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Abstract: This is a continuation of the paper [4] of Bleher and Fokin, in which the
large n asymptotics is obtained for the partition function Zn of the six-vertex model
with domain wall boundary conditions in the disordered phase. In the present paper we
obtain the large n asymptotics of Zn in the ferroelectric phase. We prove that for any
ε > 0, as n → ∞, Zn = CGn Fn2 [1 + O(e−n1−ε

)], and we find the exact values of the
constants C, G and F . The proof is based on the large n asymptotics for the underlying
discrete orthogonal polynomials and on the Toda equation for the tau-function.

1. Introduction and Formulation of the Main Result

1.1. Definition of the model. The six-vertex model, or the model of two-dimensional
ice, is stated on a square n ×n lattice with arrows on edges. The arrows obey the rule that
at every vertex there are two arrows pointing in and two arrows pointing out. Such rule
is sometimes called the ice-rule. There are only six possible configurations of arrows at
each vertex, hence the name of the model, see Fig. 1.

We will consider the domain wall boundary conditions (DWBC), in which the arrows
on the upper and lower boundaries point in the square, and the ones on the left and right
boundaries point out. One possible configuration with DWBC on the 4 × 4 lattice is
shown on Fig. 2.

For each possible vertex state we assign a weight wi , i = 1, . . . , 6, and define,
as usual, the partition function as a sum over all possible arrow configurations of the
product of the vertex weights,

Zn =
∑

arrow configurations σ

w(σ), w(σ) =
∏

x∈Vn

wt (x;σ) =
6∏

i=1

w
Ni (σ )
i , (1.1)

� The first author is supported in part by the National Science Foundation (NSF) Grant DMS-0652005.
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(4) (5) (6)

Fig. 1. The six arrow configurations allowed at a vertex

Fig. 2. An example of 4 × 4 configuration with DWBC

where Vn is the n × n set of vertices, t (x; σ) ∈ {1, . . . , 6} is the type of configuration
σ at vertex x according to Fig. 1, and Ni (σ ) is the number of vertices of type i in the
configuration σ . The sum is taken over all possible configurations obeying the given
boundary condition. The Gibbs measure is defined then as

µn(σ ) = w(σ)

Zn
. (1.2)

Our main goal is to obtain the large n asymptotics of the partition function Zn .
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The six-vertex model has six parameters: the weights wi . By using some conservation
laws it can be reduced to only two parameters. It is convenient to derive the conservation
laws from the height function.

1.2. Height function. Consider the dual lattice,

V ′ =
{

x =
(

i +
1

2
, j +

1

2

)
, 0 ≤ i, j ≤ n

}
. (1.3)

Given a configuration σ on E , an integer-valued function h = hσ on V ′ is called a height
function of σ , if for any two neighboring points x, y ∈ V ′, |x − y| = 1, we have that

h(y) − h(x) = (−1)s, (1.4)

where s = 0 if the arrow σe on the edge e ∈ E , crossing the segment [x, y], is oriented
in such a way that it points from left to right with respect to the vector �xy, and s = 1 if
σe is oriented from right to left with respect to �xy. The ice-rule ensures that the height
function h = hσ exists for any configuration σ . It is unique up to addition of a constant.
Figure 3 shows a 5 × 5 configuration with a height function, and the corresponding
alternating sign matrix, which is obtained from the configuration by replacing the vertex
(5) of Fig. 1 by 1, the vertex (6) by (−1), and all the other vertices by 0.

Observe that if h(x1), h(x2), h(x3), h(x4) are the four values of the height function
around a vertex x = ( j, k), enumerated in the positive direction around x starting from
the first quadrant, then the value of the element a jk of the ASM is equal to

a jk = h(x1) − h(x2) + h(x3) − h(x4)

2
. (1.5)

1.3. Conservation laws. Conservation laws are obtained in the paper [12] of Ferrari and
Spohn, as a corollary of a path representation of the six-vertex model. We will derive
them from the height function representation. Consider the height function h = hσ on
a diagonal sequence of points defined by the formula,

x j = x0 + ( j, j), 0 ≤ j ≤ k, (1.6)
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Fig. 3. A 5 × 5 configuration with a height function and the corresponding alternating sign matrix
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where both x0 and xk lie on the boundary B ′ of the dual lattice V ′,

B ′ =
{

x =
(

i +
1

2
,

1

2

)
, 0 ≤ i ≤ n

}
∪

{
x =

(
n +

1

2
, j +

1

2

)
, 0 ≤ j ≤ n

}

∪
{

x =
(

i +
1

2
, n +

1

2

)
, 0 ≤ i ≤ n

}
∪

{
x =

(
1

2
, j +

1

2

)
, 0 ≤ j ≤ n

}
.

(1.7)

Then it follows from the definition of the height function, that

h(x j ) − h(x j−1) =
⎧
⎨

⎩

2, if t (x; σ) = 3,

− 2, if t (x; σ) = 4,

0, if t (x; σ) = 1, 2, 5, 6,

(1.8)

where

x = x j + x j−1

2
. (1.9)

Hence

0 = h(xk) − h(x0) = 2N3(σ ; L) − 2N4(σ ; L), (1.10)

where Ni (σ ; L) is the number of vertex states of type i in σ on the line

L = {x = x0 + (t, t), t ∈ R}. (1.11)

The line L is parallel to the diagonal y = x . By summing up over all possible lines L ,
we obtain that

N3(σ ) − N4(σ ) = 0, (1.12)

where Ni (σ ) is the total number of vertex states of the type i in the configuration σ .
Similarly, by considering lines L parallel to the diagonal y = −x , we obtain that

N1(σ ) − N2(σ ) = 0. (1.13)

Also,

N5(σ ) − N6(σ ) = n, (1.14)

which follows if we consider lines L parallel to the x-axis.
The conservation laws allow to reduce the weights w1, . . . , w6 to 3 parameters.

Namely, we have that

w
N1
1 w

N2
2 w

N3
3 w

N4
4 w

N5
5 w

N6
6 = C(n)aN1aN2 bN3 bN4 cN5 cN6 , (1.15)

where

a = √
w1w2, b = √

w3w4, c = √
w5w6, (1.16)

and the constant

C(n) =
(

w5

w6

) n
2

. (1.17)
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This implies the relation between the partition functions,

Zn(w1, w2, w3, w4, w5, w6) = C(n)Zn(a, a, b, b, c, c), (1.18)

and between the Gibbs measures,

µn(σ ;w1, w2, w3, w4, w5, w6) = µn(σ ; a, a, b, b, c, c). (1.19)

Therefore, for fixed boundary conditions, like DWBC, the general weights are reduced
to the case when

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c. (1.20)

Furthermore,

Zn(a, a, b, b, c, c) = cn2
Zn

(
a

c
,

a

c
,

b

c
,

b

c
, 1, 1

)
(1.21)

and

µn(σ ; a, a, b, b, c, c) = µn

(
σ ; a

c
,

a

c
,

b

c
,

b

c
, 1, 1

)
, (1.22)

so that a general weight reduces to the two parameters, a
c , b

c .

1.4. Exact solution of the six-vertex model for a finite n. Introduce the parameter

� = a2 + b2 − c2

2ab
. (1.23)

There are three physical phases in the six-vertex model: the ferroelectric phase, � > 1;
the anti-ferroelectric phase, � < −1; and, the disordered phase, −1 < � < 1. In the
three phases we parametrize the weights in the standard way: for the ferroelectric phase,

a = sinh(t − γ ), b = sinh(t + γ ), c = sinh(2|γ |), 0 < |γ | < t, (1.24)

for the anti-ferroelectric phase,

a = sinh(γ − t), b = sinh(γ + t), c = sinh(2γ ), |t | < γ, (1.25)

and for the disordered phase

a = sin(γ − t), b = sin(γ + t), c = sin(2γ ), |t | < γ. (1.26)

The phase diagram of the six-vertex model is shown on Fig. 4.
The phase diagram and the Bethe-Ansatz solution of the six-vertex model for peri-

odic and anti-periodic boundary conditions are thoroughly discussed in the works of
Lieb [21–24], Lieb, Wu [25], Sutherland [30], Baxter [2], Batchelor, Baxter, O’Rourke,
Yung [3]. See also the work of Wu, Lin [31], in which the Pfaffian solution for the
six-vertex model with periodic boundary conditions is obtained on the free fermion line,
� = 0.
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Fig. 4. The phase diagram of the model, where F, AF and D mark ferroelectric, antiferroelectric, and disor-
dered phases, respectively. The circular arc corresponds to the so-called “free fermion” line, when � = 0, and
the three dots correspond to 1-, 2-, and 3-enumeration of alternating sign matrices

As concerns the six-vertex model with DWBC, it is noticed by Kuperberg [20], that
on the diagonal,

a

c
= b

c
= x, (1.27)

the six-vertex model with DWBC is equivalent to the s-enumeration of alternating
sign matrices (ASM), in which the weight of each such matrix is equal to s N− , where
N− is the number of (−1)’s in the matrix and s = 1

x2 . The exact solution for a finite n
is known for 1-, 2-, and 3-enumerations of ASMs, see the works by Kuperberg [20] and
Colomo-Pronko [9] for a solution based on the Izergin-Korepin formula. A fascinating
story of the discovery of the ASM formula is presented in the book [7] of Bressoud. On
the free fermion line, γ = π

4 , the partition function of the six-vertex model with DWBC
has a very simple form: Zn = 1. For a nice short proof of this formula see the work [9]
of Colomo-Pronko.

Here we will discuss the ferroelectric phase, and we will use parametrization (1.24).
Without loss of generality we may assume that

γ > 0, (1.28)

which corresponds to the region,

b > a + c. (1.29)

The parameter � in the ferroelectric phase reduces to

� = cosh(2γ ). (1.30)

The six-vertex model with DWBC was introduced by Korepin in [16], who derived
an important recursion relation for the partition function of the model. This lead to a
beautiful determinantal formula of Izergin [13] for the partition function with DWBC.
A detailed proof of this formula and its generalizations are given in the paper of Izergin,
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Coker, and Korepin [14]. When the weights are parameterized according to (1.24), the
formula of Izergin is

Zn = [sinh(t − γ ) sinh(t + γ )]n2

(∏n−1
j=0 j !

)2 τn, (1.31)

where τn is the Hankel determinant,

τn = det

(
d j+k−2φ

dt j+k−2

)

1≤ j,k≤n
, (1.32)

and

φ(t) = sinh(2γ )

sinh(t + γ ) sinh(t − γ )
. (1.33)

An elegant derivation of the Izergin determinantal formula from the Yang-Baxter equa-
tion is given in the papers of Korepin, Zinn-Justin [19] and Kuperberg [20] (see also the
book of Bressoud [7]).

One of the applications of the determinantal formula is that it implies that the partition
function τn solves the Toda equation

τnτ ′′
n − τ ′

n
2 = τn+1τn−1, n ≥ 1, (′) = ∂

∂t
, (1.34)

cf. the work of Sogo, [27]. The Toda equation was used by Korepin and Zinn-Justin [19]
to derive the free energy of the six-vertex model with DWBC, assuming some Ansatz
on the behavior of subdominant terms in the large N asymptotics of the free energy.

Another application of the Izergin determinantal formula is that τN can be expressed
in terms of a partition function of a random matrix model and also in terms of related
orthogonal polynomials, see the paper [32] of Zinn-Justin. In the ferroelectric phase the
expression in terms of orthogonal polynomials can be obtained as follows. For the eval-
uation of the Hankel determinant, let us write φ(t) in the form of the Laplace transform
of a discrete measure,

φ(t) = sinh(2γ )

sinh(t + γ ) sinh(t − γ )
= 4

∞∑

l=1

e−2tl sinh(2γ l). (1.35)

Then

τn = 2n2

n!
∞∑

l1,...,ln=1

�(l)2
n∏

i=1

[
2e−2tli sinh(2γ li )

]
, (1.36)

where

�(l) =
∏

1≤i< j≤n

(l j − li ) (1.37)

is the Vandermonde determinant.
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Introduce now discrete monic polynomials Pj (x) = x j + · · · orthogonal on the set
N = {l = 1, 2, . . .} with respect to the weight,

w(l) = 2e−2tl sinh(2γ l) = e−2tl+2γ l − e−2tl−2γ l , (1.38)

so that

∞∑

l=1

Pj (l)Pk(l)w(l) = hkδ jk . (1.39)

Then it follows from (1.36) that

τn = 2n2
n−1∏

k=0

hk, (1.40)

see the Appendix in the end of the paper. We will prove the following asymptotics of hk .

Theorem 1.1. For any ε > 0, as k → ∞,

hk = (k!)2qk+1

(1 − q)2k+1

(
1 + O(e−k1−ε

)
)

, (1.41)

where

q = e2γ−2t . (1.42)

The error term in (1.41) is uniform on any compact subset of the set

{(t, γ ) : 0 < γ < t} . (1.43)

1.5. Main result: Asymptotics of the partition function. This work is a continuation of
the work [4] of the first author with Vladimir Fokin. In [4] the authors obtain the large n
asymptotics of the partition function Zn in the disordered phase. They prove the conjec-
ture of Paul Zinn-Justin [32] that the large n asymptotics of Zn in the disordered phase
has the following form: for some ε > 0,

Zn = Cnκ Fn2 [1 + O(n−ε)], (1.44)

and they find the exact value of the exponent κ ,

κ = 1

12
− 2γ 2

3π(π − 2γ )
. (1.45)

The value of F in the disordered phase is given by the formula,

F = π [sin(γ + t) sin(γ − t)]
2γ cos π t

2γ

, (1.46)

and the exact value of constant C > 0 is not yet known.
Our main result in the present paper is the following theorem.
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Theorem 1.2. In the ferroelectric phase with t > γ > 0, for any ε > 0, as n → ∞,

Zn = CGn Fn2
[
1 + O

(
e−n1−ε

)]
, (1.47)

where C = 1 − e−4γ , G = eγ−t , and F = sinh(t + γ ). The error term in (1.41) is
uniform on any compact subset of the set (1.43).

Up to a constant factor this result will follow from Theorem 1.1. To find the constant
factor C we will use the Toda equation, combined with the asymptotics of C as t → ∞.
The proof of Theorems 1.1 and 1.2 will be given below in Sects. 2–6. Here we would
like to make some remarks concerning asymptotics (1.47).

1.6. Ground state configuration of the ferroelectric phase. Let us compare asymptotics
(1.47) with the energy of the ground state. The ground state is the configuration

σ gs(x) =
⎧
⎨

⎩

σ5 if x is on the diagonal,

σ3 if x is above the diagonal,

σ4 if x is below the diagonal,

(1.48)

see Fig. 5. The weight of the ground state configuration is

w(σ gs) = bn2
( c

b

)n = Fn2
Gn

0, (1.49)

where

F = sinh(t + γ ), G0 = sinh(2γ )

sinh(t + γ )
. (1.50)

Fig. 5. A ground state configuration
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By (1.47) the ratio Zn/w(σ gs) is evaluated as

Zn

w(σ gs)
= CGn

1

[
1 + O

(
e−n1−ε

)]
, (1.51)

where

G1 = G

G0
= eγ−t sinh(t + γ )

sinh 2γ
= e2γ − e−2t

e2γ − e−2γ
> 1. (1.52)

Observe that “volume contribution”, Fn2
, to the partition function coincides with the one

to the energy of the ground state configuration, but the “surface contributions”, Gn and
Gn

0, are different. This indicates that low energy excited states in the ferroelectric phase
are local perturbations of the ground state around the diagonal. Namely, it is impossible
to create a new configuration by perturbing the ground state locally away of the diag-
onal: the conservation law N3(σ ) = N4(σ ) forbids such a configuration, and a typical
configuration of the six-vertex model in the ferroelectric phase is frozen outside of a
relatively small neighborhood of the diagonal.

This behavior of typical configurations in the ferroelectric phase is in a big con-
trast with the situation in the disordered and anti-ferroelectric phases. Extensive rigor-
ous, theoretical and numerical studies, see, e.g., the works of Cohn, Elkies, Propp [8],
Eloranta [11], Syljuasen, Zvonarev [28], Allison, Reshetikhin [1], Kenyon, Okounkov
[15], Kenyon, Okounkov, Sheffield [17], Sheffield [26], Ferrari, Spohn [12], Colomo,
Pronko [10], Zinn-Justin [33], and references therein, show that in the disordered and
anti-ferroelectric phases the “arctic circle” phenomenon persists, so that there are mac-
roscopically big frozen and random domains in typical configurations, separated in the
limit n → ∞ by an “arctic curve”.

It is worth noticing a different structure of the subleading terms in asymptotic formu-
lae (1.44) and (1.47), which correspond to the disordered and ferroelectric phase regions,
respectively. The presence of the pre-exponential, power-like term nκ in formula (1.44)
is an indication of the criticality of the disordered phase. The criticality of the disordered
phase in the six-vertex model is also observed by Baxter [2], who relates it to an infinite
degeneracy of the ground state of the transfer-matrix with periodic boundary conditions
in the thermodynamic limit. In contrast, there is no power-like term in formula (1.47),
which suggests that the ferroelectric phase is not critical. On the other hand, the presence
of the surface term, Gn , in (1.47) shows the existence of a surface tension (under the
domain wall boundary conditions) in the ferroelectric phase region, while (1.44) exhibits
no surface tension in the disordered phase region. To obtain the exact value of the con-
stant factor in the asymptotics of the partition function is usually a very difficult problem.
As mentioned above, the exact value of the constant C in (1.47) does not follow from the
large k asymptotics of hk in (1.41), and it requires an additional study (see Sects. 5 and
6 below). The exact value of C in (1.44) is still not known. Finally, there is a noticeable
difference in the asymptotic behavior of the error terms in formulae (1.44) and (1.47).
Namely, as shown in [4], in formula (1.44), which corresponds to the disordered phase
region, the error term is expanded in an asymptotic series in fractional powers of n, while
the error term in (1.47) is (almost) exponentially small. This is also an indicator of a very
different statistical behavior of typical configurations in the disordered and ferroelectric
phases.
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1.7. Order of the phase transition between the ferroelectric and disordered phases. We
would like to compare the free energy in the disordered phase and in the ferroelectric
phase when we approach a point of phase transition. Consider first the ferroelectric
phase. Observe that t, γ → 0 as we approach the line of phase transition,

b

c
= a

c
+ 1, a > 0, (1.53)

hence a, b, c → 0 in parametrization (1.24). Consider the regime,

t, γ → +0,
t

γ
→ α > 1. (1.54)

In this regime,

lim
γ→0

b

c
= lim

γ→0

sinh(t + γ )

sinh(2γ )
= α + 1

2
, lim

γ→0

a

c
= lim

γ→0

sinh(t − γ )

sinh(2γ )
= α − 1

2
.

(1.55)

We have to rescale formula (1.47) according to (1.21),

Zn

(
a

c
,

a

c
,

b

c
,

b

c
, 1, 1

)
= c−n2

Zn(a, a, b, b, c, c) = CGn Fn2

0

[
1 + O

(
e−n1−ε

)]
,

(1.56)

in the ferroelectric phase, where

F0 = F

c
= sinh(t + γ )

sinh(2γ )
. (1.57)

Similarly, in the disordered phase,

Zn

(
a

c
,

a

c
,

b

c
,

b

c
, 1, 1

)
= Cnκ Fn2

0 [1 + O(n−ε)], (1.58)

where

F0 = F

c
= π sin(γ − t) sin(γ + t)

2γ sin(2γ ) cos π t
2γ

. (1.59)

Observe that parametrization (1.26) in the disordered phase is not convenient as we
approach critical line (1.53). Namely, it corresponds to the limit when

t, γ → π

2
− 0,

π
2 − t
π
2 − γ

→ α > 1. (1.60)

Therefore, we replace t for π
2 − t and γ for π

2 − γ . This gives the parametrization,

a = sin(t − γ ), b = sin(t + γ ), c = sin(2|γ |), |γ | < t. (1.61)

The approach to critical line (1.53) is described by regime (1.54). Formula (1.59) reads
in the new t, γ as

F0 = π sin(t − γ ) sin(t + γ )

(π − 2γ ) sin(2γ ) cos
[

π( π
2 −t)

2( π
2 −γ )

] . (1.62)
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Fig. 6. Free energy F0 = F0(β) (the left graph) and its derivative (the right graph), as functions of β = b−a
c

on the line b+a
c = 2

We consider F0 on the line

a + b

c
= α, (1.63)

and we use the parameter

β = b − a

c
(1.64)

on this line. In variables α, β,

F0 = α + β

2
in the ferroelectric phase, (1.65)

and

F0 = (α + β)g(t, γ )

2
in the disordered phase, (1.66)

where

g(t, γ ) = π sin(t − γ )

(π − 2γ ) sin
[

π(t−γ )
(π−2γ )

] . (1.67)

A straightforward calculation shows that on the line a+b
c = α in the disordered phase,

as β → 1 − 0,

g(t, γ ) = 1 +
2(α − 1)3/2(1 − β)3/2

3π(α + 1)1/2 + O((1 − β)2). (1.68)

By (1.65), g(t, γ ) = 1 in the ferroelectric phase. This implies that the free energy F0
exhibits a phase transition of the order 3

2 with respect to the parameter β at the point
β = 1. Figure 6 depicts the graph of F0 = F0(β) (the left graph) and its derivative,
F ′

0(β) (the right graph), as a function of β = b−a
c on the line b+a

c = 2. Observe the
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square root singularities of F ′
0 at β = ±1, which correspond to the phase transition of

order 3
2 . Since

� = a2 + b2 − c2

2ab
= α2 + β2 − 2

α2 − β2 = 1 +
4(β − 1)

α2 − 1
+ O((β − 1)2), (1.69)

it is a phase transition of the order 3
2 with respect to the parameter � as well, at the point

� = 1.
The set-up for the remainder of the article is the following. In Section 2 we will

discuss the Meixner polynomials, which will serve as a good approximation to the poly-
nomials Pn(z). In Section 3 we will discuss the Riemann-Hilbert approach to discrete
orthogonal polynomials, and we will derive a basic identity, which will be used in the
proof of Theorem 1.1. In Section 4 we will prove Theorem 1.1. Then, in Sections 5 and
6 we will obtain an explicit formula for the constant factor C , and we will finish the
proof of Theorem 1.2.

2. Meixner Polynomials

We will use the two weights: the weight w(l) defined in (1.38) and the exponential
weight on N,

wQ(l) = ql , l ∈ N; q = e2γ−2t < 1, (2.1)

which can be viewed as an approximation to w(l) for large l. The orthogonal polyno-
mials with the weight wQ(l) are expressed in terms of the Meixner polynomials with
β = 1, which are defined by the formula,

Mk(z; q) = 2 F1

(−k,−z
1 ; 1 − q−1

)
=

∞∑

j=0

(−k) j (−z) j

(1) j

(1 − q−1) j

j !

=
k∑

j=0

(1 − q−1) j ∏ j−1
i=0 (k − i)

∏ j−1
i=0 (z − i)

( j !)2 . (2.2)

They satisfy the orthogonality condition,

∞∑

l=0

M j (l; q)Mk(l; q)ql = q−kδ jk

1 − q
, (2.3)

see, e.g. [18]. For the corresponding monic polynomials,

PM
k (z) = k!

(1 − q−1)k
Mk(z; q) (2.4)

(M in PM
k stands for Meixner), the orthogonality condition reads

∞∑

l=0

PM
j (l)PM

k (l)ql = hM
k δ jk, hM

k = (k!)2qk

(1 − q)2k+1 . (2.5)
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They satisfy the three term recurrence relation,

z PM
k (z) = PM

k+1(z) +
kq + k + q

1 − q
PM

k (z) +
k2q

(1 − q)2 PM
k−1(z), (2.6)

see [18]. According to (2.1), we take q = e2γ−2t .
For our purposes it is convenient to introduce a shifted Meixner polynomial,

Qk(z) = PM
k (z − 1) = (−1)kk!qk

(1 − q)k
Mk(z − 1; q), (2.7)

which is a monic polynomial as well. Equation (2.5) implies the orthogonality condition,

∞∑

l=1

Q j (l)Qk(l)q
l = hQ

k δ jk, hQ
k = (k!)2qk+1

(1 − q)2k+1 . (2.8)

By analogy with (1.40), define

τQ
n = 2n2

n−1∏

k=0

hQ
k . (2.9)

From (2.8) we obtain that

τQ
n = 2n2

n−1∏

k=0

(k!)2qk+1

(1 − q)2k+1 = 2n2
q(n+1)n/2

(1 − q)n2

n−1∏

k=0

(k!)2. (2.10)

By analogy with (1.31), define also

ZQ
n = [sinh(γ + t) sinh(γ − t)]n2

n−1∏

k=0

(k!)2

τQ
n . (2.11)

Then from (2.10) we obtain that

ZQ
n = Fn2

Gn, (2.12)

where

F = 2 sinh(t − γ ) sinh(t + γ )q1/2

1 − q
= 2 sinh(t − γ ) sinh(t + γ )eγ−t

1 − e2γ−2t
= sinh(t + γ ),

(2.13)

and

G = q1/2 = eγ−t . (2.14)

Our goal will be to compare the normalizing constants for orthogonal polynomials with
the weights w and wQ. To this end let us discuss the Riemann-Hilbert approach to
discrete orthogonal polynomials.
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3. Riemann Hilbert Approach: Interpolation Problem

The Riemann-Hilbert approach to discrete orthogonal polynomials is based on the fol-
lowing Interpolation Problem (IP), which was introduced in the paper [6] of Borodin
and Boyarchenko under the name of the discrete Riemann-Hilbert problem. See also the
monograph [5] of Baik, Kriecherbauer, McLaughlin, and Miller, in which it is called the
Interpolation Problem. Let w(l) ≥ 0 be a weight function on N (it can be a more general
discrete set, as discussed in [6 and 5], but we will need N in our problem).
Interpolation Problem. For a given k = 0, 1, . . . , find a 2 × 2 matrix-valued function
Y (z; k) = (Yi j (z; k))1≤i, j≤2 with the following properties:

(1) Analyticity: Y (z; k) is an analytic function of z for z ∈ C\N.
(2) Residues at poles: At each node l ∈ N, the elements Y11(z; k) and Y21(z; k) of the

matrix Y (z; k) are analytic functions of z, and the elements Y12(z; k) and Y22(z; k)

have a simple pole with the residues,

Res
z=l

Y j2(z; k) = w(l)Y j1(l; k), j = 1, 2. (3.1)

(3) Asymptotics at infinity: There exists a sequence {rl > 0, l = 1, 2, . . .} such that

lim
l→∞ rl = 0. (3.2)

and such that if z → ∞ outside of the set
⋃∞

l=1 D(l, rl), where D(a, r) is a disk
of radius r > 0 centered at a ∈ C, then Y (z; k) admits the asymptotic expansion,

Y (z; k) ∼
(

I +
Y1

z
+

Y2

z2 + · · ·
) (

zk 0
0 z−k

)
. (3.3)

It is not difficult to see (see [6] and [5]) that under some conditions on w(l), the IP
has a unique solution, which is

Y (z; k) =
(

Pk(z) C(wPk)(z)
(hk−1)

−1 Pk−1(z) (hk−1)
−1C(wPk−1)(z)

)
, (3.4)

where the Cauchy transformation C is defined by the formula,

C( f )(z) =
∞∑

l=1

f (l)

z − l
, (3.5)

and Pk(z) = zk + · · · are monic polynomials orthogonal with the weight w(l), so that

∞∑

l=1

Pj (l)Pk(l)w(l) = h jδ jk . (3.6)

It follows from (3.4), that

hk = [Y1]12, (3.7)

where [Y1]12 is the (12)-element of the matrix Y1, which is the coefficient at 1
z in asymp-

totic expansion (3.3) (see [6 and 5]). In what follows we will consider the solution Y (z; k)

for the weight w(l), introduced in (1.38).
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Let Y Q be a solution to the IP with the exponential weight wQ,

Y Q(z; k) =
(

Qk(z) C(wQ Qk)(z)
(hQ

k−1)
−1 Qk−1(z) (hQ

k−1)
−1C(wQ Qk−1)(z)

)
. (3.8)

Consider the quotient matrix,

X (z; k) = Y (z; k)[Y Q(z; k)]−1. (3.9)

Observe that det Y Q(z; k) has no poles and it approaches 1 as z → ∞ outside of the
disks D(l, rl), l = 1, 2, . . . , hence

det Y Q(z; k) = 1. (3.10)

Also,

X (z; k) → I as z → ∞ outside of the disks D(l, rl), l = 1, 2, . . . (3.11)

This implies that the matrix X can be written as

X (z; k) = I + C[(wQ − w)R], (3.12)

where

R(z) =
(

(hQ
k−1)

−1 Pk(z)Qk−1(z) −Pk(z)Qk(z)

(hk−1hQ
k−1)

−1 Pk−1(z)Qk−1(z) −(hk−1)
−1 Pk−1(z)Qk(z)

)
. (3.13)

From formula (3.7) and (3.12) we obtain that

hk − hQ
k = −

∞∑

l=1

Pk(l)Qk(l) [wQ(l) − w(l)]. (3.14)

We will use this identity to estimate |hk −hQ
k |. Observe that formula (3.12) can be further

used to evaluate the large n asymptotics of the orthogonal polynomials Pn(z), but we
will not pursue it here.

We would like to remark that identity (3.14) can be also derived as follows. Observe
that since Pk and Qk are monic polynomials, the difference, Pk − Qk , is a polynomial
of degree less than k, hence

∞∑

l=1

Pk(l)[Qk(l) − Pk(l)]w(l) = 0. (3.15)

By adding this to equation (3.6) with j = k, we obtain that

hk =
∞∑

l=1

Pk(l)Qk(l)w(l). (3.16)

Similarly, from (2.8) we obtain that

hQ
k =

∞∑

l=1

Pk(l)Qk(l)w
Q(l). (3.17)

By subtracting the last two equations, we obtain identity (3.14).
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4. Evaluation of the Ratio hk/ hQ
k

In this section we will prove Theorem 1.1. By applying the Cauchy-Schwarz inequality
to identity (3.14), we obtain that

|hk − hQ
k | ≤

[ ∞∑

l=1

Pk(l)
2 |w(l) − wQ(l)|

]1/2 [ ∞∑

l=1

Qk(l)
2 |w(l) − wQ(l)|

]1/2

, (4.1)

so that

∣∣∣∣∣
hk

hQ
k

−1

∣∣∣∣∣ ≤
[

1

hQ
k

∞∑

l=1

Pk(l)
2 |w(l)−wQ(l)|

]1/2 [
1

hQ
k

∞∑

l=1

Qk(l)
2 |w(l) − wQ(l)|

]1/2

.

(4.2)

Since 0 < γ < t , we obtain from (1.38) and (2.1) that

|w(l) − wQ(l)| = e−(2t+2γ )l ≤ C0w(l), l ≥ 1; C0 = 1

e4γ − 1
, (4.3)

hence

1

hQ
k

∞∑

l=1

Pk(l)
2 |w(l) − wQ(l)| ≤ C0

1

hQ
k

∞∑

l=1

Pk(l)
2w(l) = C0hk

hQ
k

≤ C0(1 + εk),

(4.4)

where

εk =
∣∣∣∣∣

hk

hQ
k

− 1

∣∣∣∣∣ . (4.5)

Thus, by (4.2),

ε2
k ≤ C0(1 + εk)δk, (4.6)

where

δk = 1

hQ
k

∞∑

l=1

Qk(l)
2 |w(l) − wQ(l)|. (4.7)

By (4.3),

δk = 1

hQ
k

∞∑

l=1

Qk(l)
2 ql

0, q0 = e−2(t+γ ). (4.8)

Let us evaluate δk .
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We partition the sum in (4.8) into two parts:

δ′
k = 1

hQ
k

L∑

l=1

Qk(l)
2 ql

0, (4.9)

and

δ′′
k = 1

hQ
k

∞∑

l=L+1

Qk(l)
2 ql

0, (4.10)

where

L = [kλ], 0 < λ < 1. (4.11)

Let us estimate first δ′
k . We have from (2.7), (2.8) that

Qk(l)

(hQ
k )1/2

= (−1)k(1 − q)1/2qk/2

q1/2 Mk(l − 1; q). (4.12)

By (2.2),

Mk(l − 1; q) = 1 + (1 − q−1)k(l − 1) + (1 − q−1)2 k(k − 1)(l − 1)(l − 2)

(2!)2

+ (1 − q−1)3 k(k − 1)(k − 2)(l − 1)(l − 2)(l − 3)

(3!)2 + · · · .

(4.13)

If l < k, then the latter sum consists of l nonzero terms. For l ≤ L it is estimated as

Mk(l − 1; q) = O(kL L L+1) = O(eL ln k+(L+1) ln L), (4.14)

hence

Qk(l)

(hQ
k )1/2

= O(e
k ln q

2 +L ln k+(L+1) ln L). (4.15)

Due to our choice of L in (4.11), this implies the estimate,

Qk(l)

(hQ
k )1/2

= O(e
k ln q

2 +2kλ ln k). (4.16)

Since 0 < q < 1 and 0 < λ < 1, the expression on the right is exponentially small as
k → ∞. From (4.9) we obtain now that

δ′
k = O(ek ln q+4kλ ln k). (4.17)

Since λ < 1 and q < 1, we obtain that

δ′
k = O(e−c0k), c0 = − ln q

2
> 0. (4.18)

Let us estimate δ′′
k .
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By (2.8),

1

hQ
k

∞∑

l=1

Qk(l)
2ql = 1, (4.19)

hence

δ′′
k = 1

hQ
k

∞∑

l=L+1

Qk(l)
2 ql

0 <

(
q0

q

)L 1

hQ
k

∞∑

l=L+1

Qk(l)
2 ql <

(
q0

q

)L

= e−4γ L .

(4.20)

Thus,

δ′′
k < e−4γ (kλ−1). (4.21)

Since 0 < λ < 1 is an arbitrary number, we obtain from (4.18) and (4.21) that for any
η > 0,

δk = O
(

e−k1−η
)

. (4.22)

Let us return back to inequality (4.6). Consider two cases: (1) εk > 1 and (2) εk ≤ 1. In
the first case (4.6) implies that

εk ≤ 2C0δk, (4.23)

which is impossible, because of (4.22). Hence εk ≤ 1, in which case (4.6) gives that

ε2
k ≤ 2C0δk . (4.24)

Estimate (4.22) implies now that for any η > 0,

εk = O
(

e−k1−η
)

, (4.25)

so that as k → ∞,

hk = hQ
k (1 + ε̃k), |ε̃k | = εk = O

(
e−k1−η

)
. (4.26)

This proves Theorem 1.1.
From (4.26) we obtain that for any η > 0,

Zn = ZQ
n

n−1∏

k=0

(1 + ε̃k) = C ZQ
n

[
1 + O

(
e−n1−η

)]
, (4.27)

where

∞ > C =
∞∏

k=0

(1 + ε̃k) > 0. (4.28)

Thus, we have proved the following result.
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Proposition 4.1. For any ε > 0, as n → ∞,

Zn = C Fn2
Gn

[
1 + O

(
e−n1−ε

)]
, (4.29)

where C > 0, F = sinh(t + γ ), and G = eγ−t .

To finish the proof of Theorem 1.2, it remains to find the constant C .

5. Evaluation of the Constant Factor

In the next two sections we will find the exact value of the constant C in formula (4.29).
This will be done in two steps: first, with the help of the Toda equation, we will find the
form of the dependence of C on t , and second, we will find the large t asymptotics of
C . By combining these two steps, we will obtain the exact value of C . In this section we
will carry out the first step of our program.

By dividing the Toda equation, (1.34), by τ 2
n , we obtain that

τnτ ′′
n − τ ′2

n

τ 2
n

= τn+1τn−1

τ 2
n

, (′) = ∂

∂t
. (5.1)

The left-hand side can be written as

τnτ ′′
n − τ ′2

n

τ 2
n

=
(

τ ′
n

τn

)′
= (ln τn)′′ . (5.2)

From (1.40) we obtain that

τn+1

τn
= 22n+1hn, (5.3)

hence Eq. (5.1) implies that

(ln τn)′′ = 4hn

hn−1
. (5.4)

From (1.41) we obtain that

4hn

hn−1
= 4n2q

(1 − q)2 + O
(

e−n1−ε
)

. (5.5)

We have that

4q

(1 − q)2 = 4e2γ−2t

(1 − e2γ−2t )2 =
[

(−2)

1 − e2γ−2t

]′
=

[
− ln(1 − e2γ−2t )

]′′
, (5.6)

hence from (5.4), (5.5) we obtain that

(ln τn)′′ = n2
[
− ln(1 − e2γ−2t )

]′′
+ O

(
e−n1−ε

)
. (5.7)

By (1.31) this implies that

(ln Zn)′′ = n2
[

ln
sinh(t − γ ) sinh(t + γ )

1 − e2γ−2t

]′′
+ O

(
e−n1−ε

)
. (5.8)

Since



Exact Solution of the Six-Vertex Model 797

ln
sinh(t − γ ) sinh(t + γ )

1 − e2γ−2t
= ln[sinh(t + γ )] + (t − γ ) − ln 2, (5.9)

we can simplify (5.8) to

(ln Zn)′′ = n2 [
ln sinh(t + γ )

]′′ + O
(

e−n1−ε
)

. (5.10)

Observe that the error term in the last formula is uniform when t belongs to a compact
set on (γ,∞), hence by integrating it we obtain that

ln Zn = n2 ln sinh(t + γ ) + c1t + c0 + O
(

e−n1−ε
)

, (5.11)

where c0, c1 do not depend on t . In general, c0, c1 depend on γ and n. By substituting
formula (4.29) into the preceding equation, we obtain that

ln C + n(γ − t) = c1t + c0 + O
(

e−n1−ε
)

. (5.12)

Denote

d0 = c0 − nγ, d1 = c1 + n. (5.13)

Then Eq. (5.12) reads

ln C = d1t + d0 + O
(

e−n1−ε
)

. (5.14)

Observe that C = C(γ, t) does not depend on n, while d j = d j (γ, n) does not depend
on t , j = 1, 2. Take any 0 < γ < t1 < t2. Then

ln C(γ, t2) − ln C(γ, t1) = d1(t2 − t1) + O
(

e−n1−ε
)

. (5.15)

From this formula we obtain that the limit,

lim
n→∞ d1(γ, n) = d1(γ ), (5.16)

exists. This in turn implies that the limit,

lim
n→∞ d2(γ, n) = d2(γ ), (5.17)

exists. By taking the limit n → ∞ in (5.14), we obtain that

ln C = d1(γ )t + d0(γ ). (5.18)

Thus we have proved the following result.
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Proposition 5.1. The constant C in asymptotic formula (4.29) has the form

C = ed1(γ )t+d0(γ ). (5.19)

6. Explicit Formula for C

In this section we will find the exact value of C , and by doing this we will finish the
proof of Theorem 1.2. Let us consider the following regime:

γ > 0 is fixed, t → ∞, (6.1)

and let us evaluate the asymptotics of C in this regime. By (3.6) and (1.38) we have that

h0 =
∞∑

l=1

w(l) =
∞∑

l=1

(
e−2tl+2γ l − e−2tl−2γ l

)
= e−2t+2γ

1 − e−2t+2γ
− e−2t−2γ

1 − e−2t−2γ
.

(6.2)

Similarly, by (2.8),

hQ
0 = e−2t+2γ

1 − e−2t+2γ
, (6.3)

hence

h0

hQ
0

= 1 − e−4γ + O(e−2t ), t → ∞. (6.4)

Let us evaluate εk =
∣∣∣∣

hk

hQ
k

− 1

∣∣∣∣ for k ≥ 1.

By (4.6),

ε2
k ≤ C0(1 + εk)δk, C0 = 1

e4γ − 1
. (6.5)

In the partition of δk as δ′
k + δ′′

k in (4.9), (4.10), let us choose

L = [k2/3 + t2/3]. (6.6)

From (4.12), (4.13) we obtain that for l ≤ L ,

|Qk(l)|
(hQ

k )1/2
≤ q(k−1)/2kL L L+1, q = e2γ−2t , (6.7)

hence

δ′
k ≤ q0qk−1kL L L+1

1 − q0
≤ qkkL L L+1

1 − q0
, q0 = e−2γ−2t . (6.8)
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In addition, by (4.20),

δ′′
k ≤ e−4γ L . (6.9)

Our choice of L in (6.6) ensures that there exists t0 > 0 such that for any t ≥ t0 and any
k ≥ 1,

δk = δ′
k + δ′′

k ≤ e−k1/2−t1/2
. (6.10)

From (6.5) we obtain now that for k ≥ 1 and large t ,

εk ≤ C1e− k1/2
2 − t1/2

2 , C1 = (2C0)
1/2. (6.11)

By (4.28),

ln C =
∞∑

k=0

ln(1 + ε̃k), |ε̃k | = εk . (6.12)

From Eqs. (6.4) and (6.11) we obtain now that

ln C = ln(1 − e−4γ ) + O(e− t1/2
2 ), t → ∞. (6.13)

On the other hand, by (5.14)

ln C = d1(γ )t + d0(γ ). (6.14)

This implies that

d1(γ ) = 0, d0(γ ) = ln(1 − e−4γ ), (6.15)

so that

C = 1 − e−4γ . (6.16)

By substituting expression (6.16) into formula (4.29), we prove Theorem 1.2.

Appendix A. Derivation of Formula (1.40)

Multilinearity of the determinant function, combined with the form of the Vandermonde
matrix, allows us to replace �(l) with

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

P1(l1) P1(l2) P1(l3) · · · P1(ln)

P2(l1) P2(l2) P2(l3) · · · P2(ln)

...
...

...
...

...

Pn−1(l1) Pn−1(l2) Pn−1(l3) · · · Pn−1(ln)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (A.1)
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where {Pj (x)}∞j=0 is the system of monic polynomials orthogonal with respect to the
weight w(l). Then (1.36) becomes

τn = 2n2

n!
∞∑

l1,...,ln=1

⎛

⎝
∑

π∈Sn

(−1)π
n∏

k=1

Pπ(k)−1(lk)

⎞

⎠
2

n∏

k=1

w(lk). (A.2)

Note that the orthogonality condition ensures that, after summing, only diagonal terms
are non-zero, so we get

τn = 2n2

n!
∞∑

l1,...,ln=1

⎛

⎝
∑

π∈Sn

n∏

k=1

P2
π(k)−1(lk)

⎞

⎠
n∏

k=1

w(lk) = 2n2
n−1∏

k=0

hk . (A.3)
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