formulas (2.4) as

d2

da2
F

(BE)
N (a) = −2N2 + N

2a2
+ π4N2ξ 4N+3

+
h

(0)

2N+1,2N+1(aξ+)

h
(0)

2N,2N−1(a)
, ξ+ = 1 + 1

2N
,

d2

da2
F

(R)
N (a) = −2N2 − N

2a2
+ π4N2ξ−4N+3

−
h

(1/2)

2N,2N(a)

h
(1/2)

2N−1,2N−2(aξ−)
, ξ− = 1 − 1

2N
.

(2.6)
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Notice that as a → 0, M → ∞. Since M is typically close to
√

2N , it is reasonable to
assume that both F

(BE)
N (a) and F

(R)
N (a) go to zero very quickly as a → 0. One might easily

guess the following lemma.

Lemma 2.1

F
(BE)
N (0) = F

(R)
N (0) = d

da
F

(BE)
N (a)

∣∣∣∣
a=0

= d

da
F

(R)
N (a)

∣∣∣∣
a=0

= 0. (2.7)

Furthermore, as N → ∞,

d2

da2
F

(BE)
N (a)

∣∣∣∣
a=0

= O
(
N−2

)
,

d2

da2
F

(R)
N (a)

∣∣∣∣
a=0

= O
(
N−2

)
. (2.8)

We leave the proof of this lemma in Appendix A. From (2.7) and (2.6), we easily obtain
the following integral representations for F

(BE)
N (a) and F

(R)
N (a).

Proposition 2.2 The functions F
(BE)
N (a) and F

(R)
N (a), defined in (2.3), have the integral

representations

F
(BE)
N (a) =

∫ a

0

∫ u

0
G(BE)(r) dr du, F

(R)
N (a) =

∫ a

0

∫ u

0
G(R)(r) dr du, (2.9)

where

G(BE)(r) = −2N2 + N

2r2
+ π4N2ξ 4N+3

+
h

(0)

2N+1,2N+1(rξ+)

h
(0)

2N,2N−1(r)
,

G(R)(r) = −2N2 − N

2r2
+ π4N2ξ−4N+3

−
h

(1/2)

2N,2N(r)

h
(1/2)

2N−1,2N−2(rξ−)
.

(2.10)

2.2 Evaluation of the Integrals (2.9)

We would like to evaluate the integrals (2.9) in the limit as N → ∞, and

a = 1 − LN−2/3 + O
(
N−4/3

)
. (2.11)

Let us write (2.9) as

F
(BE)
N (a) = I

(BE)

0 + I
(BE)

1 + I
(BE)

2 , F
(R)
N (a) = I

(R)

0 + I
(R)

1 + I
(R)

2 , (2.12)

where

I
(BE)

0 =
∫ 1−N−ε

0

∫ u

0
G(BE)(r) dr du, I

(BE)

1 =
∫ a

1−N−ε

∫ 1−N−ε

0
G(BE)(r) dr du,

I
(BE)

2 =
∫ a

1−N−ε

∫ u

1−N−ε

G(BE)(r) dr du, I
(R)

0 =
∫ 1−N−ε

0

∫ u

0
G(R)(r) dr du,

I
(R)

1 =
∫ a

1−N−ε

∫ 1−N−ε

0
G(R)(r) dr du, I

(R)

2 =
∫ a

1−N−ε

∫ u

1−N−ε

G(R)(r) dr du

(2.13)

for some 0 < ε < 2/3.
Consider first I0. We need a large n formula for the normalizing constants h

(α)
n,k(r) when

r < 1 − n−ε . In this case the asymptotics of h
(α)
n,k(r) match the asymptotics of the corre-

sponding system of continuous orthogonal polynomials, the (monic and rescaled) Hermite
polynomials. We have the following lemma, whose proof is given in Appendix B.
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Lemma 2.3 Let h
(α)
n,k(a) be defined as in (1.27) and (1.28). Let the parameter a be such that

a < 1 − n−ε for some 0 < ε < 2/3. Then as n → ∞,

h(α)
n,n(a) = 2√

a

(
1

π2ae

)n(
1 + 1

12n
+ 1

288n2
− 139

51840n3
+ O

(
n−4
))

,

h
(α)

n,n−1(a)−1 = 1

2π2
√

a

(
π2ae

)n(
1 − 1

12n
+ 1

288n2
+ 139

51840n3
+ O

(
n−4
))

.

(2.14)

Combining these, we find that, as N → ∞,

h
(0)

2N+1,2N+1(rξ+)

h
(0)

2N,2N−1(r)
= 1

π4r2e2

(
1 − 1

2N
+ 5

24N2
− 1

12N3
+ O

(
N−4

))
,

h
(1/2)

2N,2N(r)

h
(1/2)

2N−1,2N(rξ−)
= 1

π4r2e2

(
1 + 1

2N
+ 5

24N2
+ 1

12N3
+ O

(
N−4

))
.

(2.15)

Inserting this asymptotic formula into the integrand of I
(BE)

0 and I
(R)

0 gives

I
(BE)

0 =
∫ 1−N−ε

0

∫ u

0

(
−2N2 + N

2r2
+ N2

r2

(
1 + 1

2N
+ O

(
N−4

)))
dr du

= O
(
N−2

)
,

I
(R)

0 =
∫ 1−N−ε

0

∫ u

0

(
−2N2 − N

2r2
+ N2

r2

(
1 − 1

2N
+ O

(
N−4

)))
dr du

= O
(
N−2

)
.

(2.16)

Similarly, we find that

I
(BE)

1 = O
(
N−2−ε

)
, I

(R)

1 = O
(
N−2−ε

)
. (2.17)

We are left to evaluate I
(BE)

2 and I
(R)

2 . These integrals are in the regime in which Proposi-
tion 1.2 is valid. Let us write r = 1 − xN−2/3, so that as r varies from 1 −N−ε to a, x varies
from N2/3−ε to L. Applying Eq. (1.55) with n = 2N , we obtain

h
(0)

2N+1,2N+1(rξ+)

h
(0)

2N,2N−1(r)
= 1

π2e2

(
1 + 25/3(R′(s) + q ′(s))

N2/3
+ 2x

N2/3
+ O

(
N−1

))
,

h
(1/2)

2N,2N(r)

h
(1/2)

2N−1,2N−2(rξ−)
= 1

π2e2

(
1 + 25/3(R′(s) + q ′(s))

N2/3
+ 2x

N2/3
+ O

(
N−1

))
.

(2.18)

It follows that the integrands of I
(BE)

2 and I
(R)

2 agree up to the order O(N). According to
(1.45) s = 24/3x + O(N−2/3). Inserting the formula (2.18) into either integrals I

(BE)

2 or I
(R)

2 ,
we obtain

I2 =
∫ 1−LN−2/3

1−N−ε

∫ u

1−N−ε

{[−N2 − 2xN4/3 + O(N)
]

+ N2

(
1 + 25/3T ′(24/3x)

N2/3
+ 2x

N2/3
+ O

(
N−1

))}
dr du

=
∫ 1−LN−2/3

1−N−ε

∫ u

1−N−ε

(
25/3N4/3T ′(24/3x

)+ O(N)
)
dr du, (2.19)
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where I2 is either of the integrals I
(BE)

2 and I
(R)

2 . If we write u = 1 − yN−2/3, then we can
write the integral (2.19) in terms of the variables x and y:

I2 =
∫ N2/3−ε

L

∫ N2/3−ε

y

(
25/3N4/3T ′(24/3x

)+ O(N)
)
N−4/3 dx dy

=
∫ N2/3−ε

L

∫ N2/3−ε

y

(
25/3T ′(24/3x

)+ O
(
N−1/3

))
dx dy. (2.20)

If we let 1/3 < ε < 2/3 then, after integrating, the error term goes to zero as N → ∞,
provided that it is uniform for large x. This uniformity follows from the Riemann-Hilbert
analysis, as discussed in Sect. 5. It follows that this integral has a limit as N → ∞, which is∫ ∞

L

∫ ∞

y

25/3T
(
24/3x

)
dx dy = −

∫ ∞

L

21/3T
(
24/3y

)
dy = −1

2

∫ ∞

24/3L

T (x) dx. (2.21)

Combining (2.16), (2.17), and (2.21), we thus find that, for a = 1 − LN−2/3,

FN(a) = I0 + I1 + I2 = −1

2

∫ ∞

24/3L

T2N+1(x) dx + O
(
N−δ

)

= −1

2

∫ ∞

24/3L

(
R(x) + q(x)

)
dx + O

(
N−δ

)
, 0 < δ < 1/3. (2.22)

A simple change of variables and exponentiation gives (1.25), the result of Theorem 1.1.
The proof of Theorem 1.3 is very similar, and we present it in the next section.

3 Proof of Theorem 1.3

A rescaling of (1.38) using (1.31) gives the formula

∂

∂a2
F (DOPE)

n (a) = −
(

π2

2

)2(
hn,n(a)

hn−1,n−2(ξ−a)
(ξ−)−2n+3 + (ξ+)2n+3 hn+1,n+1(ξ+a)

hn,n−1(a)

+ h(α)
n,n(a)

h
(α)

n,n−1(a)

(
ξ+A

(α)

n+1,n(aξ+) + A
(α)

n,n−1(a)
)2)

. (3.1)

The small r behavior of the function Z(DOPE)
n (r) is described in the following lemma.

Lemma 3.1 As r → 0,

F (DOPE)
n (r) = log(r)

2
− 1

2
log

(
2

nπ2

)
+ F (GUE)

n + O

(
r2

n4

)
(3.2)

where F (GUE)
n is defined in (1.56).

The proof of this lemma is in Appendix A. Consider now Fn(a) for a close to 1. Accord-
ing to (3.1) and (3.2), we have

F (DOPE)
n (a) = F (GUE)

n + log(a)

2
− 1

2
log

(
2

nπ2

)
+
∫ a

0

∫ u

0
G(DOPE)(r) dr du

= F (GUE)
n − 1

2
log

(
2

nπ2

)
+ log(a)

2
+ I

(DOPE)

0 + I
(DOPE)

1 + I
(DOPE)

2 , (3.3)
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where

G(DOPE)(r) = 1

2r2
− π4

4

(
ξ−2n+3
−

hn,n(r)

hn−1,n−2(ξ−r)
+ ξ 2n+3

+
hn+1,n+1(ξ+r)

hn,n−1(r)

+ h(α)
n,n(r)

h
(α)

n,n−1(r)

(
ξ+A

(α)

n+1,n(rξ+) + A
(α)

n,n−1(r)
)2)

, (3.4)

and

I
(DOPE)

0 =
∫ 1−n−ε

0

∫ u

0
G(DOPE)(r) dr du,

I
(DOPE)

1 =
∫ a

1−n−ε

∫ 1−n−ε

0
G(DOPE)(r) dr du,

I
(DOPE)

2 =
∫ a

1−n−ε

∫ u

1−n−ε

G(DOPE)(r) dr du,

(3.5)

for some 0 < ε < 2/3. In the regime r < 1 − n−δ for some 0 < δ < 2/3, the recurrence
coefficients A

(α)
n,k are exponentially small in n, as shown in Appendix B. Therefore, inserting

the asymptotics (2.14) into the integrals I
(DOPE)

0 and I
(DOPE)

1 , we find that both I
(DOPE)

0 and
I

(DOPE)

1 are O(n−4) as n → ∞.
We now evaluate I

(DOPE)

2 . We scale a as a = 1 − Ln−2/3 and write r = 1 − xn−2/3, so
that as r varies from 1 − n−ε , x varies from n2/3−ε to L. Applying the asymptotics (1.50),
we find that in this regime,

ξ+A
(α)

n+1,n(rξ+) + A
(α)

n,n−1(r) = (−1)n25/3 sin(2πα)

πn1/3

(
q(s) − q(s+)

)+ O
(
n−2/3

)
, (3.6)

which, using (1.53), is O(n−2/3). From (1.48), we have that h
(α)
n,n(r)

h
(α)
n,n−1(r)

= O(1), and thus

h(α)
n,n(r)

h
(α)

n,n−1(r)

(
ξ+A

(α)

n+1,n(rξ+) + A
(α)

n,n−1(r)
)2 = O

(
n−4/3

)
. (3.7)

Applying the asymptotics (1.55) the integral I
(DOPE)

2 can thus be written as
∫ a

1−n−ε

∫ u

1−n−ε

[
− 21/3

n2/3

(
T ′

n(s) + T ′
n+1(s)

)+ O
(
n−1
)]

dr du. (3.8)

According to (1.45), s = 22/3x + O(n−2/3), and we therefore have

I
(DOPE)

2 =
∫ 1−Ln−2/3

1−n−ε

∫ u

1−n−ε

(
24/3q2(22/3x)

n2/3
+ O

(
n−1
))

dr du. (3.9)

Writing u = 1 − yn−2/3 and taking 1/2 < ε < 2/3, this becomes

I
(DOPE)

2 =
∫ n2/3−ε

L

∫ n2/3−ε

y

(
24/3q2(22/3x)

n2
+ O

(
n−7/3

))
dx dy

=
∫ n2/3−ε

L

(
22/3R(22/3y)

n2
+ O

(
n−5/3−ε

))
dy

=
∫ ∞

22/3L

R(x)

n2
dx + O

(
n−1−2ε

)
. (3.10)
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It follows that

F (DOPE)
n (a) − F (GUE)

n − loga

2
+ 1

2
log

(
2

nπ2

)

= 1

n2

∫ ∞

22/3L

R(x)dx + O
(
n−1−2ε

)

= − 1

n2
log
(

F2
(
22/3L

))+ O
(
n−1−2ε

)
, (3.11)

from which (1.57) follows immediately.
The rest of the paper is dedicated to the proof of Proposition 1.2, which is based on

steepest descent analysis of a discrete Riemann-Hilbert problem.

4 Riemann-Hilbert Analysis

4.1 Equilibrium Measure and the g-Function

The equilibrium measure associated with the weight e−nV (x) is the unique measure which
minimizes the functional

H(ν) =
∫ ∫

log
1

|x − y| dν(x) dν(y) +
∫

V (x)dν(x), (4.1)

over the set of probability measures on R. In the case that V (x) is given by (1.35), it is well
known that the solution to this equilibrium problem is supported on the interval [− 2

π
√

a
, 2

π
√

a
]

and on this interval it has a density

dν0(x) = πa

2

√
4

π2a
− x2 dx. (4.2)

Let us denote the density ρ(x). Clearly ρ(x) has its maximum value at x = 0 and ρ(0) =√
a. The critical value of the parameter a, for which ρ(x) attains the upper constraint, is

ac = 1.
We define the g-function associated with these orthogonal polynomials as the log trans-

form of the equilibrium measure:

g(z) =
∫ b

−b

log(z − x)ρ(x) dx, b = 2

π
√

a
, (4.3)

where we take the principal branch for the logarithm. This function satisfies the following
properties:

(1) g(z) is analytic in C \ (−∞, b].
(2) For large z,

g(z) = log z −
∞∑

j=1

g2j

z2j
, g2j =

∫ b

−b

x2j

2j
dν0(x). (4.4)

(3) The Euler-Lagrange variational conditions for the equilibrium problem (4.1) are

g+(x) + g−(x)

{= V (x) + l for x ∈ [−b, b]
< V (x) + l for x ∈ R \ [−b, b], (4.5)

where g+ and g− refer to the limiting values from the upper and lower half-planes,
respectively, and l ∈ R is the Lagrange multiplier.
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(4) The function

G(x) ≡ g+(x) − g−(x) (4.6)

is pure imaginary for all real x, and

G(x) = 2πi

∫ b

x

ρ(s) ds for x ∈ [−b, b]. (4.7)

(5) From (4.5) and (4.7) we obtain that

2g±(x) = V (x) + l ± 2πi

∫ b

x

ρ(s) ds for x ∈ [−b, b]. (4.8)

(6) Also from (4.7), we get that G(x) is real analytic on the set (−b, b). We can therefore
extend G into a complex neighborhood of (−b, b), and the Cauchy-Riemann equations
imply that

dG(x + iy)

dy

∣∣∣∣
y=0

= 2πρ(x) ≥ 0. (4.9)

From (4.5) we have that

G(x) = 2g+(x) − V (x) − l = −[2g−(x) − V (x) − l
]
, x ∈ [−b, b]. (4.10)

The value of the Lagrange multiplier is given by the equation

el = 1

π2ae
. (4.11)

4.2 Interpolation Problem

The orthogonal polynomials (1.27) are encoded in the following interpolation problem (IP).
For a given n = 0,1, . . . , find a 2 × 2 matrix-valued function Pn(z) = (Pn(z)ij )1≤i,j≤2 with
the following properties:

(1) Analyticity: Pn(z) is an analytic function of z for z ∈ C \ Ln,α .
(2) Residues at poles: At each node x ∈ Ln,α , the elements Pn(z)11 and Pn(z)21 of the matrix

Pn(z) are analytic functions of z, and the elements Pn(z)12 and Pn(z)22 have a simple
pole with the residues,

Res
z=x

Pn(z)j2 = wn(x)Pn(x)j1, j = 1,2. (4.12)

(3) Asymptotics at infinity: There exists a function r(x) > 0 on Ln,α such that

lim
x→∞ r(x) = 0, (4.13)

and such that as z → ∞, Pn(z) admits the asymptotic expansion,

Pn(z) ∼
(

I + P1

z
+ P2

z2
+ · · ·

)(
zn 0
0 z−n

)
, z ∈ C \

[ ∞⋃
x∈Ln,α

D
(
x, r(x)

)]
,

(4.14)

where D(x, r(x)) denotes a disk of radius r(x) > 0 centered at x and I is the identity
matrix.
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It is not difficult to see (see [3]) that the IP has a unique solution, which is

Pn(z) =
(

Pn(z) n−1C(wnPn)(z)

(hn−1)
−1Pn−1(z) (nhn−1)

−1C(wnPn−1)(z)

)
, (4.15)

where the Cauchy transformation C is defined by the formula,

C(f )(z) =
∑

x∈Ln,α

f (x)

z − x
. (4.16)

Because of the orthogonality condition, as z → ∞,

1

n
C(wnPn)(z) =

∑
x∈Ln,α

wn(x)Pn(x)

n(z − x)
∼
∑

x∈Ln,α

wn(x)

n
Pn(x)

∞∑
j=0

xj

zj+1

= hn

zn+1
+

∞∑
j=n+2

aj

zj
, (4.17)

for some constants aj , which justifies asymptotic expansion (4.14), and we have that

h(α)
n,n = [P1]12,

(
h

(α)

n,n−1

)−1 = [P1]21 . (4.18)

Furthermore, the recurrence coefficient A
(α)

n,n−1 is given by (see [3, 7])

A
(α)

n,n−1 = [P2]21

[P1]21
− [P1]11, (4.19)

and the Christoffel-Darboux kernel (1.41) is given by

Kn(x, y) = e−nV (x)/2e−nV (y)/2

n(x − y)
(0 1 )Pn(x)−1Pn(y)

(
1
0

)
. (4.20)

The asymptotic analysis of this IP follows the steepest descent method of Deift-Zhou, the
plan of which is as follows. We first convert the IP to a Riemann-Hilbert problem (RHP),
where the condition on poles and residues is replaced by a jump condition on some contours
in C. Then we perform a series of explicit transformations which convert the RHP to one
with jumps which approach the identity matrix as n → ∞. This small norm problem can be
solved by a series of perturbation theory. We can then recover the orthogonal polynomials
encoded in the IP by inverting the explicit transformations which led us to the small norm
problem.

4.3 Reduction of IP to RHP

We now reduce the interpolation problem to a Riemann-Hilbert problem. Introduce the func-
tion

Π(z) = sin(nπz + απ)

nπ
. (4.21)

Notice that

Π(xk) = 0, Π ′(xk) = exp(inπxk + iπα) = (−1)k,

for xk = k − α

n
∈ Ln,α. (4.22)

Introduce the upper triangular matrices,

Du
±(z) =

(
1 − wn(z)

nΠ(z)
e±iπ(nz+α)

0 1

)
, (4.23)



602 K. Liechty

Fig. 2 The contour Σ dividing
an ε-neighborhood of the real
line into the regions Ω�± and Ω∇±

and the lower triangular matrices,

Dl
± =

(
Π(z)−1 0

− n
wn(z)

e±iπ(nz+α) Π(z)

)

=
(

Π(z)−1 0
0 Π(z)

)(
1 0

− n
Π(z)wn(z)

e±iπ(nz+α) 1

)
. (4.24)

Define the matrix-valued functions,

Ru
n = Pn(z) ×

{
Du+(z) when Im z ≥ 0

Du−(z) when Im z ≤ 0,
(4.25)

and

Rl
n = Pn(z) ×

{
Dl+(z), when Im z ≥ 0

Dl−(z), when Im z ≤ 0.
(4.26)

The functions Ru
n(z), Rl

n(z) are meromorphic on the closed upper and lower complex planes
and they are two-valued on the real axis. Their possible poles are located on the lattice Ln,α .
As shown in [7], in fact they do not have any poles at all.

Consider the regions Ω�± and Ω∇± shown in Fig. 2, and the contour Σ which bounds
these regions. These regions lie entirely within an ε-strip of the real line, and the regions
Ω�± are small sectors above and below the origin, respectively, within this strip. We make
the transformation

Rn(z) =
⎧⎨
⎩

KRu
n(z)K

−1, for z ∈ Ω∇± ,

KRl
n(z)K

−1, for z ∈ Ω�± ,

KPn(z)K−1, otherwise.

(4.27)

where K = ( 1 0
0 −2iπ

)
.

Let us denote by γ± the part of the contour Σ which is the boundary between the region
Ω�± and the region Ω∇± . Then the region Ω�± is bounded by the contour γ± and a small
segment on which Im z = ±ε. Let us denote these segments σ±.

4.4 First Transformation of the RHP

Define the matrix function Tn(z) as follows from the equation

Rn(z) = e
nl
2 σ3 Tn(z)e

n(g(z)− l
2 )σ3 , (4.28)

where l is the Lagrange multiplier, the function g(z) is described in Sect. 4.1, and σ3 =( 1 0
0 −1

)
is the third Pauli matrix. Then Tn(z) satisfies the following Riemann-Hilbert Prob-

lem:
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Fig. 3 The contour ΣS

(1) Tn(z) is analytic in C \ Σ .
(2) Tn+(z) = Tn−(z)jT (z) for z ∈ Σ , where

jT (z) =
{

en(g−(z)− l
2 )σ3jR(z)e−n(g+(z)− l

2 )σ3 for z ∈ R,

en(g(z)− l
2 )σ3jR(z)e−n(g(z)− l

2 )σ3 for z ∈ Σ \ R.
(4.29)

(3) As z → ∞,

Tn(z) ∼ I + T1

z
+ T2

z2
+ · · · . (4.30)

4.5 Second Transformation of the RHP

Introduce the matrices

j−(z) =
(

1 0
enG(z) 1

)
, j+(z) =

(
1 0

e−nG(z) 1

)
,

A+(z) =
(− 1

2nπi
e−iπ(nz+α) 0

0 −2nπieiπ(nz+α)

)
,

A−(z) =
( 1

2nπi
eiπ(nz+α) 0

0 2nπie−iπ(nz+α)

)
.

(4.31)

We now make the transformation

Sn(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tn(z)j+(z)−1 for z ∈ {(−b, b) × (0, iε)} ∩ Ω∇+ ,

Tn(z)j−(z) for z ∈ {(−b, b) × (0,−iε)} ∩ Ω∇− ,

Tn(z)A±(z) for z ∈ Ω�± ,

Tn(z) otherwise.

(4.32)

This function satisfies a RHP similar to T, but jumps now occur on a new contour ΣS , which
is obtained from Σ by adding the segments (−b − iε,−b + iε) and (b − iε, b + iε), see
Fig. 3. On this contour, the function Sn(z) satisfies the jump condition

S+(z) = S−(z)jS(z), (4.33)

where

jS(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 0 1
−1 0

)
when z ∈ (−b, b) \ {0},(

1 en(g+(z)+g−(z)−l−V (z))

0 1

)
when z ∈ R \ (−b, b),

( (1−e±2iπ(nz+α))−1 ± e±nG(z)

1−e∓2πi(nz+α)

∓e∓nG(z) 1

)
when z ∈ {(−b, b) ± iε} \ σ±,

(
(1−e±2πi(nz+α))−1 0

∓e∓nG(z) 1−e±2πi(nz+α)

)
when z ∈ σ±,

(
1 ∓e±nG(z)±2πi(nz+α)

0 1

)
when z ∈ γ±,

(
1 ± en(2g(z)−l−V (z))

1−e∓2πi(nz+α)

0 1

)
z ∈ {{R \ (−b, b)} ± iε}.

(4.34)
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By formula (4.5) for the G-function and the upper constraint on the density ρ we obtain
that, for sufficiently small ε > 0 and x ∈ (−b,−ε) ∪ (ε, b),

0 < ±ReG(x ± iε) = 2περ(x) + O
(
ε2
)
< 2πε + O

(
ε2
)
. (4.35)

Combined with property (4.7) of the g-function, this implies that all jumps on horizontal
segments are exponentially close to the identity matrix, provided that they are bounded
away from the segment (−b, b).

4.6 Model RHP

The model RHP appears when we drop in the jump matrix jS(z) the terms that vanish as
n → ∞:

(1) M(z) is analytic in C \ [−b, b].
(2) M+(z) = M−(z)jM(z) for z ∈ [−b, b], where

jM(z) =
(

0 1
−1 0

)
. (4.36)

(3) As z → ∞,

M(z) ∼ I + M1

z
+ M2

z2
+ · · · . (4.37)

This problem has the unique solution (see e.g., [16])

M(z) =
(

γ (z)+γ −1(z)

2
γ (z)−γ −1(z)

−2i

γ (z)−γ −1(z)

2i

γ (z)+γ −1(z)

2

)
, (4.38)

where

γ (z) =
(

z + b

z − b

)1/4

, (4.39)

with a cut on [−b, b], taking the branch such that γ (z) ∼ 1 as z → ∞.

4.7 Parametrix at Band-Void Edge Points

We now consider small disks D(b, ε) and D(−b, ε) around the endpoints of the support of
the equilibrium measure. Denote

D = D(b, ε) ∪ D(−b, ε). (4.40)

We seek a local parametrix U(z) defined on D such that

(1) U(z) is analytic on D \ ΣS. (4.41)

(2) U+(z) = U−(z)jS(z) for z ∈ D ∩ ΣS. (4.42)

(3) U(z) = M(z)
(
I + O

(
n−1
))

uniformly for z ∈ ∂D. (4.43)

The solution to the problem is given in [16] (see also [7]), and we do not repeat it here.
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4.8 The Riemann-Hilbert Problem Associated with the Painlevé II Equation

In Sect. 4.9, we will discuss the local analysis to our Riemann-Hilbert problem near the
origin, which is the point at which the equilibrium measure attains the upper constraint. The
solution will be given in terms of a well known problem in integrable systems, which we
discuss now. For a more complete description of this problem, see the book [23].

Let Ψ (ζ ) be the 2 × 2 matrix-valued solution to the differential equation

d

dζ
Ψ (ζ ) =

(−4iζ 2 − i(s + 2q2) 4ζq + 2ir

4ζq − 2ir 4iζ 2 + i(s + 2q2)

)
Ψ (ζ ). (4.44)

It is known that there exist solutions Ψ j (ζ ) defined in each of the six sectors

Sj =
{
ζ ∈ C:

2j − 3

6
π < arg ζ <

2j − 1

6
π

}
, (4.45)

such that for j ∈ {1,2,3,4,5,6}, as ζ → ∞,

Ψ j (z)e
i( 4

3 ζ 3+sζ )σ3 = I + O
(
ζ−1
)
, (4.46)

and on the ray Γj = {ζ : arg ζ = 2j−1
6 π} we have the jump condition

Ψ j+1(ζ ) = Ψ j (ζ )Aj , (4.47)

where

Aj =
(

1 0
aj 1

)
j odd, Aj =

(
1 aj

0 1

)
j even. (4.48)

The numbers aj are called the Stokes multipliers and satisfy the relations aj+3 = aj , and
a1a2a3 + a1 + a2 + a3 = 0.

If the parameters s, q , and r are chosen such that q , as a function of s, is the Hastings-
McLeod solution to the Painlevé II equation and r = q ′(s), then the Stokes multipliers be-
come

a1 = 1, a2 = 0, a3 = −1. (4.49)

It is known that the Hastings-McLeod solution to the Painlevé II equation is a meromorphic
function whose (infinitely many) poles are all located away from the real line. We will
consider only real s, and thus we can always choose the parameters r , q , and s in such a
way. Because q(s) behaves like the Airy function for large s > 0, in fact the error in (4.46)
is

O

(
e− 2

3 s3/2

ζ

)
, as ζ → ∞, s → +∞. (4.50)

Consider the oriented contour Γ in the ζ -plane depicted in Fig. 4, which is made up of
the four rays γ1, γ2, γ3, and γ4, where

γ1 =
{
ζ ∈ C: arg ζ = π

6

}
, γ2 =

{
ζ ∈ C: arg ζ = 5π

6

}
,

γ3 =
{
ζ ∈ C: arg ζ = 7π

6

}
, γ4 =

{
ζ ∈ C: arg ζ = 11π

6

}
.

(4.51)

The function Ψ (ζ ) which solves differential equation (4.44) and corresponds to the
Hastings-McLeod solution to the Painlevé II equation satisfies the following Riemann-
Hilbert problem.
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Fig. 4 The contour Γ , which is
composed of the rays γj ,
j = 1,2,3,4

(1) Ψ (ζ ) is analytic for ζ ∈ C \ Γ .
(2) For ζ ∈ Γ , Ψ (ζ ) satisfies the jump condition

Ψ +(ζ ) = Ψ −(ζ )jΨ (ζ ), (4.52)

where

jΨ (ζ ) =
{( 1 0

−1 1

)
for ζ ∈ γ1 ∪ γ2,( 1 −1

0 1

)
for ζ ∈ γ3 ∪ γ4.

(4.53)

(3) As ζ → ∞,

Ψ (ζ ) = (I + O
(
ζ−1
))

e−i( 4
3 ζ 3+sζ )σ3 . (4.54)

Introduce the parameter θ ∈ R, and let Ψ 2(ζ ; s, θ) be defined via Ψ (ζ ) as

Ψ 2(ζ ; s, θ) =
{

eiθσ3σ3Ψ (ζ )ei( 4
3 ζ 3+sζ )σ3e−iθσ3σ1 Im ζ > 0,

eiθσ3σ3Ψ (ζ )ei( 4
3 ζ 3+sζ )σ3e−iθσ3σ3 Im ζ < 0,

(4.55)

where σ1 = ( 0 1
1 0

)
and σ3 = ( 1 0

0 −1

)
are Pauli matrices. Then the function Ψ 2(ζ ; s, θ) satisfies

the Riemann-Hilbert problem

(1) Ψ 2(ζ ; s, θ) is analytic for ζ ∈ C \ (Γ ∪ R).
(2) For ζ ∈ Γ , Ψ 2(ζ ; s, θ) satisfies the jump condition

Ψ 2+(ζ ; s, θ) = Ψ 2−(ζ ; s, θ)j2(ζ ; s, θ), (4.56)

where

j2(ζ ; s, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 −e

2i( 4
3 ζ3+sζ−θ)σ3

0 1

)
ζ ∈ γ1 ∪ γ2,

(
1 e

−2i( 4
3 ζ3+sζ−θ)σ3

0 1

)
ζ ∈ γ3 ∪ γ4,( 0 1

−1 0

)
ζ ∈ R.

(4.57)

(3) As ζ → ∞,

Ψ 2(ζ ; s, θ) =
{

(I + O(ζ−1))
( 0 1

−1 0

)
Im ζ > 0,

(I + O(ζ−1)) Im ζ < 0.
(4.58)

Finally we note, as in [9], the formula for the entries of the matrix Ψ ,

Ψ (ζ ; s)
(

1
1

)
=
(

Φ1(ζ ; s)
Φ2(ζ ; s)

)
, ζ ∈ S1 ∪ S4, (4.59)

where Φ1,2(ζ ; s) are defined in (1.61).
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4.9 Parametrix at the Origin

We seek a local parametrix U(z) defined on D(0, ε) such that

(1) U(z) is analytic for ζ ∈ D(0, ε) \ ΣS .
(2) For ζ ∈ Γ , U2(ζ ) satisfies the jump condition

U+(z) = U−(z)jS(z) for z ∈ D(0, ε) ∩ ΣS. (4.60)

(3) As n → ∞,

U(z) = M(z)
(
I + O

(
n−1/3

))
uniformly for z ∈ ∂D(0, ε). (4.61)

Let us recall the jumps jS on the contours γ+, γ−, and R close to the origin:

jS(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 −enG(z)+2πi(nz+α)

0 1

)
z ∈ γ+,(

1 e−nG(z)−2πi(nz+α)

0 1

)
z ∈ γ−,( 0 1

−1 0

)
z ∈ R.

(4.62)

These jumps are similar to the jumps given in (4.57). We thus seek ζ(z; t), s(t), and θ(t)

which solve the equation

2i

(
4

3
ζ(z;a)3 + s(a)ζ(z;a) − θ(a)

)
= n
(
G(z) + 2πiz

)+ 2πiα, (4.63)

or equivalently(
1

3
ζ(z;a)3 + s(a)

4
ζ(z; t) − θ(a)

4

)
= n

8i

(
G(z) + 2πiz

)+ πα

4
. (4.64)

As shown in [8], there is a unique solution to this equation which is regular at the origin,
and it is defined in terms of the stationary points of the right side of (4.64). If we denote

f (z;a) = n

8i

(
G(z) + 2πiz

)+ πα

4
= πn

8

[
1 + 2z − 2

∫ z

0
ρ(x)dx

]
+ πα

4
, (4.65)

then the zeroes of the function f ′(z;a) (here ′ means differentiation with respect to z) are at
the stationary points

z1(a) = 2

πa

√
a − 1, z2(a) = − 2

πa

√
a − 1. (4.66)

Notice that z1(1) = z2(1) = 0. We then have that (see [8])

θ(a) = −2
(
f (z1;a) + f (z2;a)

)
, s(a)3 = −36

(
f (z2;a) − f (z1;a)

)2
. (4.67)

Notice that, as ρ(x) is an even function of x, we have

f (z;a) + f (−z;a) = nπ

4
+ πα

2
,

f (z;a) − f (−z;a) = nπz

2
− nπ

2

∫ z

0
ρ(x)dx.

(4.68)

It follows that

θ(a) = −nπ

2
− πα, s(a)3 = −9π2n2

(
z1 −

∫ z1

0
ρ(x)dx

)2

. (4.69)
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The possible zeroes of ζ(z;a) are the solutions to the equation

f (z;a) = nπ

8
+ πα

4
, (4.70)

or equivalently,

z =
∫ z

0
ρ(x)dx. (4.71)

The only solution to this equation, and thus the only possible zero of ζ(z), is at z = 0.
Indeed, it is not difficult to see that ζ(0;a) = 0, and we thus have

ζ ′(0;a) = 4f ′(0;a)

s(a)
= πn(1 − √

a)

s(a)
, ζ ′′(0;a) = 4f ′′(0;a)

s(a)
= 0. (4.72)

We now take

Ũ(z; s, θ) =
{

M(z)
( 0 −1

1 0

)
Ψ 2(ζ(z); s, θ) Im z > 0,

M(z)Ψ 2(ζ(z); s, θ) Im z < 0.
(4.73)

This function is analytic for z ∈ D(0, ε) \ ΣS . For z ∈ ΣS , it satisfies the jump conditions

Ũ+(z; s, θ) = Ũ−(z; s, θ)jU (z), (4.74)

where

jU (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 −e

2i( 4
3 ζ(z)3+sζ(z)−θ)σ3

0 1

)
z ∈ γ+,

(
1 e

−2i( 4
3 ζ(z)3+sζ(z)−θ)σ3

0 1

)
z ∈ γ−,

( 0 1
−1 0

)
ζ ∈ R.

(4.75)

Let us check the large n behavior of the function Ũ(z). As n → ∞, we have

Ũ(z; s, θ) =
{

M(z)
( 0 −1

1 0

)
(I + O(n−1/3))

( 0 1

−1 0

)
Im z > 0,

M(z)(I + O(n−1/3)) Im z < 0.

= M(z)
(
I + O

(
n−1/3

))
. (4.76)

It follows that we may take our local solution to be U(z) = Ũ(z; s, θ), where s = s(a) and θ

are given in (4.69).

4.10 The Third and Final Transformation of the RHP

We now consider the contour ΣX , which consists of the circles ∂D(−b, ε), ∂D(b, ε), and
∂D(0, ε), all oriented counterclockwise, together with the parts of ΣS \ [−b, b] which lie
outside of the disks D(−b, ε), D(b, ε), and D(0, ε). Let

Xn(z) =
{

Sn(z)M(z)−1 for z outside the disks D(−b, ε),D(b, ε),D(0, ε),

Sn(z)U(z)−1 for z inside the disks D(−b, ε),D(b, ε),D(0, ε).
(4.77)

Then Xn(z) solves the following RHP:

(1) Xn(z) is analytic on C \ ΣX .
(2) Xn(z) has the jump properties

Xn+(x) = Xn−(z)jX(z) (4.78)

where

jX(z) =
{

M(z)U(z)−1 for z on the circles,
M(z)jS(z)M(z)−1 otherwise.

(4.79)
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(3) As z → ∞,

Xn(z) ∼ I + X1

z
+ X2

z2
+ · · · . (4.80)

Additionally, we have that jX(z) is uniformly close to the identity in the following sense:

jX(z) =

⎧⎪⎨
⎪⎩

I + O(n−1) uniformly on the circles ∂D(−b, ε), ∂D(b, ε),

I + O(n−1/3) uniformly on the circle ∂D(0, ε),

I + O(e−C(z)n) on the rest of ΣX,

(4.81)

where C(z) is a positive function bounded away from zero and with sufficient growth at
infinity so that e−C(z) ∈ L1(ΣX).

If we set

j 0
X(z) = jX(z) − I, (4.82)

then (4.81) becomes

j 0
X(z) =

⎧⎪⎨
⎪⎩

O(n−1) uniformly on the circles ∂D(−b, ε), ∂D(b, ε),

O(n−1/3) uniformly on the circle ∂D(0, ε),

O(e−C(z)n) on the rest of ΣX.

(4.83)

The solution to this small norm problem is given by a series of perturbation theory.
Namely, define the functions vk recursively as

vk(z) = − 1

2πi

∫
ΣX

vk−1(u)j 0
X(u)

z− − u
du, v0(z) = I, (4.84)

where z− means that the integration takes place on the minus-side of the contour. The solu-
tion is then

Xn(z) = I +
∞∑

k=1

Xn,k(z), (4.85)

where

Xn,k(z) = − 1

2πi

∫
ΣX

vk−1(u)j 0
X(u)

z − u
du. (4.86)

In particular, this implies that

Xn(z) ∼ I + O

(
1

n1/3(|z| + 1)

)
as n → ∞ (4.87)

uniformly for z ∈ C \ ΣX .

5 Evaluation of X1 in the Critical Case

The function Ψ (ζ ) satisfies, as ζ → ∞,

e−i( 4
3 ζ 3+sζ )σ3Ψ (ζ )−1 =

(
I + 1

2iζ
A + 1

8ζ 2
B + O

(
ζ−3
))

, (5.1)

where

A = −R(s)σ3 + q(s)σ1σ3,

B = (q(s)2 − R(s)2
)
I − 2

(
q ′(s) + q(s)R(s)

)
σ1,

(5.2)
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q(s) is the Hastings-McLeod solution to Painlevé II, and

R(s) =
∫ ∞

s

q(ξ)2dξ, (5.3)

see [19]. For u ∈ ∂D(0, ε), we have that

jX(u) =

⎧⎪⎪⎨
⎪⎪⎩

M(u)σ1e
iθσ3e−i( 4

3 ζ(u)3+s(u)ζ(u))σ3Ψ (ζ(u); s)−1e−iθσ3σ1M(u)−1

Imu > 0,

M(u)σ3e
iθσ3e−i( 4

3 ζ(u)3+s(u)ζ(u))σ3Ψ (ζ(u); s)−1σ3e
−iθσ3 M(u)−1

Imu < 0.

(5.4)

From (5.1) and (5.4), we see that

j 0
X(u) =

⎧⎪⎪⎨
⎪⎪⎩

M(u)σ1e
iθσ3( 1

2iζ(u)
A + 1

8ζ(u)2 B + O(n−1))e−iθσ3σ1M(u)−1

Imu > 0,

M(u)σ3e
iθσ3( 1

2iζ(u)
A + 1

8ζ(u)2 B + O(n−1))σ3e
−iθσ3 M(u)−1

Imu < 0.

(5.5)

Notice that, according to (4.50), the error term in (5.5) is uniform for s ∈ [s0,∞) for any
s0 ∈ R. As can be seen in Appendix B, the jump matrices on the contours D(±b, ε) are
uniformly close to the identity for a close to 1. Thus if we write a = 1 − xn−2/3, using
(1.45) and (4.85), any error we compute in the large n expansion of Xn will be uniform for
x ∈ [L,∞) for any L ∈ R. Multiplying out the above expression, we get

j 0
X(u) = R1(u)

2iζ(u)
+ R2(u)

8ζ(u)2
+ O

(
n−1
)
, (5.6)

where

R1(u) = R(s)

2

(
γ̃ (u)2 + γ̃ (u)−2

)
σ3 + R(s)

2i

(
γ̃ (u)2 − γ̃ (u)−2

)
σ1

+ (−1)n cos(2πα)q(s)σ3σ1 − (−1)n

2
sin(2πα)

(
γ̃ (u)2 − γ̃ (u)−2

)
q(s)σ3

− (−1)n

2i
sin(2πα)

(
γ̃ (u)2 + γ̃ (u)−2

)
q(s)σ1,

R2(u) = (q(s)2 − R(s)2
)
I − i(−1)n cos(2πα)

(
γ̃ (u)2 − γ̃ (u)−2

)(
q ′(s) + q(s)R(s)

)
σ3

− (−1)n cos(2πα)
(
γ̃ (u)2 + γ̃ (u)−2

)(
q ′(s) + q(s)R(s)

)
σ1

− 2i(−1)n sin(2πα)
(
q ′(s) + q(s)R(s)

)
σ3σ1,

(5.7)

and γ̃ (u)2 is the analytic continuation of γ (u)2 from the upper half plane. The Taylor ex-
pansion of γ̃ (u)2 about the origin is

γ̃ (u)2 = −i

(
1 + z

b
+ z2

2b
+ z3

2b3
+ O

(
z4
))

, b = 2

π
√

a
, (5.8)

which in turn gives that

γ̃ (u)2 − γ̃ (u)−2 = −i

(
2 + z2

b2
+ O

(
z4
))

,

γ̃ (u)2 + γ̃ (u)−2 = −i

(
2z

b
+ z3

b3
+ O

(
z5
))

.

(5.9)
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Expanding each term in (5.6) about the origin gives

j 0
X(u) = 1

2iζ ′(0)

(
R1(0)

u
+ R′

1(0) +
(

R′′
1 (0)

2
− ζ ′′′(0)R1(0)

6ζ ′(0)

)
u + · · ·

)

+ 1

8ζ ′(0)2

(
R2(0)

u2
+ R′

2(0)

u
+ R′′

2 (0)

2
− ζ ′′′(0)R2(0)

3ζ ′(0)
+ · · ·

)

+ O
(
n−1
)
. (5.10)

Let us write this expansion as

j 0
X(u) = 1

n1/3

(
A−1

u
+ A0 + A1u + · · ·

)

+ 1

n2/3

(
B−2

u2
+ B−1

u
+ B0 + · · ·

)
+ O

(
n−1
)
. (5.11)

In particular,

A−1 = n1/3R1(0)

2iζ ′(0)
, A0 = n1/3R′

1(0)

2iζ ′(0)
,

B−1 = n2/3R′
2(0)

8ζ ′(0)2
, B−2 = n2/3R2(0)

8ζ ′(0)2
.

(5.12)

Let us evaluate Xn,1(z). We have

Xn,1(z) = − 1

2πi

∫
∂D(0,ε)

j 0
X(u)

z − u
du + O

(
n−1
)
. (5.13)

This integral can be evaluated via a residue calculation. Indeed, for z ∈ C \ D(0, ε),

1

2πi

∫
∂D(0,ε)

j 0
X(u)du

u − z
= −1

z

[
A−1

n1/3
+ 1

n2/3

(
B−1 + B−2

z

)]
+ O

(
n−1
)
. (5.14)

In particular, this gives that, for z ∈ ΣX ,

v1(z) = −1

z

[
A−1

n1/3
+ 1

n2/3

(
B−1 + B−2

z

)]
+ O

(
n−1
)
, (5.15)

and thus

Xn,2(z) = 1

2πi

∫
∂D(0,ε)

v1(u)j 0
X(u)

u − z
du + O

(
n−4/3

)

= − 1

2πi

∫
∂D(0,ε)

1

(u − z)u

[
A−1

n1/3

]
j 0
X(u)du + O

(
n−1
)
. (5.16)

For z ∈ C \ D(0, ε) this is evaluated as

Xn,2(z) = 1

z

[
1

n2/3

(
A−1A0 + A2

−1

z

)]
+ O

(
n−1
)
. (5.17)

This can also be taken as a formula for v2(z) for z ∈ ΣX .
Let [Xn,k]j be the coefficient of the z−j term in the expansion of Xn,k(z) at z = ∞, so

that

Xn,k(z) = [Xn,k]1

z
+ [Xn,k]2

z2
+ O

(
z−3
)
. (5.18)

From (5.15) and (5.17), we see that

[Xn,1]1 = −A−1

n1/3
− B−1

n2/3
+ O

(
n−1
)
, [Xn,2]1 = A−1A0

n2/3
+ O

(
n−1
)
. (5.19)
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Adding these together gives that

X1 = [Xn,1]1 + [Xn,2]1 + O
(
n−1
)

= −A−1

n1/3
+ 1

n2/3
(−B−1 + A−1A0) + O

(
n−1
)

= 1

2ζ ′(0)

[
iR1(0) − R′

2(0)

4ζ ′(0)
− R1(0)R′

1(0)

2ζ ′(0)

]
+ O

(
n−1
)
. (5.20)

Also from (5.15) and (5.17), we have

X2 = [Xn,1]2 + [Xn,2]2 + O
(
n−1
)

= −B−2

n2/3
+ A2

−1

n2/3
+ O

(
n−1
)

= − 1

8ζ ′(0)2

[
R2(0) + 2R1(0)2

]+ O
(
n−1
)
. (5.21)

Notice that

R1(0) = − R(s)σ1 + (−1)n cos(2πα)q(s)σ3σ1 + i(−1)n sin(2πα)q(s)σ3,

R′
1(0) = π

√
aR(s)

2i
σ3 + (−1)nπ

√
a

2
sin(2πα)q(s)σ1,

R2(0) = (q(s)2 − R(s)2
)
I − 2(−1)n cos(2πα)

(
q ′(s) + q(s)R(s)

)
σ3

− 2i(−1)n sin(2πα)
(
q ′(s) + q(s)R(s)

)
σ3σ1,

R′
2(0) = (−1)niπ

√
a cos(2πα)

(
q ′(s) + q(s)R(s)

)
σ1.

(5.22)

6 Proof of Proposition 1.2 and Theorem 1.4

The quantities hn,n and hn,n−1 are encoded in the matrix P1 described in (4.14). According
to (4.27), (4.28), and (4.77),

P1 = K−1

( [X1]11 + [M1]11 ([X1]12 + [M1]12)e
nl

([X1]21 + [M1]21)e
−nl [X1]22 + [M1]22

)
K. (6.1)

It follows from (4.18) that

hn,n = −2πi
([X1]12 + [M1]12

)
enl

= −2πi

(
1

π2ae

)n(
[X1]12 + ib

2

)

= 2√
a

(
1

π2ae

)n(
1 − [X1]12πi

√
a
)
, (6.2)

and

h−1
n,n−1 = 1

−2πi

([X1]21 + [M1]21
)
e−nl

= 1

−2πi

(
π2ae

)n([X1]21 − ib

2

)

= 1

2
√

aπ2

(
π2ae

)n(
1 + [X1]21πi

√
a
)
. (6.3)
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According to (5.20) and (5.22),

[X1]12πi
√

a = 22/3

n1/3

(
R − (−1)n cos(2πα)q

)

+ 21/3

n2/3

(
(−1)n cos(2πα)

(
q ′ + 2qR

)− R2 + q2 sin2(2πα)
)

+ O
(
n−1
)
, (6.4)

and

[X1]21πi
√

a = 22/3

n1/3

(
R + (−1)n cos(2πα)q

)

+ 21/3

n2/3

(
(−1)n cos(2πα)

(
q ′ + 2qR

)+ R2 − q2 sin2(2πα)
)

+ O
(
n−1
)
, (6.5)

where the functions q and R written with no argument refer to those functions evaluated
at s. This proves Eq. (1.48).

Also from (4.27), (4.28), and (4.77) we get

[P2]21

[P1]21
− [P1]11 = [X2]21 + [M2]21 + [X1M1]21

[X1]21 + [M1]21
− [X1]11 − [M1]11. (6.6)

Asymptotic evaluation of this expression from (5.20) and (5.21), in light of (4.19), proves
(1.50). Thus Proposition 1.2 is proved.

We now turn to the proof of Theorem 1.4. Consider z ∈ D(0, ε) ∩ Ω∇± . In this region we
have

Pn(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K−1e
nl
2 σ3 Xn(z)M(z)σ1e

iθσ3Ψ (ζ(z))ei(ζ(z)3+sζ(z)−θ)σ3σ1j+(z)en(g(z)−l/2)σ3

× K(Du+(z))−1 Im z > 0,

K−1e
nl
2 σ3 Xn(z)M(z)eiθσ3σ3Ψ (ζ(z); s)ei(ζ(z)3+sζ(z)−θ)σ3σ3j−(z)−1en(g(z)−l/2)

× K(Du−(z))−1 Im z < 0.

(6.7)

Of course ζ(z) and s depend on the parameter a, but we suppress the notation here. Make
the scaling

x = u

cn1/3
, y = v

cn1/3
, c = π2−5/3, a = 1 − Ln−2/3. (6.8)

Notice that in this scaling

ζ(x) = u + O
(
n−2/3

)
, ζ(y) = v + O

(
n−2/3

)
, s = 22/3L + O

(
n−2/3

)
, (6.9)

and that

s(1) = s∞ = lim
n→∞ s(t) = 22/3L. (6.10)

It then follows that

Pn(x)−1Pn(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Du+(x)K−1e−n(g(x)−l/2)σ3j+(x)−1σ1e
−i( 4

3 ζ(x)3+sζ(x)−θ)σ3Ψ (ζ(x); s−1)

× (I + O(u−v

n1/3 ))Ψ (ζ(y); s)ei( 4
3 ζ(y)3+sζ(y)−θ)σ3σ1j+(y)

× en(g(y)−l/2)σ3 KDu+(y)−1 Imx, y > 0,

Du−(x)K−1e−n(g(x)−l/2)σ3j−(x)σ3e
−i( 4

3 ζ(x)3+sζ(x)−θ)σ3Ψ (ζ(x); s)−1

× (I + O(u−v

n1/3 ))Ψ (ζ(y); s)ei( 4
3 ζ(y)3+sζ(y)−θ)σ3σ3j−(y)−1

× en(g(y)−l/2)σ3 KDu−(y)−1 Imx, y < 0.

(6.11)
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Taking limits from either the upper or lower half planes, we find that for x and y real and in
D(0, ε),

Kn(x, y) = e−nV (x)/2e−nV (y)/2

n(x − y)
(0 1 )Pn(x)−1Pn(y)

(
1
0

)

= cn1/3

2inπ(u − v)

(−e
nG(x)

2 e− nG(x)
2
)
e−i( 4

3 ζ(x)3+sζ(x)−θ)σ3Ψ
(
ζ(x); s)−1

×
(

I + O

(
u − v

n1/3

))
Ψ
(
ζ(y); s)ei( 4

3 ζ(y)3+sζ(y)−θ)σ3

(
e− nG(y)

2

e
nG(y)

2

)

= cn1/3

2inπ(u − v)
(−e−iπ(nx+α) eiπ(nx+α) )Ψ

(
ζ(x); s)−1

(
I + O

(
u − v

n1/3

))

× Ψ
(
ζ(y); s)

(
eiπ(ny+α)

e−iπ(ny+α)

)
. (6.12)

In order for this kernel to make sense, we must choose x and y to lie on the lattice Ln,α . If
we take u �= v and

x = kn − α

n
, y = mn − α

n
; kn,mn ∈ Z, (6.13)

then the above expression becomes

Kn(x, y) = (−1)kn+mncn1/3

2inπ(u − v)
(−1 1 )Ψ

(
ζ(x); s)−1

×
(

I + O

(
u − v

n1/3

))
Ψ
(
ζ(y); s)

(
1
1

)
. (6.14)

According to (4.59),

Ψ (ζ ; s)
(

1
1

)
=
(

Φ1(ζ ; s)
Φ2(ζ ; s)

)
,

(−1 1 )Ψ −1(ζ ; s) = (−Φ2(ζ ; s) Φ1(ζ ; s)),
(6.15)

thus (6.14) implies (1.65). Notice that the presence of the factors e±iπ(nz+α) in (6.12) plays
little role in the limiting values of the off diagonal terms. To compute the diagonal terms, we
must take a limit of (6.12) as u → v, and these factors do indeed play a role. In taking this
limit, we must take into account the fact that detΨ = 1, and we obtain (1.67), which proves
Theorem 1.4.
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Appendix A: Proof of Lemmas 2.1 and 3.1

The proofs of Lemmas 2.1 and 3.1 are based on the following estimate of the rate of conver-
gence of a Riemann sum, which is slightly sharper than the a priori rate of O(ε).

Lemma A.1 Let f (x1, . . . , xn) be an analytic function of n variables. Let the functions
Ak(x1, . . . , xn) be defined recursively via

Ak(x1, . . . , xn) =
n∑

j=1

∂

∂xj

Ak−1(x1, . . . , xn), A0 = f. (A.1)
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Suppose that

∫
· · ·
∫

Rn

A1(x1, . . . , xn) dx1 · · ·dxn

=
∫

· · ·
∫

Rn

A2(x1, . . . , xn) dx1 · · ·dxn = 0. (A.2)

Then as ε → 0,∫
· · ·
∫

Rn

f (x1, . . . , xn) dx1 · · ·dxn − εn
∑

x1,...,xn∈εZ

f (x1, . . . , xn) = O
(
ε4
)
. (A.3)

Proof A multi-integral my be estimated by writing

∫
· · ·
∫

Rn

f (x1, . . . , xn) dx1 · · ·dxn

=
∑

x1,...,xn∈εZ

∫ x1+ε

x1

· · ·
∫ xn+ε

xn

f (t1, . . . , tn) dt1 · · ·dtn. (A.4)

Expanding each integrand on the RHS as a Taylor series and integrating term by term, this
becomes

∑
x1,...,xn∈εZ

[
εnf + A1

2
εn+1 + A2

6
εn+2 + A3

24
εn+3 + O

(
εn+4

)]
, (A.5)

where

f ≡ f (x1, . . . , xn), Ak ≡ Aj(x1, . . . , xn). (A.6)

Thus the error in the Riemann sum is given by∫
· · ·
∫

Rn

f dx1 · · ·dxn −
∑

x1,...,xn∈εZ

εnf

= εn
∑

x1,...,xn∈εZ

[
A1

2
ε + A2

6
ε2 + A3

24
ε3 + O

(
ε4
)]

=
(

εn
∑

x1,...,xn∈εZ

A1

)
ε

2
+
(

εn
∑

x1,...,xn∈εZ

A2

)
ε2

6

+
(

εn
∑

x1,...,xn∈εZ

A3

)
ε3

24
+ O

(
ε4
)
. (A.7)

If (A.2) holds, then by the same argument,

εn
∑

x1,...,xn∈εZ

A1(x1, . . . , xn) = −
(

εn
∑

x1,...,xn∈εZ

A2

)
ε

2
−
(

εn
∑

x1,...,xn∈εZ

A3

)
ε2

6
+ O

(
ε3
)
,

εn
∑

x1,...,xn∈εZ

A2(x1, . . . , xn) = −
(

εn
∑

x1,...,xn∈εZ

A3

)
ε

2
+ O

(
ε2
)
,

(A.8)

and (A.7) can be written as
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∫
· · ·
∫

Rn

f (x1, . . . , xn) dx1 · · ·dxn − εn
∑

x1,...,xn∈εZ

f (x1, . . . , xn)

= −
(

εn
∑

x1,...,xn∈εZ

A2

)
ε2

12
−
(

εn
∑

x1,...,xn∈εZ

A3

)
ε3

24
+ O

(
ε4
)= O

(
ε4
)
. (A.9)

�

Let us first apply this result to the proof of Lemma 3.1. By rescaling we can write (1.34)
as

Z(DOPE)
n (r) =

(
2

π2nr

)n2/2
(

εn
∑

x1,...,xn∈ε{Z−α}

∏
1≤j<k≤n

(xk − xj )
2 exp

{
−

n∑
j=1

x2
j

})

(A.10)

where

ε = π

√
r

2n
. (A.11)

We have here an explicit prefactor times a Riemann sum for the function

f (x1, . . . , xn) =
∏

1≤j<k≤n

(xk − xj )
2 exp

{
−

n∑
j=1

x2
j

}
, (A.12)

which is exactly the integrand in (1.56). One may easily check then that

A1(x1, . . . , xn) = −2(x1 + · · · + xn)f (x1, . . . , xn),

A2(x1, . . . , xn) = 2f (x1, . . . , xn)
(
2(x1 + · · · + xn)

2 − n
)

= −2
(
A1(x1, . . . , xn)(x1 + · · · + xn) + nf (x1, . . . , xn)

)
.

(A.13)

It is easy to see that A1 has the symmetry A1(x1, . . . , xn) = −A1(−x1, . . . ,−xn), from
which it follows that ∫

· · ·
∫

Rn

A1(x1, . . . , xn) dx1 · · ·dxn = 0. (A.14)

It is a simple exercise to integrate by parts to see that∫
· · ·
∫

Rn

A2(x1, . . . , xn) dx1 · · ·dxn = 0. (A.15)

It then follows that as r → 0,

Z(DOPE)
n (r) =

(
2

π2nr

)n2/2

Z(GUE)
n

(
1 + O

(
ε4
))

=
(

2

π2nr

)n2/2

Z(GUE)
n

(
1 + O

(
r2

n2

))
. (A.16)

Taking logarithms gives (3.2).
We now prove Lemma 2.1 in the absorbing case. The proof in the reflecting case is nearly

identical. Using symmetry about the origin and a rescaling of (1.15), we get

P

(
max
0<t<1

b
(BE)
N (t) < M

)
= 2N(N+1)

N !πN/2
∏N−1

k=0 (2k + 1)!

×
(

εN
∑

x∈(εN)N

(
�
(
x2
))2( N∏

j=1

x2
j

)
exp

{
−

N∑
j=1

x2
j

})
, (A.17)
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where

ε = π

M
√

2
. (A.18)

We again have an explicit prefactor times a Riemann sum for the integral

∫ ∞

0
· · ·
∫ ∞

0

(
�
(
x2
))2( N∏

j=1

x2
j

)
exp

{
−

N∑
j=1

x2
j

}
dx1 · · ·dxN . (A.19)

This integral is the partition function for the Laguerre unitary ensemble. Its value is known
(see e.g., [24]), and it exactly cancels the prefactor, so that

lim
M→∞

P

(
max
0<t<1

bN(t) < M
)

= 1. (A.20)

Lemma A.1 also holds for multi-integrals over R
n+, that is if we replace R

n with R+ and Z

with N, and we can thus use Lemma A.1 with

f (x1, . . . , xN) = (�(x2
))2( N∏

j=1

x2
j

)
exp

{
−

N∑
j=1

x2
j

}
. (A.21)

It is not difficult to see that in this case the condition (A.2) is satisfied. Indeed, notice that
for any j = 1,2, . . . ,N ,

∫ ∞

0

(
∂

∂xj

f (x1, . . . , xN)

)
dxj = −f (x1, . . . , xj−1,0, xj+1, . . . , xN) = 0. (A.22)

Furthermore, notice that

∂

∂xj

f (x1, . . . , xN) = exp

{
−

N∑
k=1

x2
k

}(
N∏

k=1

xk

)
P (x1, . . . , xN) (A.23)

for some polynomial P . It follows that, for any j = 1,2, . . . ,N ,

A1(x1, . . . , xj−1,0, xj , . . . , xN) = 0, (A.24)

and thus ∫ ∞

0

(
∂

∂xj

A1(x1, . . . , xN)

)
dxj = −A1(x1, . . . , xj−1,0, xj , . . . , xN) = 0. (A.25)

(A.22) and (A.25) imply (A.2), and thus Lemma A.1 applies. It follows that

P

(
max
0<t<1

b
(BE)
N (t) < M

)
= 1 + O

(
ε4
)= 1 + O

(
M−4

)
. (A.26)

In the scaling M =
√

2N
a

this becomes, as a → 0,

P

(
max
0<t<1

b
(BE)
N (t) < M

)
= 1 + O

(
ε4
)= 1 + O

(
a2

N2

)
. (A.27)

Taking the logarithm proves Lemma 2.1. �
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Appendix B: Proof of Lemma 2.3

If the parameter a is such that

a < 1 − n−δ, 0 < δ <
2

3
, (B.1)

then by (1.45) and (4.50) the jump matrix for Xn(z) about the origin is exponentially small
in n, and therefore the asymptotic expansion for Xn(z) comes from the jumps on the circles
∂D(±b, ε). We need to calculate this expansion up to an error of the order n−3. Instead
of doing this directly, which is rather tedious, let us proceed by comparing our discrete or-
thogonal polynomials with their continuous brethren, the monic scaled Hermite polynomials
{P (c)

j (x)}∞
j=0, for which we have exact formulas. These polynomials satisfy the orthogonality

condition ∫ ∞

−∞
P

(c)
j (x)P

(c)
k (x)e−n aπ2x2

2 dx = h
(c)
k δjk. (B.2)

The superscript (c) stands for continuous. The continuous orthogonal polynomials P (c)
n can

be characterized in terms of the following Riemann-Hilbert problem. We seek a matrix
P(c)

n (z) satisfying the following properties.

(1) P(c)
n (z) is analytic on C \ R.

(2) For any real x,

P(c)
n (x) = P(c)

n (x)jc(x), jc(x) =
(

1 w(x)

0 1

)
. (B.3)

(3) As z → ∞,

P(c)
n (z) ∼

(
I + P(c)

1

z
+ P(c)

2

z2
+ · · ·

)(
zn 0
0 z−n

)
, (B.4)

where P(c)
k , k = 1,2, . . . , are some constant 2 × 2 matrices.

This problem has the unique solution

P(c)
n (x) =

⎛
⎝ P (c)

n (z) 1
2πi

∫
R

P
(c)
n (u)wn(u)du

u−z

− 2πi
hn−1

Pn−1(z) − 1
hn−1

∫
R

P
(c)
n−1(u)wn(u)du

u−z

⎞
⎠ . (B.5)

The normalizing constants h(c)
n can be found as

h(c)
n = −2πi

[
P(c)

1

]
12

,
(
h

(c)

n−1

)−1 = −[P(c)

1 ]21

2πi
. (B.6)

We can make a series of transformations to P(c)
n to arrive at a small norm problem. Define

T(c)
n from the equation

P(c)
n (z) = e

nl
2 σ3 T(c)

n (z)en(g(z)− l
2 )σ3 , (B.7)

and S(c)
n as

S(c)
n (z) =

⎧⎪⎨
⎪⎩

T(c)
n (z)j+(z)−1 for z ∈ {(−b, b) × (0, iε)},

T(c)
n (z)j−(z) for z ∈ {(−b, b) × (0,−iε)},

T(c)
n (z) otherwise.

(B.8)
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Then the matrix X(c)
n can be defined as

X(c)
n (z) =

{
S(c)

n (z)M(z)−1 for z outside the disks D(−b, ε),D(b, ε),

S(c)
n (z)U(z)−1 for z inside the disks D(−b, ε),D(b, ε).

(B.9)

The jump matrices for X(c)
n (z) are exponentially close to those for Xn(z), and therefore, by

(4.85) and (4.86), X(c)
n (z) and Xn(z) are exponentially close to each other. We are interested

in the off diagonal terms of the matrix X(c)

1 , where

X(c)
n (z) = I + X(c)

1

z
+ O

(
z−2
)
. (B.10)

One can easily see that

[
X(c)

1

]
12

= [P(c)

1

]
12

e−nl − [M1]12 = − h(c)
n

2πi

(
π2ae

)n − i

π
√

a
,

[
X(c)

1

]
21

= [P(c)

1

]
21

enl − [M1]21 = − 2πi

h
(c)

n−1(π
2ae)n

+ i

π
√

a
.

(B.11)

The constants hc
n and h

(c)

n−1 are known exactly:

h(c)
n = n!√2π

(
√

naπ)2n+1
, h

(c)

n−1 = (n − 1)!√2π

(
√

naπ)2n−1
. (B.12)

It follows that
[
X(c)

1

]
12

= − i

π
√

a

(
1 −

(
e

n

)n
n!√
2πn

)
,

[
X(c)

1

]
21

= i

π
√

a

(
1 −

(
n

e

)n
√

2π√
n(n − 1)!

)
.

(B.13)

Applying Stirlings formula, we find that

[
X(c)

1

]
12

= i

π
√

a

(
1

12n
+ 1

288n2
− 139

51840n3
+ O

(
n−4
))

,

[
X(c)

1

]
21

= i

π
√

a

(
1

12n
− 1

288n2
− 139

51840n3
+ O

(
n−4
))

.

(B.14)

Let us now return to the discrete system of orthogonal polynomials. The normalizing
constants are given as

hn,n = 2√
a

(
1

π2ae

)n(
1 − [X1]12π

√
ai
)
,

h−1
n,n−1 = 1

2
√

aπ2

(
π2ae

)n(
1 + [X1]21π

√
ai
)
.

(B.15)

Since Xn and X(c)
n are exponentially close to each other, we may use the above expansion

for X1, obtaining

hn,n = 2√
a

(
1

π2ae

)n(
1 + 1

12n
+ 1

288n2
− 139

51840n3
+ O

(
n−4
))

,

h−1
n,n−1 = 1

2
√

aπ2

(
π2ae

)n(
1 − 1

12n
+ 1

288n2
+ 139

51840n3
+ O

(
n−4
))

.

(B.16)

Let us also note that in this asymptotic regime, by a similar argument, we find that the
recurrence coefficients A

(α)
n,k(a) are exponentially close to zero, as they vanish for Hermite

polynomials.
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Appendix C: Deformation Equations for Orthogonal Polynomials

In this appendix, we prove the deformation equations (1.36) and (2.2). These equations are
in fact quite general, and we present the proof for a general class of orthogonal polynomials.
Let {pk(x)}∞

k=0 be a system of monic polynomials satisfying the orthogonality condition∫
R

pk(x)pj (x)e−ax2
dμ(x) = hkδjk, (C.1)

where dμ(x) is any measure on R such that the system of orthogonal polynomials exists. We
consider deformations of this system with respect to the parameter a. Let us write the three
term recurrence equation, explicitly noting the dependence of each recurrence coefficient on
the parameter a:

xpk(x) = pk+1(x) + Ak(a)pk(x) + Bk(a)pk−1(x), Bk(a) = hk(a)

hk−1(a)
. (C.2)

Notice that, since the polynomials pk are monic, ∂
∂a

pk(x) is a polynomial of degree strictly

less than k, and thus its integral against pk(x)e−ax2
dμ(x) is zero. Thus if we differentiate

(C.1) with respect to a in the case j = k, apply the three term recurrence twice and integrate,
we obtain

h′
k(a) = −hk(Bk+1 + Ak + Bk), (C.3)

or equivalently

∂

∂a
loghk = −Ak − hk+1

hk

− hk

hk−1
, (C.4)

where we have suppressed the notation which explicitly indicates dependence on a.
Let us use ck,j to denote the coefficient of the xj term in the polynomial pk(x), so that

pk(x) = xk + ck,k−1x
n−1 + ck,k−2x

n−2 + · · · . (C.5)

These coefficients depend on the parameter a, and by matching the coefficients of the xk

term in (C.2), we see that

Ak(a) = ck,k−1 − ck+1,k. (C.6)

To arrive at a deformation equation for Ak consider (C.1) with j = k − 1. Differentiating
with respect to a and disregarding the term for which the integral vanishes gives∫

R

[
∂

∂a

(
pk(x)

)
pk−1(x) − x2pk−1(x)pk(x)

]
e−ax2

dμ(x) = 0. (C.7)

Applying the three term recursion twice and integrating, we obtain(
∂

∂a
ck,k−1

)
hk−1 = Akhk + Ak−1Bkhk−1. (C.8)

Combining (C.6) with (C.8) both as it is written and with k �→ k + 1, we find

A′
k(a) = Bk(Ak + Ak−1) − Bk+1(Ak+1 + Ak). (C.9)

We now use (C.3) and (C.9) to differentiate (C.4) once more, obtaining

∂2

∂a2
loghk = Ik+1 − Ik, (C.10)
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where

Ik = Bk

(
Bk+1 + Bk−1 + (Ak−1 + Ak)

2
)
. (C.11)

It follows that the sum
n−1∑
k=0

∂2

∂a2
loghk (C.12)

telescopes and its value is In − I0. But I0 = 0, and thus the sum (C.12) is simply In. After a
change of variable, this proves (1.36).

We now prove (2.2). In the case that the measure of orthogonality is even, the recurrence
coefficients Ak vanish, and we have

Ik = BkBk+1 + BkBk−1 (C.13)

and
N−1∑
k=0

∂2

∂a2
logh2k =

N−1∑
k=0

B2k+1B2k+2 − B2kB2k−1;
n−1∑
k=0

∂2

∂a2
logh2k+1 =

n−1∑
k=0

B2k+2B2k+3 − B2kB2k+1

(C.14)

which are again telescoping sums, and we obtain (2.2) after a change of variables.
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