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We consider the large N asymptotics of a system of discrete orthogonal polynomials
on an infinite regular lattice of mesh N1/N, with weight e VV®  where V(x) is a real
analytic function with sufficient growth at infinity. The proof is based on the formulation
of an interpolation problem for discrete orthogonal polynomials, which can be converted
to a Riemann-Hilbert problem, and steepest descent analysis of this Riemann-Hilbert

problem.

1 Introduction

N k,N N ) . .

We consider polynomials orthogonal on Ly with respect to the varying exponential

weight
wy(x) = e NV, (1.2)
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2 P. Bleher and K. Liechty

where V(x) is a real analytic function such that, for some ¢ > 0, V has analytic extension

into the strip

Imz<e (1.3)
and satisfies the growth condition
ReV(z2)
————— —> +00 as|z > o0, Imz<e. (1.4)
log(|z* + 1)

More specifically, we introduce the system of monic orthogonal polynomials,

Pu(x) = X"+ pppnaX" 4. 4+ P, n=0,1,...,

such that

> P Pu(0)wn (%) = Andym. (1.5)

xeLy

for some normalizing coefficients h,. Existence and uniqueness of this system of or-
thogonal polynomials are guaranteed by condition (1.4). These orthogonal polynomials

satisfy the three-term recurrence relation

XPy(X) = Pni1(X) + BnPn(X) + v Pro1(X). (1.6)

We will explore the asymptotics of the quantities yy,, 8n, and h, forn= N, N — 1, as well
as pointwise asymptotics of the polynomials Py(x) as N — oo.

The present work has the three predecessors:

(1) the work [7] of Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou, in
which the large N asymptotics have been obtained for orthogonal polynomi-
als with respect to varying exponential weights on the real line,

(2) the work [1] of Baik, Kriecherbauer, McLaughlin, and Miller, in which the
large N asymptotics have been obtained for orthogonal polynomials with

respect to varying exponential weights on a lattice in a finite interval, and
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(3) the work [3] of Bleher and Liechty, in which the large N asymptotics have
been obtained for orthogonal polynomials with respect to the varying expo-

nential weight wy(x) = e N(XI=¢% on the infinite lattice Ly.

Also, a very important ingredient comes from the work [11] of Kuijlaars, in which ana-
lytic properties of equilibrium measures with constraints are established.

The asymptotic analysis of the polynomials Py(x) in this work will be based on
the Interpolation Problem (IP) for discrete orthogonal polynomials, which is introduced
in the work [4] of Borodin and Boyarchenko (see also [1, 2, 3]). The asymptotic analysis of
Py (x) will consist of three steps. The first step will be a reduction of the Interpolation
Problem to a Riemann-Hilbert Problem (RHP) on a contour on the complex plane, which
we accomplish following the general approach introduced in the paper [12] of Miller
and in the monograph [10] of Kamvissis, McLaughlin, and Miller. The second step will
be an application of the nonlinear steepest descent method of Deift and Zhou [5] to the
Riemann-Hilbert problem under consideration, and the third and final step will be a
derivation of the asymptotic formulae both for the orthogonal polynomials Py(x) and
for the recurrence coefficients. To apply the nonlinear steepest descent method to the

orthogonal polynomials Py(x), we need to study the corresponding equilibrium measure.

2 Equilibrium Measure

The significance of the equilibrium measure is that, as we will see, it gives the limiting
distribution of zeros of the polynomial Py (x). By definition, the equilibrium measure is a
solution to a variational problem. Namely, let us consider the following set of probability

measures on R!:
M={0<v<o, vR)=1} (2.1)

where o is the Lebesgue measure, and let us introduce the functional

1

Hby) = /f log | |dv(X)dv(y) +[ V(x)dv(x), v e M. (2.2)
X—=Y

The equilibrium measure minimizes this functional over some set of measures. In the

case of continuous orthogonal polynomials, we minimize over the set of probability mea-

sures on the real line. However, in the case of discrete orthogonal polynomials, we must

introduce the upper constraint, v < o, in order to account for an interlacing property of

the zeroes of orthogonal polynomials.

0T0Z ‘9z udy uo Areiqi] Ausiaaiun INdni 1e Biosfeuinolpiopxo:uiwiy/:dny wolj papeojumod


http://imrn.oxfordjournals.org

4 P. Bleher and K. Liechty

It is a general fact (see, e.g., [15]) that for any system of polynomials orthogonal
on the real line with respect to a real weight, the nth polynomial has n real distinct
zeroes. Furthermore, the zeroes of a system of discrete orthogonal polynomials satisfy
an interlacing property with regard to the location of the nodes of the lattice Ly, so
that no more than one zero may lie between any pair of adjacent nodes. It therefore
follows that if we denote by uy the normalized counting measure on the zeroes of the

Nth orthogonal polynomial in our system,
1
MN(a,b)gb—a—i—ﬁ forany —oo<a<b< oo, (2.3)
so that u < o, where u = limy_, o, . With this constraint in mind, we define
Eg = inf H®v). (2.4)
0 veM ©)
It is possible to prove that there exists a unique minimizer vy, so that
Eq = H(vp), (2.5)

see, for example, the works of Saff and Totik [14], Dragnev and Saff [8], and Kuijlaars
[11]. The minimizer is called the equilibrium measure.
The equilibrium measure vg is uniquely determined by the Euler-Lagrange vari-

ational conditions: there exists a Lagrange multiplier | such that

>1 for x e supp vo,
2 / log |x — yldvo(y) — V(%) (2.6)
<l for xesupp (o —p),

see the works [6] of Deift and McLaughlin and [8]. In particular,

2 / log|x— yldvo(y) — V(x) =1 for x e supp voNsupp (o — vp). (2.7)
The equilibrium measure vy possesses a number of nice analytical properties, as shown
by Kuijlaars in [11]. We will use these analytic properties, so let us discuss the results of

[11].

First, observe that the constraint vy < o implies the existence of the density

N dvo

0T0Z ‘9z udy uo Areiqi] Ausiaaiun INdni 1e Biosfeuinolpiopxo:uiwiy/:dny wolj papeojumod


http://imrn.oxfordjournals.org

Uniform Asymptotics for Orthogonal Polynomials 5

We can partition R into the three sets

I={xeR: 2/10g |x — yldvo(y) — V(%) =1},
IT={xecR: 2/10g |x — yldvo(y) — V(x) > 1}, (2.9)

I ={xeR: 2/log |x — yldvo(y) — V(%) <1}

The structure of the equilibrium measure is well described in the following theorem of

Kuijlaars, obtained in [11].

Theorem 2.1. (Kuijlaars) For any real analytic potential V(x) satisfying (1.4), the fol-
lowing hold:

(1) The density p(x) of the constrained equilibrium measure vy (defined in (2.5))
is continuous.

(2) The sets I and I~ are both finite unions of open intervals.

(3) The density p is real analytic on the open set {x: 0 < p(x) < 1}.

(4) The density p has the representation

1
p(x) = =\/qf (x) for xeI°UI", (2.10)
n

where g;" is the positive part of a function g; defined on I° U I, which is real

analytic on the interior of I° U I~. The function q; is negative on I, so that
p(x)=0 for xeI, (2.11)
and it is nonnegative on 19, so that
p(X):%\/m for xeIY. (2.12)
(5) The density p has the representation

1
p(x)=1-=,/gf(x) for xeI’UIT, (2.13)
/g
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where q; is the positive part of a function g, defined on I° U I't, which is real

analytic on the interior of 19 U I*. The function g is negative on IT, so that
p(x)=1 for xelIt, (2.14)

and it is nonnegative on Iy, so that

px)=1-— %\/qz(x) for xeI°. (2.15)

Remark: 1t follows from equations (2.12) and (2.15) that

1 1
“Jax =1-=/gx for xelI° (2.16)
T T

hence, g; and g2 uniquely determine each other.
Notice that, according to point (2) of this theorem, the connected components of
I9 are either closed intervals or isolated points. Since vy has compact support, we can

write
q
1°= | |ie;. 1. (2.17)
j=1

where

aj < Bj for j=1,...,q,
= (2.18)
Bj < aji1 for j=1,...,q—-1.

Notice that the intervals (—oo,«;) and (B4, 00) are components of I~. The interval
(Bj,ajs1) for 1 < j < g is a component of either I or I~. We therefore adopt the

notation

A, = {je{l,...,q—l}:(ﬂj,aj_H) CI},
(2.19)
As: {je{l,...,q—l}:(ﬂj,aj+1) CI+}

We will call an equilibrium measure vy regular if the following hold:

(1) q; and g, are nonvanishing on the interior of 1°.

(2) I° contains no isolated points, so that aj<pjforall j=1,...,q.
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(3) If j € A, then g;(B)) # 0 and q; («j+1) # 0.
(4) If j € As, then g5 (B5) # 0 and g5(aji1) # 0.

For the remainder of this paper, we will assume that our equilibrium measure is regular.

In this case, the sets I9, I, and I~ are each finite unions of intervals, so that
—0o <y <P <az <f2<--<ag<fq<o0, (2.20)

and we classify these intervals as follows:

Definition: A void is an open subinterval (8, «j+1), j € Ay. The union of all voids is I~.
Definition: A saturated region is an open subinterval (8;, «j+1), j € As. The union of all
saturated regions is I™.

Definition: A band is an open subinterval («j, 8j), j =1,...,q. The union of all bands

is the interior of I°.

N -

Bz OC?} B3 O('4 B4 OCS BS

Fig. 1. The graph of the density function for a hypothetical equilibrium measure with g = 5.
Bands are denoted by bold segments, saturated regions by dashed segments, and voids by thin

segments.

Observe that p(x) = 0 on any void (8, «j+1), p(x) = 1 on any saturated interval
(Bj,ajy1), and 0 < p(x) < 1 on any band («j, Bj), see Figure 1. In addition, at the end
points of any band, p(x) has a square-root singularity. Namely, if «; is a common end

point of a band and a void, then as x — +0,
plaj+x) =Cyx(1+0x), C=lq)'’?>0, (2.21)
and if «; is a common end point of a band and a saturated region, then as x — +0,
plaj+x) =1-Cyx(1+ 0(x), C =g @j|'? > 0. (2.22)
Similarly, if B; is a common end point of a band and a void, then as x — 40,

p(Bj—x) =CJ/x(1+0x), C=IqBHI'* >0, (2.23)
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and if B is a common end point of a band and a saturated region, then as x — +0,

p(B;—x) =1-Cyx(1+ 0(x), C =lgy(BHIM* > 0. (2.24)

In the next section, we introduce the g-function which will be our means of ex-

ploiting the equilibrium measure.

3 The g-Function

Define the g-function on C\ (—oo, 4] as

B
9@ = / " log(z — X)dvo(x), 3.1)

1

where we take the principal branch for the logarithm. Also, introduce the numbers Q;

forj=1,...,q—1as

Bq
an p(x)dx for je A,
oj+1

Qj = 5 (3.2)
q
271/ p(x)dx+2raji; for je As.
o)+l
Properties of g(2):
(1) g(2) is analytic in C\ (—oo, B4l
(2) For large z,
X g Ba xJ
_ N9 X
g(z) =logz g ot gj = /al ; dvo(x). (3.3)
(3)
, x)dx
g(z):/ P& (3.4)
R Z2—X
is the resolvent of the equilibrium measure.
(4) From (2.9), we have that
=Vx +! for xelIP,
g +g- % {3 >Vx+I for xelI™, (3.5)

<V&x+!1l for xel,
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where g, and g_ refer to the limiting values from the upper and lower half
planes, respectively.

(5) Equation (3.1) implies that the function
Gx)=g+(x) —g-(x) (3.6)

is pure imaginary for all real x, and

B
G(x) = 2m‘/ " o(s) ds. (3.7)
Thus,

iQ; for Bi<x<ajr;, and jec A,
Go=1_ " g a ! (3.8)
iQj—2mix for Bj<x<wajr, and jeAs.

From (3.5) and (3.7), we obtain that

B
20+ (x) = V(X)~|—l:|:27fif q,o(s)ds for xeIY. (3.9)

X

(6) Also, from (3.7), we get that G(x) is real analytic on the sets I, I~, and on
the interior of I°. We can therefore extend G into a complex neighborhood of
any interval of analyticity for p, and the Cauchy-Riemann equations imply
that

dG(x +iy)

= 2mp(x) > 0. (3.10)
dy

y=0

Observe that from (3.5), we have that

G(x) =2g+(x) — V(x) =l = —[2g_(x) — V(x) — 1], xelI°. (3.11)
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4 Main Results

In this section, we summarize the main results of the paper. In order to do so, we must

first introduce some notations. Introduce the numbers Q; y for j =0,...,q as

NQ; for jeA,,

m+ NQ; for jeAs,
Qjn = (4.1)
27N for j=0,

0 for j=aq,
and the vector
Qy = Q1N ..., Q-1.n)- (4.2)
Let
q
Riz) = [[(z—aj)(z-B)). (4.3)
j=1

and let X be the two-sheeted Riemann surface of genus g = g — 1 associated with /R(2)
with cuts on the intervals («;, 8;). We fix the first sheet of X by the condition

vVR(z >0 for z> fg (4.4)
on the first sheet.
Introduce the following homology basis on X. For any j e {1,---,q — 1}, let A4;

be a cycle enclosing the interval (8, «j;1) (passing through the intervals (aj, ;) and
(aj41, Bj+1)), oriented clockwise, such that the piece of Aj which lies in the upper half
plane also lies on the first sheet of X, while the piece of A; which lies in the lower
half plane also lies on the second sheet of X. Also for any je{l,---,q—1}, let Bj
be a cycle enclosing the interval («1, 8;) (passing through the intervals (—oo, «;) and
(Bj,ajy1)), oriented clockwise, and lying entirely on the first sheet of X. Then the cycles

(A1,...,Ag-1, B1,....Bg_1) form a canonical homology basis for X.
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Now consider the g-dimensional complex linear space © of holomorphic one-

forms on X,

q—2 . ]d
g R(2)
and the basis
o= (01,...,0g-1), (4.6)
normalized such that
/ wk = §jk. (4.7)
Aj

Notice that the basis w is real. That is, for the basis elements

—1
1 Cjkzkf1 dz

- VR
the coefficients cjx are real.
Now define the associated matrix of B-periods as
T = (Tjk), Tij/ OF, Jk=1,...,q—1. (4.9)
B

J

Since 4/R(2) is pure imaginary on the intervals («j, 8;), the numbers t;; are pure
imaginary. Furthermore, the matrix t is symmetric, and the matrix —it is positive
definite (see [9]).

We now define the Riemann theta function associated with t as

0(s) = Z gArims)+riimem =g o 9, (4.10)
meZ9

where (m, s) = Z‘Jl-;} m;s;. Because the quadratic form i(m, tm) is negative definite, the
sum in (4.10) is absolutely convergent for all s € CY, and thus, 6(s) is an entire function
in CY. Notice that the theta function is an even function and satisfies the periodicity

properties

(s +ej) = 0(s), O(s+1j) = e 277G (s), 4.11)

wheree; = (0,...,1,...,0) is the jth canonical basis vector in CY, and 7; = te;.
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Introduce now the vector-valued function

wz) =/ w, for zeC\ (a1, By, (4.12)
B

q

where w = (w1, ..., wg) is defined in (4.6) and the contour of integration lies in C \ (a1, Bg)
on the first sheet of X. Notice that u(z) is well defined as a function with values in C9/Z9
except on the interval (a1, fg), where it takes limiting values from the upper and lower
half planes.

Introduce also the function

q o N1/4
v@ =[] C_;’) (4.13)
J

with cuts on I°, taking the branch such that y(z) ~ 1 as z— oc. It can be seen that, on
the first sheet of X, the function y — 1/y has exactly one zero in each of the intervals
(Bj,ojy1) and is nonzero elsewhere and that the function y 4 1/y has no zeroes on the

first sheet of X. Define the numbers x; as

x;i € (Bj,ajr1), (x;) — ——— = (4.14)
j .3] Jj+1 Y (X; V(Xj)
Define the vector of Riemann constants
q—-1
= _Zu(ﬁj) (4.15)
j=1
and the vector
q—1
d= —K—‘,—ZU(XJ'). (4.16)
j=1
Then
O(uxj) —d)=0 for jel{l,...,q—1}, (4.17)

and {Xj}?=1 give all the zeroes of the function 6(u(z) — d). In addition, the function
0(u(z) + d) has no zeroes on the first sheet of X.
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Finally, for j = 1,...q, introduce the functions

2/3 ) 2/3

3 z 3 B

waf<z>=—{7”/ p(t)dt} , wﬂj<z>=—{7”/’p<t)dt} L @)
(Yj z

and the functions

O(u(oo)+d) y(z)+y(z)19(u(z)+ W)

Mi(@) = ,
My(z) = 0 + fd) -y e - B ) |
T b + 2 1 ) 2 w2 —d)

Notice that M; and M3 depend quasiperiodically on N and, thus, are O(1) as N — oc.
The asymptotics of the normalizing constants in equation (1.5) and of the recur-

rence coefficients in equation (1.6) are presented in the following theorem.

Theorem 4.1. (Asymptotics of recurrence coefficients) Let V(x) be a real analytic func-
tion satisfying (1.4) which yields a regular equilibrium measure (2.5), and let {Py,};° ; be
the system of orthogonal polynomials defined according to (1.5). Then as N — oo, the
normalizing constants in (1.5) and recurrence coefficients in (1.6) admit the following

asymptotic expansions.

Nr 6 (u(00) + d)f (u(oo) — S — d) ]
=g [1 0 (—)} 4.20
N (le(ﬂj ) 0 (u(00) — A (W(0) + X + d) + N (4.20)

-1
; 9(ulo0) —~ dp(uo) — B+ 1
hy_1 = 8Nrel N oy [1+O<_>]’ e
. me (;X_;(ﬁ] “1)) 0(w(00) + d)f (w(o0) + FX — d) N

s _ (Ziaai—an\ " oauoo) + d)?tutco) - ¥ — dpuco) + 3 —d) ( ! )
4 0 (u(00) — )26/ (w(00) + FX + d)f (w(00) — X + d)

0T0Z ‘9z udy uo Areiqi] Ausiaaiun INdni 1e Biosfeuinolpiopxo:uiwiy/:dny wolj papeojumod


http://imrn.oxfordjournals.org

14 P. Bleher and K. Liechty

, 9, (B2 - a?) (V@(u(oo)—i—%—d) VOw(oo) + 3¥ +d)
N-1 B

T2y B \ 6uoo) + W —d)  6(uco) + L +d) 4.23)

VO(uoo) +b)  VO(u(oo) — d) 1
T oo 1B B — d ,d(oo)) 0 <N>

where V0 is the gradient of 6,
d(oo) = (Cl,q—lv CZ,q—l, RN Cq—l,q—l)a (424)
and the numbers cji are defined in (4.8). O

Notice that, up to the lattice scaling factor N in the normalizing coefficients,
these asymptotics are similar to the results obtained in [7] for continuous orthogonal
polynomials.

The remaining theorems in this section present pointwise asymptotics of the

polynomials Py(z) in various regions of the real line and complex plane.

Theorem 4.2. (Asymptotics of Py(2) in voids) Let K C C be a compact set on the com-
plex plane such that K does not intersect with the support of the equilibrium measure

vo. Then for any z € K, we have that
Py(z) = Y99 [My(2) + OV )] (4.25)
The error term O(N~!) is uniform in K. ]

The function eV9® M, (z) is analytic in a neighborhood of any compact subset
of any void; thus, this formula gives asymptotics of Py(x) for x in a void. In particular,
notice that this function has no zeroes in the exterior intervals (—oo, 1) and (84, o0) and

at most one zero in any other void.

Theorem 4.3. (Asymptotics of Py(2) in bands) Let K be a compact subset of the interior

of I°. Then for any point x € K, we have that

Py (x) = 2e7 (VD [Re <eiN”¢’(X)M1+(X)) n O(N—l)], (4.26)
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where M (x) refers to the limiting value of the function M;(2) from the upper half

plane, and

Bq
b (x) = / p(t)dt. 4.27)

X

The error term O(N~!) is uniform in K. O

Theorem 4.4. (Asymptotics of Py(z) in saturated regions) Let K be a compact subset of

I™. Then there exists ¢ > 0 such that for any point x € K, we have that

iINQ;

Py(x) = VL™ [2 sin(N7x) (Im (ezj./\/lH(X)) + O(N—1)> + O(e_NE)}, (4.28)

where M4 (x) refers to the limiting value of the function M;j(2) from the upper half

plane, and

P
L(x) ;:f "log |x — tip(t)dt. (4.29)

1

Both of the error terms, O(N~!) and O (e %¢), are uniform in K. O

The remaining theorems in this section use the Airy functions Ai and Bi (see,
e.g., [13]).

Theorem 4.5. (Asymptotics of Py(z) at band-void edge points) Let j € A, U {g}, so that
the point 8; is the right end point of a band and the left end point of a void. Then there

exists ¢ > 0 such that, for |z - j| < ¢,

Py(z) = et (V@D {N”“W,-(z)l/‘*Ai(Nz/swﬂ,-(z)) [eim%’”Muz) e ouv—l)}
—NT Oy (2) TV (VP (2)) [e*m?le(z) e My + 0(N1>“

(4.30)
for £Im z > O.
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Let j € A, U{0}, so that the point «;; is the left end point of a band and the

right end point of a void. There exists ¢ > 0 such that, for |z—«; 1| < ¢,

Py(z) = e3 V@D 1oy, j(z>1/4Ai<N2/3wam @)

x [ My (D) — e My(z) + O )} N~ Yoy (27 AAT (N 3y, (2))
X [ m /\/ll(z)—i—e“F Mz(z)—l— O(N™ )“ (4.31)
for £Im z > 0. O

Theorem 4.6. (Asymptotics of Py(z) at band-saturated region edge points) Let j € As.
Then the point g; is the right end point of a band and the left end point of a saturated

region. There exists ¢ > 0 such that, for [z— j| < ¢,

Py(2) =elzv“’@*“{Nl/ﬁwﬁj@)”‘*&(z) [—ei " Mi(@) + e E Mo + O(N- 1)}

(4.32)
— N8y (27/*Ba(2) [ T Mi(2) + e E Ma(d) + O(N” >] }
for +£Im z > 0, where
Bi(z) = cos(Nyrz)Ai(Nz/gng (2)) + Sin(NﬂZ)Bi(Nz/Sl/fﬁj(Z))a (4.33)

Ba(z) = cos(Nm2)Ai' (N*/* 5. (2)) + sin(N7 2)Bi (N*/ >y, (2)).

The point o4 is the left end point of a band and the right end point of a void.

There exists ¢ > 0 such that, for |z —aj1] < ¢,

Py(z) = €2 V@+D) {N”Gwam i(@"*Bs(2) [ei " Mi(@) + e E Mo + O(N- 1)}

N”“’%,-Mz)l/‘*&(z)[e* Mi(2) * Ma(2) + O™ )“

(4.34)

for +£Im z > 0, where
B3 (2) = cos(Nm2)Ai(N**yy,,, (2)) — sin(Nr2)Bi(N* 3y, (2). w.35)
Ba(2) = cos(Nm2)Al'(N**ys,,,, (2)) — sin(Nm2)BI (N* 3y, (2). ' 0

Remark: Although the above theorems are presented for real analytic potential V(x),

these results may be extended to potentials which are continuous and piecewise real
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analytic, assuming that the points of non-analyticity lie strictly within saturated regions
and voids. In this case, the preceding results hold, and the asymptotic solution to the
associated Riemann-Hilbert Problem does not require local analysis near the points of
non-analyticity (see [3]).

Before continuing with the proofs of these theorems, we would also like to re-
mark that the results obtained in this paper match the results obtained in [1] for poly-
nomials orthogonal on a lattice which sits inside a finite interval. Consequently, many
corollaries discussed in [1] also apply to infinite lattices. In particular, the authors of [1]
discuss the particle statistics of the discrete orthogonal polynomial ensemble in differ-
ent regions of a finite interval of the real line, which are based on asymptotic properties
of the associated orthogonal polynomials. The results of this paper imply that their re-
sults may be extended to discrete orthogonal polynomial ensembles on an infinite (reg-
ular) lattice. Of particular interest may be the discrete sine kernel as the scaling limit of
the reproducing kernel in the interior of bands, the Airy kernel as the scaling limit of the
reproducing kernel at band end points, the Tracy-Widom distribution for the location of
the left- and rightmost particle, and exponential estimates for all correlation functions
in voids and saturated regions.

The rest of the paper is organized as follows. In Section 5, we reformulate the
orthogonal polynomials (1.4) as the solution to an Interpolation Problem of complex
analysis. In Section 6, we reduce the interpolation problem to a Riemann-Hilbert Prob-
lem which can be solved by steepest descent analysis, which is done in Sections 7-12.

Finally, in Section 13, we give proofs of the preceding theorems.

5 Interpolation Problem

We will evaluate the asymptotics of the discrete orthogonal polynomials described above
via a steepest descent asymptotic analysis of a Riemann-Hilbert problem. To that end,
we first introduce the following interpolation problem.

Interpolation Problem. For a given N =0, 1, ..., find a 2 x 2 matrix-valued func-

tion Py (2) = (Pn(2)ij)1<i, j<2 With the following properties:

(1) Analyticity: Py(2) is an analytic function of zfor ze C\ Ly.
(2) Residues at poles: At each node x € Ly, the elements Py(2);; and Py(2)2; of
the matrix Py(z) are analytic functions of z and the elements Py (z);2 and

Py (2)22 have a simple pole with the residues,

Res Py(2)jo = wn(X)Py(x)j1, j=1,2. (5.1)
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(3) Asymptotics at infinity: There exists a function r(x) > 0 on Ly such that

lim r(x) =0 (5.2)

X—> Q0

and such that as z— oo, Py (2) admits the asymptotic expansion

P, P, zZN 0 o
PN(Z)N(I+7~|—Z—2+...>(O Z_N>,ZG(C\ XELLJND(X,r(X)) , (5.3)

where D(x, r(x)) denotes a disk of radius r(x) > 0 centered at x and I is the

identity matrix.
It is not difficult to see (see [4] and [1]) that the IP has a unique solution, which

is

PN<z>:( P2 ClunPi@ ) 5
(hy-1)""Pn-1(2) (hy-1)""C(wyPn-1)(2)

where the Cauchy transformation C is defined by the formula,

chm=3y I (5.5)

xeLy

Because of the orthogonality condition, as z — oo,

Z—X ) zl’
xeLy xeL j=n+2

P, 00 j Iy, 00 )
ComPo@ = 3 D S 0 Y =t Y YL e
j=0

which justifies asymptotic expansion (5.3) and has that
hy =[Piliz,  hy'y =[Pilar. (5.7)

Furthermore, the recurrence coefficients in equation (1.6) are given by

[P2]21
[P1]21

ve =[Pil12[P1]21 5 Bw-1= —[P1]11. (5.8)
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6 Reduction of IP to RHP

We would like to reduce the Interpolation Problem to a Riemann-Hilbert Problem.

Introduce the function

sin Nwz
Mz = ——. 6.1
(2) Nt (6.1)
Notice that
/ . k k
M(xx) =0, II'(xx) =exp(iNrxx) =(—1)" for x}x= v € Ly. (6.2)
Introduce the upper triangular matrices,
_wn(©@ efiNnz
DY (2) = 0 “(Z)l , (6.3)

and the lower triangular matrices,

. _( n#-"' o )_ <n(z)—1 0 )( 1 0) 6.4)
_wl\}(z) eiiNT[Z H(Z) 0 H(Z) _]'[(Z)i)N(z) eiiNJTZ 1 : '

Define the matrix-valued functions,

" DY (2 when Imz=>0,
R} = Py(2) x (6.5)
D%(2z) when Imz<O0,

and

l D!\ (2, when Imz>O0,
Ry =Py x§ | (6.6)
D' (2, when Imz<O.

From (5.4), we have that

Py(2) — AP gHINTZ 4 € (wy Py)(2)
RY(z) = 1@
N K-l p wn(Dhy | PN-1(2) LiNgz =l P 6.7
N1 Pro1(7) — et N L L C(wy Py-1)(2) 6.7)

when +Imz> 0,
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and
Py(z)  C(wyPn)(2) +iNmz
Ry =, , rI((Z)) hflw%((Z) Pei)() H@ehoE
—1(Z w — Z, 7 —
N — e N (k! C(wy Py-1)(2) 6.8)

when +Imz> 0.

Observe that the functions RY(2) and RlN(z) are meromorphic on the closed upper and
lower complex planes and they are two-valued on the real axis. Their possible poles are
located on the lattice L. An important result is that, in fact, due to some cancelations,

they do not have any poles at all. We have the following proposition.

Proposition 6.1. The matrix-valued functions RY (2) and RlN(z) have no poles, and on

the real line, they satisfy the following jump conditions at x € R:

u u u - 1 —2Nrmiwy(x)
RN+(X) =Ry_(x)Jr®), Jr(x) = <0 1 >, (6.9)
and
! ! 1 1 10
RN+(X) =Ry_X)Jjr(®), Jr(X) = ONri . (6.10)
w1 0

Proof. It follows from the definition of RY;(2) that all possible poles of R} (z) are located
on the lattice Ly. Let us show that the residue of all these poles is equal to zero. Consider

any x; € Ly. The residue of the matrix element RY, ;,(2) at xi is equal to

wy (Xk) Py (Xk)

O (=¥ + wn (x) Py (%) = 0. (6.11)

u —
Similarly, we get that

Res Ry 22(2) = 0; (6.12)
Z=xk

hence, R} (2) has no pole at x.

Similarly, the residue of the matrix element RZN 11(@ at xi is equal to

Py(x) _ wy(e)Pyx0(-DF _ (6.13)
(—1)k Wy (Xk)

l
Res R =
z:exi N,11 )
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In the same way, we obtain that
Res Ry 21(2) = 0. (6.14)
Z=Xy

In the entry RZN’21 (2), the pole of the function C (wy Py)(2) at z = xi is canceled by the zero
of the function I1(z); hence, RZN,21(Z) has no pole at x. Similarly, RZN,22 (2) has no pole at
X as well; hence, RlN(Z) has no pole at x.

Let us evaluate the jump matrices for x € R. From (6.5), we have that

1~ oigin Nrx 1 —2Nnwiwy(x

which proves (6.9). Similarly,

1 0 1 0
jh(x) =D (07D, (%) = < ) = <_ i ) (6.16)

1 . .
—mzlSH'INJTXl wy (%)

which proves (6.10). |

To reduce the Interpolation Problem to a Riemann-Hilbert Problem, we follow
the work [1] with some modifications. Consider the oriented contour ¥ on the complex
plane depicted in Figure 2, in which the horizontal lines are Imz = ¢, 0, —¢, where ¢ > 0
is a small positive constant which will be determined later, and the vertical segments

pass through the end points of saturated intervals. Consider the regions

QY = {1°U T} x (0, ie),
(6.17)
QL =TI" x (0, +ie),

Q¥ A Qf QY oAy Qv
QY QA QY QA QY

Fig. 2. The contour X arising from the hypothetical equilibrium measure in Figure 1, dividing an
e-neighborhood of the real line into the regions Q4 and QY.
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bounded by the contour X. Define

KNR}‘V(Z)K]_Vl, for ze QI,
Ry(2) = { KyRy(9K,!, for ze @, (6.18)

KNPN(Z)KZT,I, otherwise,

1 0
where Ky = .
0 —2iNn

If Ac Cis a set on the complex plane and b € C then, as usual, we denote

A+b={z=a+b, ac A}. (6.19)

Proposition 6.2. The matrix-valued function Ry(z) has the following jumps on the con-

tour X:
Ry+(2) = Ry—(2)jr(2), (6.20)
where
1
wn () when zeI~ UIY,
0 1
1 0
when zelT,
—(2Nm)2wy(z)71 1
1 ‘1 wN(Z)eiian
. KyD4 (2K, = ( 2Nz T2 ) when ze {I” UI%) + e,
Jr(2) = 0 1
M(z)~! 0
KyDY (2Ky' = ( ( )ﬂ-N,,Z ) when zelIT +ie,
’ e
ZLNITW H(Z)

M(z 1 W Ze:tian
KyD. (2 D4 (2K;! = , @ owm N(. e
—2Nniwy(z)~'etiNTZ2 T2 NgjetiNT2

when ze (0,+ie)+ B or ze (0,%ie)+ajy1 for je As.
(6.21)
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7 First Transformation of the RHP

Define the matrix function Ty (2) as follows from the equation,
1 l
Ry (2) = e Ty(z)eV 92209, (7.1)

where [ is the Lagrange multiplier, the function g(z) is described in Section 2, and o3 =
10

(O 1) is the third Pauli matrix. Then Ty(z) satisfies the following Riemann-Hilbert

Problem:

(1) Tp(2) is analyticin C\ X.
(2) Ty+(2) = Ty—(2) jr(2) for ze€ T, where

1 .
‘ N G-D=9)03 jo (e NG+@=9)3  for e R,
jr(2) = l l (7.2
eN9D=2)93 jo(2)e"N9D=3)93  for ze ¥ \R.

(3) Asz— oo,
Ty T
Ty(@) ~I+ — + — +.... (7.3)
Z V4

Let us take a closer look at the behavior of the jump matrix j; described in (7.2) on the

horizontal segments of ¥. We have that

NG @)
NG 0

(2N7)2e N@+@+g-(2)-V(2)— 1) oNG(2)

—NG(2) eN @+ (@+g-(2-D)
e wy(Z
( (@) ) when zeI°UI™,

) when zelT,

eN(Zg(Z) 1=V (2)

jr(2) = e}—ZLN”XeFZN"> when z=x4ice{l” +isl, (7.4)

ei—NG(z)

1l t———7c
13;2”"”“”“) when z=x+ise {I°+is)},

0

M(z)™! 0
2i N7 eTiNnxo=N(29(2)~1-V(2) M(2)

(-
.
(
(

) when z=x+iece (It +tis).
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8 Second Transformation of the RHP

The second transformation is based on two observations. The first is the well-known
“opening of the lenses” in a neighborhood of the unconstrained support of the equilib-

rium measure. Namely, notice that, for x € I°, the jump matrix jr(x) factorizes as

) e NG 1 B 1 0\[01 1 0
Jr(X) = 0 V6w | \gV6® 1)\ _10/) \eN6® 1)’ (8.1)

= J- () JmJ+ (),

which allows us to reduce the jump matrix jr to the one jy plus asymptotically small
jumps on the lens boundaries. The second observation consists of two facts. Firstly, the
jumps on the segments I + ie behave, for large N, as +e™*N7Z%, Secondly, note that, for
x € I, G(x) is a linear function with slope —2i. With these facts in mind, we make the

second transformation of the RHP. Let

Ty(2)ji (2! for ze 1° x (0, ig),

Ty(2)j_(z) for zelI®x (0, —ie),

Sn(2) = Ty(2A (20 for zeIT x(0,ie),

Ty(2)A_(z) for zelI" x (0, —ie), (8.2)

Ty(z) otherwise,

1 —iNwz 1 iN7T2z
— . 0 - 0
where A, (z) = ( 2N ) and A_(z) = (ZN’”e ) )

0 —2Nxiehnz 0 2Nrie iN7z

This function satisfies a similar RHP to T, but jumps now occur on a new contour,
Xs, which is obtained from ¥ by adding the segments (a1 —ie, a1 + i¢), (Bg — i€, Bg + 18),
(ajy1 —ie, oy +i8), and (B; — ig, Bj + ie) for j € A,, see Figure 3.

Fig. 3. The contour g arising from the hypothetical equilibrium measure shown in Figure 1.
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On horizontal segments, we have that

01
( ) for zeIO,

1+ O(Q—ZENJT) O(eN(G(Z) 287‘[)) . ) IO
—NG(Z) ] or zZ-—1¢ € s

1+ O(e—Zan) O(eN( G(z)— 28]‘[))) ; L [0
or z+1eel”,

eNe®@ 1

—2s N1
js(2) = ( 1+0C ) 0 ) for ze{IT +ig}, (8.3

2iNre N29@-1-V(@) | 1 o (e 2¢N7)

—lNQJ 0
o NG Do D1V _ e for ze (Bj 1), JEAs,

1eN(Zg(z) - V(z))0(672£N71)
for z=x+4ice{l *ie}

0 1
( e~ iNQj N(94(D+g-(2)—1— V(z)))

0 SN2, for ze (Bj, i), JeA.

By formula (3.5) for the G-function and the upper constraint on the density p, we obtain

that, for sufficiently small ¢ > 0 and x € («j, Bj),

0 < FRe G(x £ ie) = 27p(x) + O(c?) < 2me + O(e?). (8.4)

This, combined with property (3.7) of the g-function, implies that all jumps on horizontal
segments are exponentially close to the identity matrix, provided that they are bounded

away from the segment («1, Bg).

9 Model RHP

The model RHP appears when we drop in the jump matrix js(z) the terms that vanish as

N — oo:

(1) M(2) is analytic in C\ [, Bg].
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(2) M,y (2) =M_(2) ju(z) for z € a1, Bq], where

(0 1) for ze I,
Ju(2) = -10 (9.1)

e 2inos  for ze (Bj,aj1).

(3) Asz— oo,
M; M,
M@ ~I+—+—+.... (9.2)
Z zZ

This model problem was first solved in the general multi-cut case in [7], and the

solution is given as follows, using the notation introduced in Section 4.

Y@y~ (2 UD+ R+ y(@)—y (9 HUD—FE -

M(2) = F(co)~! 2 Iu@+d) =2 (w2 —d ’ 93
@ =FC) | o 100wt -0 Yy @ on— 3 +a) ©:3)
210 0(wz)—ad) 2 0(u(z)+d)
where
0(u(o0)+ 5 +d) 0
F(c0) = 0 (u(c0)+d) - (9.4)
0 0 (w00)— 5 +d)
6 (u(co)+ad)

The asymptotics at infinity are given as
M
M(z) =1+ 71 +0(z 7). (9.5)

10 Parametrix at Band-Void Edge Points

We now consider small disks D(«j,¢) for j—1 € A4, U{0} and D(B;,¢) for j e A, U{q},

centered at the end points of bands which are adjacent to a void. Denote

D= U pe.o|Ul U pBrel. (10.1)
j—1€A,U{0} jeAUlq)

We will seek a local parametrix Uy(z) defined on D such that

(1)

Upn(2) is analytic on D \ Xg. (10.2)
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Uyt (2) =Uy_(2)js(z) for ze DN Zg. (10.3)

Un(z) = M(2)(I + O(N™')) uniformly for z € 9D. (10.4)

We first construct the parametrix near g; for j € A,. The jumps js are given by

01 forze (B; — &, Bj),
~10 ! !

( e NG@ ) for z € (Bj, Bj + ie).

Js(2) = (10.5)
eNG(Z) ) for z e (Bj, Bj — ie),
e NG@) gN(G+(@+9-(2-V(2)-D)
NG for ze (B, Bj +¢).
If we let
Un(2) = Qu(z)e V9@~ 7"~ 50s (10.6)

then the jump conditions on Qy become

Q4 (2 = On-(2) ja(2), (10.7)
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where

0
-1

—

) forze (B; — &, Bj),

(=)

) 1) for z e (B;, Bj + te),
Ja(2 = )

1
) for z e (B, Bj — ie),

= O

[

1
0 for ze (B, Bj +¢),

P S e
—
o

(10.8)

where orientation is from left to right on horizontal contours and down to up on vertical

contours, according to Figure 3.

Qy can be constructed using Airy functions. The Airy function solves the dif-

ferential equation y’ = zy and has the following asymptotics at infinity (see, e.g., [13]):

Ai(z) = 1= 282y 0(2‘3)) ,

1 e_%zs/z
2ﬁ21/4 48

1 2,3/2 7
Ail(2) = —— 4327 (1 L L ,-3/2 . g(z3 ’
i(2) 2«/Ez e +482 + 0(z7)
as z— oowith argze (—7 + ¢, 7 —¢) for any ¢ > 0. If we let

(2 =Ai(2), y1(2 =wAi(wz), 12(2) = 0*Ai(0*2),

27 . . .
where w = eTL, then the functions yp, y1, and y» satisfy the relation

10(2) + v1(2) + (2 = 0.

(10.9)

(10.10)

(10.11)
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If we take

¥0(2) —Yz(Z)> for argze (0’ £>,
Y0(2) —Y,(2) 2

A ‘Y2<2)> for argz< (%)
Y, (2) —V,(2) 277

¥2(2) y1(2) T
) for argze (—n, —§>

( 72(2) y1(2)

(YO(Z) n (Z)> for argze (_E’ 0) ,
%2 n (2 2

Dry(2) =

(10.12)

then ®,, satisfies jump conditions similar to (10.8), but for jumps on rays emanating

from the origin rather than from g;. We thus need to map the disk D(B;, ¢) onto some

convex neighborhood of the origin in order to take advantage of the function ®,,. Our

mapping should match the asymptotics of the Airy function in order to have the match-

ing property (10.4).
To this end, notice that, by (2.23), for t € [«}, B;], as t — B},

p() =CB;— >+ 0(B-1>?*), C>o.

It follows that, for xe[aj, ;] as x— B,

ﬂ,
/ ! pdt =C(Bj — %%+ 0((Bj —0*?%) Co= gc.

Thus,

3 Bi 2/3
Vg (2) = —{7”/ Jp(t)dt}

(10.13)

(10.14)

(10.15)

is analytic at 8;, thus extends to a conformal map from D(B;, ¢) (for small enough ¢) onto

a convex neighborhood of the origin. Furthermore,

Vg (Bj) =0 : Vp.(Bj)>0.

(10.16)
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Thus, ¥; is real negative on (Bj — ¢, B;) and real positive on (8, Bj + ¢). Also, we can

slightly deform the vertical pieces of the contour X5 close to 8j, so that

Vs, AD(B), ) N Bs} = (=&, &) U (—is, ie). (10.17)
We now set
Qn(2) = ER ()07, (N3 y5,(2)) (10.18)
so that
Un(2) = Ejf ()0 (N34, (2)) e V9D~ 5 ~1)os, (10.19)
where
EV(2) = M(z)eimﬁ'N%L’f\,f (z~! for +Imz>0,
Ui L Ny ) 01 ( ) i) | (10.20)
2w 0 Nl/el//ﬁ]/,‘L(Z) 1

and we take the principal branch of w;}(‘l, which is positive on (8}, 8j +¢) and has a

cut on (Bj — ¢, B;). The function ®,,(N?/3yy;(2)) has the jumps js, and we claim that the
prefactor Eﬁ,’ is analytic in D(B;, ¢) and, thus, does not change these jumps. This can be

seen, as

in,N in,N iQ]'_N . iQ]'yN
M, (2)e 2 ® =M_(2e" 2 e 2 Bjye 2z %, (10.21)
. . Q5N
thus, the jump for the function M(z)et 2 3 is
iQ i N 01 QN
9N 2Ny et 7 ( ) et % for ze (Bj — &, Bj),
e Hon o Hon _ ~10 (10.22)

iQ]',N Qs in.N
e 2 Be iN%Be2 % for ze (Bj,Bj+e),
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or equivalently,

01
( 0) for ze (Bj—s, Bj),
03 _

(10.23)
10
( 1) for ze (Bj,Bj+e),

which is exactly the same as the jump conditions for L'IS\{. Thus, Ef\,j(z)z

9.

M(z)e*™ 2N03L'13\,j (207! has no jumps in D(Bj, ¢). The only other possible singularity for

Efi,’ is at Bj, and this singularity is at most a fourth root singularity, thus removable.
Thus, Eﬁ,’ is analytic in D(B;, ¢), and Qu has the prescribed jumps. We are left only to
prove the matching condition (10.4). Using (10.9), one can check that, for zin each of the

sectors of analyticity, ®,,(N*/3y,(2)) satisfies the following asymptotics as N — oo:

1 ) 1 1 i (2732 (—5 5i
©ro (N2 5,(2) = zm @7 [(_1 i) * % (_7 —;i> " O(N_z)}

w & 3NVs; @203
(10.24)
where we always take the principal branch of v4;(2)3/2. As such, v4;(2)%? is two-valued

for ze (B; — ¢, Bj), so that

ﬁ<
[gwﬁj(x)“‘/z] = ;m'/ " podt. (10.25)
+ X

Notice that, by (3.9),

B Bj
29: (x) — V(x) =lj:2m'/ qp(t)dt:lﬂ:Zni/ ],o(t)dt:I:in. (10.26)
X

X

This implies that for x € (8; — ¢, Bj),

ﬂ,
[294(B)) — V(B)] — 129+ (%) — V(x)] = —2i f " pdt,

/;]‘, (10.27)
[29_(8)) — V(B))] — [29-(x) — V()] = 2xi / p(t)dt.

X
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Combining these equations with (10.25) gives

2 1
[gwﬁj(xﬁ/ﬂ = 5[(2%(;3]-) - V(B)) — (2g+(x) — V(x))]. (10.28)

+

This equation can be extended into the upper and lower planes, respectively, giving

[(2gi(/31) - V() — (29(2) — V(z)):| for +Imz> 0. (10.29)

N —

2
@7 =

Since, by (10.26), 29+ (B;) — V(B;) =1 £1iQj, we get that

2 174 Q
200 @7 = g+ L2 4 L B (10.30

for +Im z > 0. Plugging (10.24) and (10.30) into (10.19), we get

QN g. 1 1 ] (2732 (- s
Un(2) = M(npe* L?(Z)_I%N_G"“/fﬂj(zrﬁm[(1 l,>+—w’(z) ( > 5‘)

—11i 48N -7 =7i
+ O(N—z)} N2 L0 Mg~ Y2 ~b)o
Vp;(2)"%7 1 6ietin _
= M(2) |:I + ﬂ]‘LT i +O0WN 2)
6let N —1

(10.31)
for +£Im z > 0. Thus, we have that Uy satisfies conditions (10.2), (10.3), and (10.4).
A similar construction gives the parametrix at the «; for j — 1 € A,. Namely, if

we let

3 z 2/3
waj<z)=—{7” f p(t)dt} , (10.32)

J
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then Wa,» is analytic throughout D(aj, ¢), real valued on the real line, and has negative

derivative at «;. Close to «, the jumps jo become

11
forze (aj — &, aj),
01

10 .
( 1) for z € (aj, aj + ie),

Jja(z) = (10.33)
10 .
< ) for z € (aj, o — ie),
11
01
for z € (aj, aj + &),
-10

where orientation is taken left to right on horizontal contours and up to down on vertical
contours according to Figure 3. After the change of variables v,; (and a slight deforma-

tion of vertical contours), these jumps become the following jumps close to the origin:

01

o 0) for Y, (2) € (—¢,0),

Jjo(Ve;(2) = (10.34)

10
-11

10 .
( ) for i,(2) € (0, ie),
11

) for Va;(2) € (0, —ig),

11
o1) forve@ e 00,

where orientation is taken right to left on horizontal contours and down to up on vertical

contours. These jump conditions are satisfied by the function

10
1y (2) = Pry(2) ( ) : (10.35)
0-1

Then we can take

Vz) 1

Un(2) = Ey (2P (N3 (2))e V9@~ ~2)08 (10.36)
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for z € D(aj, £), where

) Q1 y )
EY(2) = M(zet 7 BLY (27! for +Imz> 0,

ot] 1 1/6w‘1/4(z) 0 1 —i (1037)
v = ( 0 N1/6w1/4(z)) <—1 —i)

is an analytic prefactor. Similar to (10.24), we have that in each sector of analyticity,
@1, (N?/3y,,(2)) satisfies

1 =i\ Y. (232 [—5 5
O (W54, (2) = N8, 74 (_1 _i) g YD (_3 7?) ]

% e iVVa; @205
(10.38)
Once again, we have that, for x € («j, «j +¢), Yo, (x)%/2 takes limiting values from above

and below, so that

|:gl/faj(X)3/2j| = :l:yri/ p(t)dt. (10.39)
3 4 o
In analog to (10.28), we have

waj (2)°%/? = 5 [(2gi(aj) — V(aj) - (29(2) — V(z))} for + Imz > 0. (10.40)

Since, by (10.26), 2g+(«j) — V(aj) =1 £ i, we get that

Qi
gl/fa,»(z)e'/z — g+ L2 L B

for 4+ Imz> 0. (10.41)
2 2 2

Plugging (10.41) into (10.36) and (10.38) gives, as N — oo,

i (A-3/2 [ _&:
Un(2) = M(2)Ly (2)~ 11 y-dosy, (z)—m[ L =t) , Y@ 5 —5i
2 ~1-i 48N \_7 7i

2) Q. 2)
i O(N—z)]ezv(g(m—‘“)—ﬁ )03 g N(g(@)— T2~ §)os

(10.42)

iSZj_l

Vo, (2)732 1 —6ie 203

48N _Giefm];l'mas 1

—M(2) |1+ 1+ O(N?)
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11 Parametrix at the Band-Saturated Region End Points

We now consider small disks D(«j, ¢) for j — 1 € Ag and D(Bj, ¢) for j € A, centered at

the end points of bands which are adjacent to a saturated region. Denote

D= {J peio || JD®Bse

j—leAs jeAs

We will seek a local parametrix Uy(z) defined on D such that

(1)
Uy (2) is analytic on D \ Ts.
(2)
Uy, (2) =Uy_(2)js(z) for ze DN 3s.
(3)

Un(2) = M(2)(I + O(N™Y)) uniformly for ze aD.

We first construct the parametrix near g; for j € As. Let
V(2 1

Uy (2) = Qu(z)etVm 8o~ N9@="3"-3)% for +Imz> 0.

Then the jumps for Qy are

for ze (Bj—e&, Bj),

I
—
o

for ze (B, Bj+e),
Jg@ =
for ze (Bj,Bj+ie),

O
|
—
Ss~—

/\/\T\l/\
—
|
— ©
Ss—

[
—

1
) for ze (Bj,B; —ie),

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

(11.6)
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where orientation is taken from left to right on horizontal contours and down to up on

vertical contours according to Figure 3. We now take

<Y2(Z) _YO(Z)> for argze (0, z),
%(2) —¥5(2) ’

<Y2(Z) m(z)) . (n )
or argzel|l—,m),
%(2) ¥,(2) 2
Drs(2) = (11.7)

<YI(Z) _YZ(Z)> for argze(—rr _£>
¥ (2) —¥4(2) -2/

<Y1 (2) YO(Z)> for argze (_g, 0)'
Y12 ¥(2) 2

Then ®,(2) solves a RHP similar to that of Qy, but for jumps emanating from the origin
rather than from g;.

Once again,

8 2/3
@zfﬁj(z)z_{%”/ ](l—p(t))dt} (11.8)

extends to a conformal map from D(B}, ¢) onto a convex neighborhood of the origin, with
Vg (B =0 ; (B> 0. (11.9)
Again, we can slightly deform the vertical pieces of the contour X5 close to 8, so that
wﬂj{D(ﬂj,a)ﬂEs} = (—e&, &) U (—ie, ie). (11.10)
We now take
Qn(2) = BN ()05 (N2 Pyg, (), (11.11)
where

in,N

E};{(Z)=M(Z)ei 2 ”3L/IS\,J'(Z)_1 for +Imz>0,

o (vt o\ (i 1112
v N 0 Ny ) \1 —i
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and we take the principal branch of w;f. The function ®,5(N*/3y;(2)) has the jumps

Js. Similar to the prefactor Ef;,f at band-void end points, the prefactor Eﬁ{ is analytic in
D(Bj, ¢) and, thus, does not change these jumps.
We now check that Uy satisfies the matching condition (11.4). The large N asymp-

totics of CDrS(Nz/31ﬁ,3j (2)) are given in the different regions of analyticity as follows:

1 —i-1 (27%2 [—5i 5
q)rs(Nz/g‘g//ﬂ.(Z)) — _N_%U'&wﬂv(z)—%(rg 4+ L + Wﬁ]( ) 1
: 2Jm ! i1 8N\ 7 7
(11.13)
2
+ O(N_z):|e3N1//ﬂj(z)3/203 for +Imz> 0.
where we always take the principal branch of y; (2)%/2. As such, Vg, (2)3/2 is two-valued

for x € (B; — ¢, Bj), so that

2 Bj Bj
[gwﬂj(xﬁ/"’} - :Fni/ "= py) dt = Fri(B — %) + m‘/ " (ot (11.14)
+ X X
From (3.9), we have that
Bq Bj
29+ (x) — V(x) =1+ 2m’/ p(t)dt =1+ 2711'[ p(tdt +iQ; F 27iB;, (11.15)
X X

for x € (B; — ¢, B;). These equations imply that

ﬂ,
(29:(0) — V() — (29+(B)) — V(B))) = £2mi f " p(vd. (11.16)

We can therefore write (11.14) as

2 1
[g‘”ﬂj(x)sm] =Fri(Bj —x + E[(ZQi(X) - V(x) — (29+(B)) — V(ﬂj))] (11.17)

+

We can extend these equations into the upper and lower half plane, respectively,

obtaining

2 1
V@Y =FriBj - 2) + E[(29<z) - V() — (29+(8)) — V(ﬂj))] for +Imz> 0.

(11.18)
Using (11.15) at x = 8j, we can write
2 174 l (2 —
gl/lﬁj(Z)S/zzg(Z)— ;Z)—E:tnizq:% for +Imz> 0. (11.19)
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Plugging (11.13) and (11.19) into (11.11) gives

in’NU Bin—1 1 S —1lo
Un(z) = M(2)e" 2 "Ly (2) ﬁN 6% Yp,(2)" 2%
X[i —i -1 ﬂEl/f,sj(z)—3/2 ~5i 5 +O(N2)}
-1 48N 7i 7

) iQy ; .
% e]\l(g(z)7%7@m3 gFiNnzo3 e:;:—é’ o3 ei%og gFilNnzo3 efN(g(z)7@7%)03

1ﬁﬂj(z)73/2 -1 —6i€iin*N L
= M(2) |:I + T eieFin ) + OV “) for £Im(2) > 0.
(11.20)
We can make a similar construction near «; for j — 1 € A. Let
3 . 2/3
b
waj(z)z_{7/ a —p(t))dt} . (11.21)
aj

This function is analytic in D(«;, ¢) and has negative derivative at «j; thus, Imz and

Im v ;(2) have opposite signs for z € D(«j, ¢). Then the jumps for Qy are

for ze (aj,aj+e),

I
—
(=)

10
) for ze (aj—e¢, aj),
1

/\/—\I/\/\

-1
Jjg(2 = (11.22)
1 -1
for ze (aj,aj+ie),
01
11 .
for ze (aj,aj—ie),
01

where the contour is oriented from left to right on horizontal segments and up to down
on vertical segments according to Figure 3. After a slight deformation of the vertical

contours and the change of variables y;, these jumps become the following jumps close
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to the origin:

01
. ) for waj(z)e(—s,O),

o

JaWe,(2) = (11.23)

( 1) for Yo, € (0,8),

1-1 .
) for Vo, (2) € (—i¢,0),

( ) for Va;(2) € (0, ig),
01

where the contour is oriented from right to left on horizontal segments and down to up

on vertical segments. These jump conditions are satisfied by the function

10
D5(2) = Prs(2) ( ) . (11.24)
0-1

Then we can take for z € D(«j, ),

+iQ 7

Uy(2) = M(z)e 7 BLY (2) 7 D (N3, (2))eFiNT205 - NG@=2 =503 for 4+ Tmz> 0,
(11.25)
where
' 1 —-1/6,,~1/4 0 -1 i
L‘Z”\;(z)=— Vo (2 L Y. (11.26)
2w 0 Nl/ﬁwaj 2/ \-1—i
We once again have
-1 1 Vo, (2732 (—5i —5
B (N3 () = —— N~ 3%y, (547 | + TR L
ls( Wa](z)) 27 Wa](z) i1 48N 7 7
n 0(1\7—2)]egl"‘”“f‘Z)e'/Z(r3 for +Im (2 > 0 (so FImz > 0),
(11.27)
and for z € D(aj, ),
174 I iQiy—
3/2(2) tinz+ g(z) — (Z) —:FM for £Imz> 0. (11.28)

2 2 2N
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Combining (11.25), (11.27), and (11.28) gives

+iQ; N

_ J o 1 1 1 _1
Un(2) = M(2)e” 2 "Ly (2) ﬁN 6% Yy (2)” 2%

. . -3/2 .
L j:woz](z) 5i 5 L oW
i1 48N -7i 7

o« gHiNTz3 NG~ VP~ )03 g5 4N 03 £ 03 FiN7 203 5~ N(9(2)— V42— b)os (11.29)
+HQ (2732 (_16i i
— M(z)e 2N o I+wozj —i—O(N*z) eF 103
48N 6i 1
(272 [ —1  eietiQn
= M(2) I+L ) +O0(N"? for £Imz> 0.
48N 6ieTiin 1

12 The Third and Final Transformation of the RHP

We now consider the contour Xx, which consists of the circles dD(«j, ) and dD(Bj, &),

for j =1,...q, all oriented counterclockwise, together with the parts of g\ (U[oej, ,Bj])
j

which lie outside of the disks D(«a, ¢), D(a’, ), D(B', ¢), and D(B, ¢), see Figure 4.

OO0 OO0 OO0 OO O=

Fig. 4. The contour X x arising from the hypothetical equilibrium measure shown in Figure 1.

We let

Sn(2)M(z)~! for z outside the disks D(aj,e), D(Bj,¢),
Xy(2) = (12.1)
Sn(2Un(2)~" for zinside the disks D(aj, &), D(Bj, ¢).

Then Xy (2) solves the following RHP:

1. Xpy(2) is analyticon C\ Xx.
2. Xpy(2) has the jump properties

Xyt (x) =Xy (2) jx(2), (12.2)

where

' M(2)Uy(2)~! for zon the circles,
Jx(2) = (12.3)
M(Z)js(Z)M(Z)_l otherwise.
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3. Asz— oo,

X1 Xz
XN(Z)NI+—+—2+....
Z VA

(12.4)

Additionally, we have that jx(2) is uniformly close to the identity in the following sense:

] I+ O(N~') uniformly on the circles,
Jx(2) = CON
I+ 0(e @Yy on the rest of Ty,

where C(z) is a positive, continuous function satisfying (1.4). If we set
Jx(@) = jx(2) - 1.
then (12.5) becomes

0 O(N~!) uniformly on the circles,
Jx(2) = ClaN
0(e ¢@Ny  on the rest of Zx.

The solution to the RHP for Xy is based on the following lemma:

Lemma 12.1. Suppose v(z) is a function on Xx solving the equation

du forze Xy,

0
v@ﬂﬂifﬂ%@
2ni Jy, Z-—Uu

where z_ means the value of the integral on the minus side of Xx. Then

0
Xn(z) =1 - [ 2Wx®

- du forzeC\ Xy
27t Jy, Z—Uu

solves the RHP for Xy.

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)

O

The proof of this lemma is immediate from the jump property of the Cauchy

transform. By assumption,

Xy (2) = v(2),

(12.10)
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and the additive jump of the Cauchy transform gives
Xyt (2) — Xy—(2) = v(2) j2(2) = Xn—(2) j2(2); (12.11)
thus, Xy (2) = Xy—_(2) jx(2). Asymptotics at infinity are given by (12.9).

The solution to equation (12.8) is given by a series of perturbation theory.

Namely, the solution is

v(2) =1+ ) (), (12.12)
k=1
where
-0
) = — 2 [ Vet @ T (12.13)
21 Jxy zZ—u

This function clearly solves (12.8) provided the series converges, which it does, for suf-
ficiently large N. Indeed, by (12.5),

k

c 1

lvg(2)| < <ﬁ) TH for some constant C > 0; (12.14)
Z

thus, the series (12.12) is dominated by a convergent geometric series and, thus, con-

verges absolutely. This in turn gives

o0
Xn(@2) =1+ ) Xyi@), (12.15)
k=1
where
1 1w jou
Xnk(2) = —5— Mdu (12.16)
271 Jxy, zZ—Uu
In particular, this implies that
Xy ~I+0| — as N — oo (12.17)
" <N<|z| + 1))

uniformly for ze C\ Xx.
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13 Proof of Theorems 4.1-4.6

The transformations (6.18), (7.1), (8.1), and (12.1) give that, for zbounded away from the

real line,
1 1
Py (2) = Ky'e? %Xy (2)M(z)eV 9D~ 205K (13.1)

and for z close to the real line but bounded away from the support of the equilibrium

measure,
Py(2) = Kyle? Xy (2)M(2)eV 9@~ DK yD% (2! for +Imz> 0. (13.2)
Expanding (13.1) or (13.2), we get that
Py(2) = [Py(2)]1 = "9 ((M]11[X]11 + [M]21[X]12), (13.3)

which, along with (12.17), proves Theorem 4.2.

The proof of Theorem 4.1 requires only the formulae (5.3), (5.7), and (5.8) and a
straightforward large z expansion of equation (13.1).

Similar to (13.1), we have that, for any interval J which is contained in and

bounded away from the end points of a band, in some neighborhood of J, we have

K Le¥ Xy (2M(2) j (V9D DBRyDE (7! for Imz> 0, )
Py(2) = 13.4
Ky'e? ®Xy(2)M(2) ]~ (2" 9@~ DK yD¥ (27! for Imz<DO.

Expanding the left side of this equation for Im z > 0, utilizing (3.9), and taking limits as

z approaches the real line, we get that

Py = [Py (91 = e VO (VWO 1, (9 + e VO Mya]s (1) + O ),
(13.5)
where ¢ (x) is as defined in (4.27) and the + subscript indicates the limiting value from
the upper half plane. Notice that [M;2]; = [My;]_ in this region and that M;; (z) = M1, (2).
This implies that [M;2]4(x) = [M;;]4(x), and thus, we can write (13.5) as

Py(x) = e2 (VO (e"m‘x) [Mi1]4 (%) 4 eNT0@ [My;]4 (x) + 0(N*>) : (13.6)

which proves Theorem 4.3.
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For any interval J which is contained in and bounded away from the end points

of a saturated region, in some neighborhood of J, we have
Py(2) = Kyle? # Xy (M)A} (€M 99~ DK yD, (7! for +Imz>0.  (13.7)
Notice that in this region, we can write
g+(x) = L(x) £ % Finx, (13.8)

where L(x) is defined in (4.29). Notice also that 2g.(x) — V(x) — [ has positive real part.

Expanding (13.7) for Im z > 0 and taking the limit as z approaches the real line give

Py(x0)1; = eV9+® [(1 — &2INX) (M X)) 4 Mg1 Xp2) + e V@HO-VEO-D %)) + M22X12)]

= e [(1 = 2T My X1y + O + 0(e7)]

=eN® [—2;‘ sin(rNx)e 7 [M11]+ (01 + OV 1) + O(eN‘S)i| :
(13.9)
which proves Theorem 4.4.
Similarly, at the turning points «; and §;, explicit formulae can be written for Py
in terms of explicit transformations in each sector of analyticity of the local parametrix.
From these formulae and the properties of the g-function, Theorems 4.5 and 4.6 are

almost immediate, with Theorem 4.6 also requiring the identities (see, e.g., [13])

1
(2 = —E(Ai(z) — iBi(2)),
1 (13.10)
V2(2) = —E(Ai(z) + iBi(2)).
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