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We consider the large N asymptotics of a system of discrete orthogonal polynomials

on an infinite regular lattice of mesh N1/N, with weight e−NV(x), where V(x) is a real

analytic function with sufficient growth at infinity. The proof is based on the formulation

of an interpolation problem for discrete orthogonal polynomials, which can be converted

to a Riemann–Hilbert problem, and steepest descent analysis of this Riemann–Hilbert

problem.

1 Introduction

For a given N ∈ N, introduce the regular infinite lattice

L N =
{

xk,N = k

N
, k ∈ Z

}
. (1.1)

We consider polynomials orthogonal on L N with respect to the varying exponential

weight

wN(x) = e−NV(x), (1.2)
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2 P. Bleher and K. Liechty

where V(x) is a real analytic function such that, for some ε > 0, V has analytic extension

into the strip

Im z < ε (1.3)

and satisfies the growth condition

Re V(z)

log(|z|2 + 1)
→ +∞ as |z| → ∞, Im z < ε. (1.4)

More specifically, we introduce the system of monic orthogonal polynomials,

Pn(x) = xn + pn,n−1xn−1 + . . . + pn0, n = 0, 1, . . . ,

such that

∑
x∈L N

Pm(x)Pn(x)wN(x) = hnδmn , (1.5)

for some normalizing coefficients hn. Existence and uniqueness of this system of or-

thogonal polynomials are guaranteed by condition (1.4). These orthogonal polynomials

satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γ 2
n−1 Pn−1(x). (1.6)

We will explore the asymptotics of the quantities γn, βn, and hn for n = N, N − 1, as well

as pointwise asymptotics of the polynomials PN(x) as N → ∞.

The present work has the three predecessors:

(1) the work [7] of Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou, in

which the large N asymptotics have been obtained for orthogonal polynomi-

als with respect to varying exponential weights on the real line,

(2) the work [1] of Baik, Kriecherbauer, McLaughlin, and Miller, in which the

large N asymptotics have been obtained for orthogonal polynomials with

respect to varying exponential weights on a lattice in a finite interval, and
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Uniform Asymptotics for Orthogonal Polynomials 3

(3) the work [3] of Bleher and Liechty, in which the large N asymptotics have

been obtained for orthogonal polynomials with respect to the varying expo-

nential weight wN(x) = e−N(|x|−ζ x) on the infinite lattice L N .

Also, a very important ingredient comes from the work [11] of Kuijlaars, in which ana-

lytic properties of equilibrium measures with constraints are established.

The asymptotic analysis of the polynomials PN(x) in this work will be based on

the Interpolation Problem (IP) for discrete orthogonal polynomials, which is introduced

in the work [4] of Borodin and Boyarchenko (see also [1, 2, 3]). The asymptotic analysis of

PN(x) will consist of three steps. The first step will be a reduction of the Interpolation

Problem to a Riemann–Hilbert Problem (RHP) on a contour on the complex plane, which

we accomplish following the general approach introduced in the paper [12] of Miller

and in the monograph [10] of Kamvissis, McLaughlin, and Miller. The second step will

be an application of the nonlinear steepest descent method of Deift and Zhou [5] to the

Riemann–Hilbert problem under consideration, and the third and final step will be a

derivation of the asymptotic formulae both for the orthogonal polynomials PN(x) and

for the recurrence coefficients. To apply the nonlinear steepest descent method to the

orthogonal polynomials PN(x), we need to study the corresponding equilibrium measure.

2 Equilibrium Measure

The significance of the equilibrium measure is that, as we will see, it gives the limiting

distribution of zeros of the polynomial PN(x). By definition, the equilibrium measure is a

solution to a variational problem. Namely, let us consider the following set of probability

measures on R
1:

M = {0 ≤ ν ≤ σ, ν(R1) = 1}, (2.1)

where σ is the Lebesgue measure, and let us introduce the functional

H(ν) =
∫∫

log
1

|x − y|dν(x)dν(y) +
∫

V(x)dν(x), ν ∈ M. (2.2)

The equilibrium measure minimizes this functional over some set of measures. In the

case of continuous orthogonal polynomials, we minimize over the set of probability mea-

sures on the real line. However, in the case of discrete orthogonal polynomials, we must

introduce the upper constraint, ν ≤ σ , in order to account for an interlacing property of

the zeroes of orthogonal polynomials.
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4 P. Bleher and K. Liechty

It is a general fact (see, e.g., [15]) that for any system of polynomials orthogonal

on the real line with respect to a real weight, the nth polynomial has n real distinct

zeroes. Furthermore, the zeroes of a system of discrete orthogonal polynomials satisfy

an interlacing property with regard to the location of the nodes of the lattice L N , so

that no more than one zero may lie between any pair of adjacent nodes. It therefore

follows that if we denote by μN the normalized counting measure on the zeroes of the

Nth orthogonal polynomial in our system,

μN(a, b) ≤ b − a + 1

N
for any − ∞ < a < b < ∞, (2.3)

so that μ ≤ σ , where μ = limN→∞ μN . With this constraint in mind, we define

E0 = inf
ν∈M

H(ν). (2.4)

It is possible to prove that there exists a unique minimizer ν0, so that

E0 = H(ν0), (2.5)

see, for example, the works of Saff and Totik [14], Dragnev and Saff [8], and Kuijlaars

[11]. The minimizer is called the equilibrium measure.

The equilibrium measure ν0 is uniquely determined by the Euler–Lagrange vari-

ational conditions: there exists a Lagrange multiplier l such that

2
∫

log |x − y|dν0(y) − V(x)

⎧⎨
⎩

≥ l for x ∈ supp ν0,

≤ l for x ∈ supp (σ − ν0),
(2.6)

see the works [6] of Deift and McLaughlin and [8]. In particular,

2
∫

log |x − y|dν0(y) − V(x) = l for x ∈ supp ν0 ∩ supp (σ − ν0). (2.7)

The equilibrium measure ν0 possesses a number of nice analytical properties, as shown

by Kuijlaars in [11]. We will use these analytic properties, so let us discuss the results of

[11].

First, observe that the constraint ν0 ≤ σ implies the existence of the density

ρ(x) = dν0

dx
. (2.8)
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Uniform Asymptotics for Orthogonal Polynomials 5

We can partition R into the three sets

I 0 = {x ∈ R : 2
∫

log |x − y|dν0(y) − V(x) = l},

I+ = {x ∈ R : 2
∫

log |x − y|dν0(y) − V(x) > l},

I− = {x ∈ R : 2
∫

log |x − y|dν0(y) − V(x) < l}.

(2.9)

The structure of the equilibrium measure is well described in the following theorem of

Kuijlaars, obtained in [11].

Theorem 2.1. (Kuijlaars) For any real analytic potential V(x) satisfying (1.4), the fol-

lowing hold:

(1) The density ρ(x) of the constrained equilibrium measure ν0 (defined in (2.5))

is continuous.

(2) The sets I+ and I− are both finite unions of open intervals.

(3) The density ρ is real analytic on the open set {x : 0 < ρ(x) < 1}.
(4) The density ρ has the representation

ρ(x) = 1

π

√
q+

1 (x) for x ∈ I 0 ∪ I− , (2.10)

where q+
1 is the positive part of a function q1 defined on I 0 ∪ I−, which is real

analytic on the interior of I 0 ∪ I−. The function q1 is negative on I−, so that

ρ(x) = 0 for x ∈ I−, (2.11)

and it is nonnegative on I 0, so that

ρ(x) = 1

π

√
q1(x) for x ∈ I 0. (2.12)

(5) The density ρ has the representation

ρ(x) = 1 − 1

π

√
q+

2 (x) for x ∈ I 0 ∪ I+, (2.13)
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6 P. Bleher and K. Liechty

where q+
2 is the positive part of a function q2 defined on I 0 ∪ I+, which is real

analytic on the interior of I 0 ∪ I+. The function q2 is negative on I+, so that

ρ(x) = 1 for x ∈ I+, (2.14)

and it is nonnegative on I0, so that

ρ(x) = 1 − 1

π

√
q2(x) for x ∈ I 0. (2.15)

�

Remark: It follows from equations (2.12) and (2.15) that

1

π

√
q1(x) = 1 − 1

π

√
q2(x) for x ∈ I 0; (2.16)

hence, q1 and q2 uniquely determine each other.

Notice that, according to point (2) of this theorem, the connected components of

I 0 are either closed intervals or isolated points. Since ν0 has compact support, we can

write

I 0 =
q⊔

j=1

[α j, β j], (2.17)

where

α j ≤ β j for j = 1, . . . , q,

β j < α j+1 for j = 1, . . . , q − 1.
(2.18)

Notice that the intervals (−∞, α1) and (βq,∞) are components of I−. The interval

(β j, α j+1) for 1 ≤ j < q is a component of either I+ or I−. We therefore adopt the

notation

Av =
{

j ∈ {1, . . . , q − 1} : (β j, α j+1) ⊂ I−
}
,

As =
{

j ∈ {1, . . . , q − 1} : (β j, α j+1) ⊂ I+
}
.

(2.19)

We will call an equilibrium measure ν0 regular if the following hold:

(1) q1 and q2 are nonvanishing on the interior of I 0.

(2) I 0 contains no isolated points, so that α j < β j for all j = 1, . . . , q.
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Uniform Asymptotics for Orthogonal Polynomials 7

(3) If j ∈ Av, then q′
1(β j) �= 0 and q′

1(α j+1) �= 0.

(4) If j ∈ As, then q′
2(β j) �= 0 and q′

2(α j+1) �= 0.

For the remainder of this paper, we will assume that our equilibrium measure is regular.

In this case, the sets I 0, I+, and I− are each finite unions of intervals, so that

−∞ < α1 < β1 < α2 < β2 < · · · < αq < βq < ∞, (2.20)

and we classify these intervals as follows:

Definition: A void is an open subinterval (β j, α j+1), j ∈ Av. The union of all voids is I−.

Definition: A saturated region is an open subinterval (β j, α j+1), j ∈ As. The union of all

saturated regions is I+.

Definition: A band is an open subinterval (α j, β j), j = 1, . . . , q. The union of all bands

is the interior of I 0.

α α α αβ β β1 1 2 2 3 3 4 5β α
4 5β

Fig. 1. The graph of the density function for a hypothetical equilibrium measure with q = 5.

Bands are denoted by bold segments, saturated regions by dashed segments, and voids by thin

segments.

Observe that ρ(x) = 0 on any void (β j, α j+1), ρ(x) = 1 on any saturated interval

(β j, α j+1), and 0 < ρ(x) < 1 on any band (α j, β j), see Figure 1. In addition, at the end

points of any band, ρ(x) has a square-root singularity. Namely, if α j is a common end

point of a band and a void, then as x → +0,

ρ(α j + x) = C
√

x (1 + O(x)), C = |q′
1(α j)|1/2 > 0, (2.21)

and if α j is a common end point of a band and a saturated region, then as x → +0,

ρ(α j + x) = 1 − C
√

x (1 + O(x)), C = |q′
2(α j)|1/2 > 0. (2.22)

Similarly, if β j is a common end point of a band and a void, then as x → +0,

ρ(β j − x) = C
√

x (1 + O(x)), C = |q′
1(β j)|1/2 > 0, (2.23)
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8 P. Bleher and K. Liechty

and if β j is a common end point of a band and a saturated region, then as x → +0,

ρ(β j − x) = 1 − C
√

x (1 + O(x)), C = |q′
2(β j)|1/2 > 0. (2.24)

In the next section, we introduce the g-function which will be our means of ex-

ploiting the equilibrium measure.

3 The g-Function

Define the g-function on C \ (−∞, βq] as

g(z) =
∫ βq

α1

log(z − x)dν0(x), (3.1)

where we take the principal branch for the logarithm. Also, introduce the numbers � j

for j = 1, . . . , q − 1 as

� j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π

∫ βq

α j+1

ρ(x)dx for j ∈ Av,

2π

∫ βq

α j+1

ρ(x)dx + 2πα j+1 for j ∈ As.

(3.2)

Properties of g(z):

(1) g(z) is analytic in C \ (−∞, βq].
(2) For large z,

g(z) = log z −
∞∑
j=1

gj

zj , gj =
∫ βq

α1

xj

j
dν0(x). (3.3)

(3)

g′(z) =
∫
R

ρ(x)dx

z − x
(3.4)

is the resolvent of the equilibrium measure.

(4) From (2.9), we have that

g+(x) + g−(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= V(x) + l for x ∈ I 0,

> V(x) + l for x ∈ I+,

< V(x) + l for x ∈ I−,

(3.5)
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Uniform Asymptotics for Orthogonal Polynomials 9

where g+ and g− refer to the limiting values from the upper and lower half

planes, respectively.

(5) Equation (3.1) implies that the function

G(x) ≡ g+(x) − g−(x) (3.6)

is pure imaginary for all real x, and

G(x) = 2πi
∫ βq

x
ρ(s) ds. (3.7)

Thus,

G(x) =
⎧⎨
⎩

i� j for β j < x < α j+1, and j ∈ Av,

i� j − 2πix for β j < x < α j+1, and j ∈ As.
(3.8)

From (3.5) and (3.7), we obtain that

2g±(x) = V(x) + l ± 2πi
∫ βq

x
ρ(s)ds for x ∈ I 0. (3.9)

(6) Also, from (3.7), we get that G(x) is real analytic on the sets I+, I−, and on

the interior of I 0. We can therefore extend G into a complex neighborhood of

any interval of analyticity for ρ, and the Cauchy–Riemann equations imply

that

dG(x + iy)

dy

∣∣∣∣
y=0

= 2πρ(x) ≥ 0. (3.10)

Observe that from (3.5), we have that

G(x) = 2g+(x) − V(x) − l = −[2g−(x) − V(x) − l], x ∈ I 0. (3.11)
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10 P. Bleher and K. Liechty

4 Main Results

In this section, we summarize the main results of the paper. In order to do so, we must

first introduce some notations. Introduce the numbers � j,N for j = 0, . . . , q as

� j,N =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N� j for j ∈ Av,

π + N� j for j ∈ As,

2π N for j = 0,

0 for j = q,

(4.1)

and the vector

�N = (�1,N, . . . , �q−1,N). (4.2)

Let

R(z) ≡
q∏

j=1

(z − α j)(z − β j), (4.3)

and let X be the two-sheeted Riemann surface of genus g ≡ q − 1 associated with
√

R(z)

with cuts on the intervals (α j, β j). We fix the first sheet of X by the condition

√
R(z) > 0 for z > βq (4.4)

on the first sheet.

Introduce the following homology basis on X. For any j ∈ {1, · · · , q − 1}, let Aj

be a cycle enclosing the interval (β j, α j+1) (passing through the intervals (α j, β j) and

(α j+1, β j+1)), oriented clockwise, such that the piece of Aj which lies in the upper half

plane also lies on the first sheet of X, while the piece of Aj which lies in the lower

half plane also lies on the second sheet of X. Also for any j ∈ {1, · · · , q − 1}, let Bj

be a cycle enclosing the interval (α1, β j) (passing through the intervals (−∞, α1) and

(β j, α j+1)), oriented clockwise, and lying entirely on the first sheet of X. Then the cycles

(A1, . . . , Aq−1, B1, . . . .Bq−1) form a canonical homology basis for X.

 at IU
P

U
I U

niversity Library on A
pril 26, 2010 

http://im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org


Uniform Asymptotics for Orthogonal Polynomials 11

Now consider the g-dimensional complex linear space � of holomorphic one-

forms on X,

� =
⎧⎨
⎩ω =

q−2∑
j=0

cjzjdz√
R(z)

⎫⎬
⎭, (4.5)

and the basis

ω = (ω1, . . . , ωq−1), (4.6)

normalized such that ∫
Aj

ωk = δ jk. (4.7)

Notice that the basis ω is real. That is, for the basis elements

ω j =
q−1∑
k=1

cjkzk−1dz√
R(z)

, (4.8)

the coefficients cjk are real.

Now define the associated matrix of B-periods as

τ = (τ jk), τ jk =
∫

Bj

ωk, j, k = 1, . . . , q − 1. (4.9)

Since
√

R(z) is pure imaginary on the intervals (α j, β j), the numbers τ jk are pure

imaginary. Furthermore, the matrix τ is symmetric, and the matrix −iτ is positive

definite (see [9]).

We now define the Riemann theta function associated with τ as

θ(s) =
∑

m∈Zg

e2πi(m,s)+πi(m,τm), s ∈ C
g, (4.10)

where (m, s) = ∑q−1
j=1 mjsj. Because the quadratic form i(m, τm) is negative definite, the

sum in (4.10) is absolutely convergent for all s ∈ C
g, and thus, θ(s) is an entire function

in C
g. Notice that the theta function is an even function and satisfies the periodicity

properties

θ(s + ej) = θ(s), θ(s + τ j) = e−2πisj−πiτ j j θ(s), (4.11)

where ej = (0, . . . , 1, . . . , 0) is the jth canonical basis vector in C
g, and τ j = τej .
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12 P. Bleher and K. Liechty

Introduce now the vector-valued function

u(z) =
∫ z

βq

ω, for z ∈ C \ (α1, βq), (4.12)

where ω = (ω1, . . . , ωg) is defined in (4.6) and the contour of integration lies in C \ (α1, βq)

on the first sheet of X. Notice that u(z) is well defined as a function with values in C
g/Zg

except on the interval (α1, βq), where it takes limiting values from the upper and lower

half planes.

Introduce also the function

γ (z) =
q∏

j=1

(
z − α j

z − β j

)1/4

(4.13)

with cuts on I 0, taking the branch such that γ (z) ∼ 1 as z → ∞. It can be seen that, on

the first sheet of X, the function γ − 1/γ has exactly one zero in each of the intervals

(β j, α j+1) and is nonzero elsewhere and that the function γ + 1/γ has no zeroes on the

first sheet of X. Define the numbers xj as

xj ∈ (β j, α j+1), γ (xj) − 1

γ (xj)
= 0. (4.14)

Define the vector of Riemann constants

K ≡ −
q−1∑
j=1

u(β j) (4.15)

and the vector

d ≡ −K +
q−1∑
j=1

u(xj). (4.16)

Then

θ(u(xj) − d) = 0 for j ∈ {1, . . . , q − 1}, (4.17)

and {xj}g
j=1 give all the zeroes of the function θ(u(z) − d). In addition, the function

θ(u(z) + d) has no zeroes on the first sheet of X.
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Uniform Asymptotics for Orthogonal Polynomials 13

Finally, for j = 1, . . . q, introduce the functions

ψα j (z) = −
{

3π

2

∫ z

α j

ρ(t)dt

}2/3

, ψβ j (z) = −
{

3π

2

∫ β j

z
ρ(t)dt

}2/3

, (4.18)

and the functions

M1(z) = θ(u(∞) + d)

θ(u(∞) + �N
2π

+ d)

γ (z) + γ (z)−1

2

θ(u(z) + �N
2π

+ d)

θ(u(z) + d)
,

M2(z) = θ(u(∞) + d)

θ(u(∞) + �N
2π

+ d)

γ (z) − γ (z)−1

2

θ(u(z) − �N
2π

− d)

θ(u(z) − d)
.

(4.19)

Notice that M1 and M2 depend quasiperiodically on N and, thus, are O(1) as N → ∞.

The asymptotics of the normalizing constants in equation (1.5) and of the recur-

rence coefficients in equation (1.6) are presented in the following theorem.

Theorem 4.1. (Asymptotics of recurrence coefficients) Let V(x) be a real analytic func-

tion satisfying (1.4) which yields a regular equilibrium measure (2.5), and let {Pn}∞n=0 be

the system of orthogonal polynomials defined according to (1.5). Then as N → ∞, the

normalizing constants in (1.5) and recurrence coefficients in (1.6) admit the following

asymptotic expansions.

hN = Nπ

2
eNl

⎛
⎝ q∑

j=1

(β j − α j)

⎞
⎠ θ(u(∞) + d)θ(u(∞) − �N

2π
− d)

θ(u(∞) − d)θ(u(∞) + �N
2π

+ d)

[
1 + O

(
1

N

)]
, (4.20)

hN−1 = 8NπeNl

⎛
⎝ q∑

j=1

(β j − α j)

⎞
⎠

−1
θ(u(∞) − d)θ(u(∞) − �N

2π
+ d)

θ(u(∞) + d)θ(u(∞) + �N
2π

− d)

[
1 + O

(
1

N

)]
, (4.21)

γ 2
N =

(∑q
j=1(β j − α j)

4

)2
θ(u(∞) + d)2θ(u(∞) − �N

2π
− d)θ(u(∞) + �N

2π
− d)

θ(u(∞) − d)2θ(u(∞) + �N
2π

+ d)θ(u(∞) − �N
2π

+ d)
+ O

(
1

N

)
,

(4.22)
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14 P. Bleher and K. Liechty

βN−1 =
∑q

j=1(β2
j − α2

j )

2
∑q

j=1(β j − α j)
+

(∇θ(u(∞) + �N
2π

− d)

θ(u(∞) + �N
2π

− d)
− ∇θ(u(∞) + �N

2π
+ d)

θ(u(∞) + �N
2π

+ d)

+∇θ(u(∞) + b)

θ(u(∞) + b)
− ∇θ(u(∞) − d)

θ(u(∞) − d)
, u′(∞)

)
+ O

(
1

N

)
,

(4.23)

where ∇θ is the gradient of θ ,

u′(∞) = (c1,q−1, c2,q−1, . . . , cq−1,q−1), (4.24)

and the numbers cjk are defined in (4.8). �

Notice that, up to the lattice scaling factor N in the normalizing coefficients,

these asymptotics are similar to the results obtained in [7] for continuous orthogonal

polynomials.

The remaining theorems in this section present pointwise asymptotics of the

polynomials PN(z) in various regions of the real line and complex plane.

Theorem 4.2. (Asymptotics of PN(z) in voids) Let K ⊂ C be a compact set on the com-

plex plane such that K does not intersect with the support of the equilibrium measure

ν0. Then for any z ∈ K, we have that

PN(z) = eNg(z) [M1(z) + O(N−1)
]
. (4.25)

The error term O(N−1) is uniform in K. �

The function eNg(z)M1(z) is analytic in a neighborhood of any compact subset

of any void; thus, this formula gives asymptotics of PN(x) for x in a void. In particular,

notice that this function has no zeroes in the exterior intervals (−∞, α1) and (βq,∞) and

at most one zero in any other void.

Theorem 4.3. (Asymptotics of PN(z) in bands) Let K be a compact subset of the interior

of I 0. Then for any point x ∈ K, we have that

PN(x) = 2e
N
2 (V(x)+l)

[
Re

(
eiNπφ(x)M1+(x)

)
+ O(N−1)

]
, (4.26)
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Uniform Asymptotics for Orthogonal Polynomials 15

where M1+(x) refers to the limiting value of the function M1(z) from the upper half

plane, and

φ(x) :=
∫ βq

x
ρ(t)dt. (4.27)

The error term O(N−1) is uniform in K. �

Theorem 4.4. (Asymptotics of PN(z) in saturated regions) Let K be a compact subset of

I+. Then there exists ε > 0 such that for any point x ∈ K, we have that

PN(x) = eNL(x)

[
2 sin(Nπx)

(
Im

(
e

iN� j
2 M1+(x)

)
+ O(N−1)

)
+ O(e−Nε)

]
, (4.28)

where M1+(x) refers to the limiting value of the function M1(z) from the upper half

plane, and

L(x) :=
∫ βq

α1

log |x − t|ρ(t)dt. (4.29)

Both of the error terms, O(N−1) and O(e−Nε), are uniform in K. �

The remaining theorems in this section use the Airy functions Ai and Bi (see,

e.g., [13]).

Theorem 4.5. (Asymptotics of PN(z) at band–void edge points) Let j ∈ Av ∪ {q}, so that

the point β j is the right end point of a band and the left end point of a void. Then there

exists ε > 0 such that, for |z − β j| < ε,

PN(z) = e
N
2 (V(z)+l)

{
N1/6ψβ j (z)

1/4Ai(N2/3ψβ j (z))
[
e± i� j,N

2 M1(z) + e∓ i� j,N
2 M2(z) + O(N−1)

]

−N−1/6ψβ j (z)
−1/4Ai′(N2/3ψβ j (z))

[
e± i� j,N

2 M1(z) − e∓ i� j,N
2 M2(z) + O(N−1)

]}
(4.30)

for ±Im z > 0.
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16 P. Bleher and K. Liechty

Let j ∈ Av ∪ {0}, so that the point α j+1 is the left end point of a band and the

right end point of a void. There exists ε > 0 such that, for |z − α j+1| < ε,

PN(z) = e
N
2 (V(z)+l)

{
N1/6ψα j+1 j(z)

1/4Ai(N2/3ψα j+1(z))

×
[
e± i� j,N

2 M1(z) − e∓ i� j,N
2 M2(z) + O(N−1)

]
− N−1/6ψα j+1(z)

−1/4Ai′(N2/3ψα j+1(z))

×
[
e± i� j,N

2 M1(z) + e∓ i� j,N
2 M2(z) + O(N−1)

]}
(4.31)

for ±Im z > 0. �

Theorem 4.6. (Asymptotics of PN(z) at band–saturated region edge points) Let j ∈ As.

Then the point β j is the right end point of a band and the left end point of a saturated

region. There exists ε > 0 such that, for |z − β j| < ε,

PN(z) = e
N
2 (V(z)+l)

{
N1/6ψβ j (z)

1/4B1(z)
[
−e± i� j,N

2 M1(z) + e∓ i� j,N
2 M2(z) + O(N−1)

]

− N−1/6ψβ j (z)
−1/4B2(z)

[
e± i� j,N

2 M1(z) + e∓ i� j,N
2 M2(z) + O(N−1)

]} (4.32)

for ±Im z > 0, where

B1(z) = cos(Nπz)Ai(N2/3ψβ j (z)) + sin(Nπz)Bi(N2/3ψβ j (z)),

B2(z) = cos(Nπz)Ai′(N2/3ψβ j (z)) + sin(Nπz)Bi′(N2/3ψβ j (z)).
(4.33)

The point α j+1 is the left end point of a band and the right end point of a void.

There exists ε > 0 such that, for |z − α j+1| < ε,

PN(z) = e
N
2 (V(z)+l)

{
N1/6ψα j+1 j(z)

1/4B3(z)
[
e± i� j,N

2 M1(z) + e∓ i� j,N
2 M2(z) + O(N−1)

]

−N−1/6ψα j+1(z)
−1/4B4(z)

[
e± i� j,N

2 M1(z) − e∓ i� j,N
2 M2(z) + O(N−1)

]}
(4.34)

for ±Im z > 0, where

B3(z) = cos(Nπz)Ai(N2/3ψα j+1(z)) − sin(Nπz)Bi(N2/3ψα j+1(z)),

B4(z) = cos(Nπz)Ai′(N2/3ψα j+1(z)) − sin(Nπz)Bi′(N2/3ψα j+1(z)).
(4.35)

�

Remark: Although the above theorems are presented for real analytic potential V(x),

these results may be extended to potentials which are continuous and piecewise real
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Uniform Asymptotics for Orthogonal Polynomials 17

analytic, assuming that the points of non-analyticity lie strictly within saturated regions

and voids. In this case, the preceding results hold, and the asymptotic solution to the

associated Riemann–Hilbert Problem does not require local analysis near the points of

non-analyticity (see [3]).

Before continuing with the proofs of these theorems, we would also like to re-

mark that the results obtained in this paper match the results obtained in [1] for poly-

nomials orthogonal on a lattice which sits inside a finite interval. Consequently, many

corollaries discussed in [1] also apply to infinite lattices. In particular, the authors of [1]

discuss the particle statistics of the discrete orthogonal polynomial ensemble in differ-

ent regions of a finite interval of the real line, which are based on asymptotic properties

of the associated orthogonal polynomials. The results of this paper imply that their re-

sults may be extended to discrete orthogonal polynomial ensembles on an infinite (reg-

ular) lattice. Of particular interest may be the discrete sine kernel as the scaling limit of

the reproducing kernel in the interior of bands, the Airy kernel as the scaling limit of the

reproducing kernel at band end points, the Tracy–Widom distribution for the location of

the left- and rightmost particle, and exponential estimates for all correlation functions

in voids and saturated regions.

The rest of the paper is organized as follows. In Section 5, we reformulate the

orthogonal polynomials (1.4) as the solution to an Interpolation Problem of complex

analysis. In Section 6, we reduce the interpolation problem to a Riemann–Hilbert Prob-

lem which can be solved by steepest descent analysis, which is done in Sections 7–12.

Finally, in Section 13, we give proofs of the preceding theorems.

5 Interpolation Problem

We will evaluate the asymptotics of the discrete orthogonal polynomials described above

via a steepest descent asymptotic analysis of a Riemann–Hilbert problem. To that end,

we first introduce the following interpolation problem.

Interpolation Problem. For a given N = 0, 1, . . . , find a 2 × 2 matrix-valued func-

tion PN(z) = (PN(z)i j)1≤i, j≤2 with the following properties:

(1) Analyticity: PN(z) is an analytic function of z for z ∈ C \ L N .

(2) Residues at poles: At each node x ∈ L N , the elements PN(z)11 and PN(z)21 of

the matrix PN(z) are analytic functions of z, and the elements PN(z)12 and

PN(z)22 have a simple pole with the residues,

Res
z=x

PN(z) j2 = wN(x)PN(x) j1, j = 1, 2. (5.1)
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18 P. Bleher and K. Liechty

(3) Asymptotics at infinity: There exists a function r(x) > 0 on L N such that

lim
x→∞ r(x) = 0 (5.2)

and such that as z → ∞, PN(z) admits the asymptotic expansion

PN(z) ∼
(

I + P1

z
+ P2

z2 + . . .

)(
zN 0

0 z−N

)
, z ∈ C \

⎡
⎣ ∞⋃

x∈L N

D
(
x, r(x)

)⎤⎦, (5.3)

where D(x, r(x)) denotes a disk of radius r(x) > 0 centered at x and I is the

identity matrix.

It is not difficult to see (see [4] and [1]) that the IP has a unique solution, which

is

PN(z) =
(

PN(z) C (wN PN)(z)

(hN−1)−1 PN−1(z) (hN−1)−1C (wN PN−1)(z)

)
, (5.4)

where the Cauchy transformation C is defined by the formula,

C ( f)(z) =
∑

x∈L N

f(x)

z − x
. (5.5)

Because of the orthogonality condition, as z → ∞,

C (wN Pn)(z) =
∑

x∈L N

wN(x)Pn(x)

z − x
∼

∑
x∈L N

wN(x)Pn(x)

∞∑
j=0

xj

zj+1 = hn

zn+1 +
∞∑

j=n+2

aj

zj , (5.6)

which justifies asymptotic expansion (5.3) and has that

hN = [P1]12, h−1
N−1 = [P1]21. (5.7)

Furthermore, the recurrence coefficients in equation (1.6) are given by

γ 2
N = [P1]12[P1]21 ; βN−1 = [P2]21

[P1]21
− [P1]11. (5.8)
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Uniform Asymptotics for Orthogonal Polynomials 19

6 Reduction of IP to RHP

We would like to reduce the Interpolation Problem to a Riemann–Hilbert Problem.

Introduce the function

�(z) = sin Nπz

Nπ
. (6.1)

Notice that

�(xk) = 0, �′(xk) = exp (iNπxk) = (−1)k, for xk = k

N
∈ L N . (6.2)

Introduce the upper triangular matrices,

Du±(z) =
(

1 −wN (z)
�(z) e±iNπz

0 1

)
, (6.3)

and the lower triangular matrices,

Dl± =
(

�(z)−1 0

− 1
wN (z)e

±iNπz �(z)

)
=

(
�(z)−1 0

0 �(z)

)(
1 0

− 1
�(z)wN (z)e

±iNπz 1

)
. (6.4)

Define the matrix-valued functions,

Ru
N = PN(z) ×

⎧⎨
⎩

Du+(z) when Im z ≥ 0,

Du−(z) when Im z ≤ 0,
(6.5)

and

Rl
N = PN(z) ×

⎧⎨
⎩

Dl+(z), when Im z ≥ 0,

Dl−(z), when Im z ≤ 0.
(6.6)

From (5.4), we have that

Ru
N(z) =

⎛
⎝ PN(z) −wN (z)PN (z)

�(z) e±iNπz + C (wN PN)(z)

h−1
N−1 PN−1(z) −wN (z)h−1

N−1 PN−1(z)
�(z) e±iNπz + h−1

N−1C (wN PN−1)(z)

⎞
⎠

when ± Im z ≥ 0,

(6.7)
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20 P. Bleher and K. Liechty

and

Rl
N(z) =

⎛
⎝ PN (z)

�(z) − C (wN PN )(z)
wN (z) e±iNπz �(z)C (wN PN)(z)

h−1
N−1 PN−1(z)

�(z) − h−1
N−1C (wN PN−1)(z)

wN (z) e±iNπz �(z)h−1
N−1C (wN PN−1)(z)

⎞
⎠

when ± Im z ≥ 0.

(6.8)

Observe that the functions Ru
N(z) and Rl

N(z) are meromorphic on the closed upper and

lower complex planes and they are two-valued on the real axis. Their possible poles are

located on the lattice L N . An important result is that, in fact, due to some cancelations,

they do not have any poles at all. We have the following proposition.

Proposition 6.1. The matrix-valued functions Ru
N(z) and Rl

N(z) have no poles, and on

the real line, they satisfy the following jump conditions at x ∈ R:

Ru
N+(x) = Ru

N−(x) ju
R(x), ju

R(x) =
(

1 −2NπiwN(x)

0 1

)
, (6.9)

and

Rl
N+(x) = Rl

N−(x) jl
R(x), jl

R(x) =
(

1 0

− 2Nπi
wN (x)

1

)
. (6.10)

�

Proof. It follows from the definition of Ru
N(z) that all possible poles of Ru

N(z) are located

on the lattice L N . Let us show that the residue of all these poles is equal to zero. Consider

any xk ∈ L N . The residue of the matrix element Ru
N,12(z) at xk is equal to

Res
z=xk

Ru
N,12(z) = −wN(xk)PN(xk)

(−1)k (−1)k + wN(xk)PN(xk) = 0. (6.11)

Similarly, we get that

Res
z=xk

RN,22(z) = 0; (6.12)

hence, Ru
N(z) has no pole at xk.

Similarly, the residue of the matrix element Rl
N,11(z) at xk is equal to

Res
z=xk

Rl
N,11(z) = PN(xk)

(−1)k − wN(xk)PN(xk)(−1)k

wN(xk)
= 0. (6.13)
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Uniform Asymptotics for Orthogonal Polynomials 21

In the same way, we obtain that

Res
z=xk

RN,21(z) = 0. (6.14)

In the entry Rl
N,21(z), the pole of the function C (wN PN)(z) at z = xk is canceled by the zero

of the function �(z); hence, Rl
N,21(z) has no pole at xk. Similarly, Rl

N,22(z) has no pole at

xk as well; hence, Rl
N(z) has no pole at xk.

Let us evaluate the jump matrices for x ∈ R. From (6.5), we have that

ju
R(x) = Du−(x)−1Du+(x) =

(
1 −wN (x)

�(x)
2i sin Nπx

0 1

)
=

(
1 −2NπiwN(x)

0 1

)
, (6.15)

which proves (6.9). Similarly,

jl
R(x) = Dl−(x)−1Dl+(x) =

(
1 0

− 1
�(x)wN (x)

2i sin Nπx 1

)
=

(
1 0

− 2Nπi
wN (x)

1

)
, (6.16)

which proves (6.10). �

To reduce the Interpolation Problem to a Riemann–Hilbert Problem, we follow

the work [1] with some modifications. Consider the oriented contour � on the complex

plane depicted in Figure 2, in which the horizontal lines are Im z = ε, 0,−ε, where ε > 0

is a small positive constant which will be determined later, and the vertical segments

pass through the end points of saturated intervals. Consider the regions

�∇± = {I 0 ∪ I−} × (0,±iε),

��± = I+ × (0,±iε),
(6.17)

Δ
+

Ω Δ
−

Ω

Ω

Δ

Δ
+

−

ΩΩ

Ω Ω

Ω Ω

Ω
+ +

−−−

+

Δ

Δ

Δ

Δ

Δ

Δ

Fig. 2. The contour � arising from the hypothetical equilibrium measure in Figure 1, dividing an

ε-neighborhood of the real line into the regions ��± and �∇±.
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22 P. Bleher and K. Liechty

bounded by the contour �. Define

RN(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

KNRu
N(z)K−1

N , for z ∈ �∇±,

KNRl
N(z)K−1

N , for z ∈ ��±,

KNPN(z)K−1
N , otherwise,

(6.18)

where KN =
(

1 0

0 −2iNπ

)
.

If A ⊂ C is a set on the complex plane and b ∈ C then, as usual, we denote

A+ b = {z = a + b, a ∈ A}. (6.19)

Proposition 6.2. The matrix-valued function RN(z) has the following jumps on the con-

tour �:

RN+(z) = RN−(z) jR(z), (6.20)

where

jR(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 wN(z)

0 1

)
when z ∈ I− ∪ I 0,

(
1 0

−(2Nπ)2wN(z)−1 1

)
when z ∈ I+,

KNDu±(z)K−1
N =

(
1 1

2iNπ
wN (z)e±iNπz

�(z)

0 1

)
when z ∈ {I− ∪ I 0} ± iε,

KNDl±(z)K−1
N =

(
�(z)−1 0

2iNπ e±iNπz

wN (z) �(z)

)
when z ∈ I+ ± iε,

KNDl±(z)−1Du±(z)K−1
N =

(
�(z) 1

2Nπi wN(z)e±iNπz

−2NπiwN(z)−1e±iNπz ∓2Nπie±iNπz

)

when z ∈ (0,±iε) + β j or z ∈ (0,±iε) + α j+1 for j ∈ As.

(6.21)
�
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Uniform Asymptotics for Orthogonal Polynomials 23

7 First Transformation of the RHP

Define the matrix function TN(z) as follows from the equation,

RN(z) = e
Nl
2 σ3TN(z)eN(g(z)− l

2 )σ3 , (7.1)

where l is the Lagrange multiplier, the function g(z) is described in Section 2, and σ3 =(
1 0

0 −1

)
is the third Pauli matrix. Then TN(z) satisfies the following Riemann–Hilbert

Problem:

(1) TN(z) is analytic in C \ �.

(2) TN+(z) = TN−(z) jT (z) for z ∈ �, where

jT (z) =
⎧⎨
⎩

eN(g−(z)− l
2 )σ3 jR(z)e−N(g+(z)− l

2 )σ3 for z ∈ R,

eN(g(z)− l
2 )σ3 jR(z)e−N(g(z)− l

2 )σ3 for z ∈ � \ R.
(7.2)

(3) As z → ∞,

TN(z) ∼ I + T1

z
+ T2

z2 + . . . . (7.3)

Let us take a closer look at the behavior of the jump matrix jT described in (7.2) on the

horizontal segments of �. We have that

jT (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
e−NG(z) wN(z)eN(g+(z)+g−(z)−l)

0 eNG(z)

)
when z ∈ I 0 ∪ I−,

(
e−NG(z) 0

−(2Nπ)2e−N(g+(z)+g−(z)−V(z)−l) eNG(z)

)
when z ∈ I+,

(
1 ± eN(2g(z)−l−V(z))

1−e∓2iNπxeε2Nπ

0 1

)
when z = x ± iε ∈ {I− ± iε},

(
1 ± e±NG(z)

1−e∓2iNπxeε2Nπ

0 1

)
when z = x ± iε ∈ {I 0 ± iε},

(
�(z)−1 0

2iNπe±iNπxe−N(2g(z)−l−V(z)) �(z)

)
when z = x ± iε ∈ {I+ ± iε}.

(7.4)
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24 P. Bleher and K. Liechty

8 Second Transformation of the RHP

The second transformation is based on two observations. The first is the well-known

“opening of the lenses” in a neighborhood of the unconstrained support of the equilib-

rium measure. Namely, notice that, for x ∈ I 0, the jump matrix jT (x) factorizes as

jT (x) =
(

e−NG(x) 1

0 eNG(x)

)
=

(
1 0

eNG(x) 1

)(
0 1

−1 0

)(
1 0

e−NG(x) 1

)
,

= j−(x) jM j+(x),

(8.1)

which allows us to reduce the jump matrix jT to the one jM plus asymptotically small

jumps on the lens boundaries. The second observation consists of two facts. Firstly, the

jumps on the segments I+ ± iε behave, for large N, as ±e±iNπz. Secondly, note that, for

x ∈ I+, G(x) is a linear function with slope −2πi. With these facts in mind, we make the

second transformation of the RHP. Let

SN(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TN(z) j+(z)−1 for z ∈ I 0 × (0, iε),

TN(z) j−(z) for z ∈ I 0 × (0,−iε),

TN(z)A+(z) for z ∈ I+ × (0, iε),

TN(z)A−(z) for z ∈ I+ × (0,−iε),

TN(z) otherwise,

where A+(z) =
(

− 1
2Nπi e−iNπz 0

0 −2NπieiNπz

)
and A−(z) =

(
1

2Nπi eiNπz 0

0 2Nπie−iNπz

)
.

(8.2)

This function satisfies a similar RHP to T, but jumps now occur on a new contour,

�S, which is obtained from � by adding the segments (α1 − iε, α1 + iε), (βq − iε, βq + iε),

(α j+1 − iε, α j+1 + iε), and (β j − iε, β j + iε) for j ∈ Av, see Figure 3.

Fig. 3. The contour �S arising from the hypothetical equilibrium measure shown in Figure 1.
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Uniform Asymptotics for Orthogonal Polynomials 25

On horizontal segments, we have that

jS(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for z ∈ I 0,

(
1 + O(e−2εNπ ) O(eN(G(z)−2επ))

−e−NG(z) 1

)
for z − iε ∈ I 0,

(
1 + O(e−2εNπ ) O(eN(−G(z)−2επ))

eNG(z) 1

)
for z + iε ∈ I 0,

(
1 + O(e−2εNπ ) 0

2iNπe−N(2g(z)−l−V(z)) 1 + O(e−2εNπ )

)
for z ∈ {I+ ± iε},

(
−e−iN� j 0

−e−N(g+(z)+g−(z)−l−V(z)) −eiN� j

)
for z ∈ (β j, α j+1), j ∈ As,

(
1 eN(2g(z)−l−V(z))O(e−2εNπ )

0 1

)
for z = x ± iε ∈ {I− ± iε},

(
e−iN� j eN(g+(z)+g−(z)−l−V(z))

0 eiN� j

)
for z ∈ (β j, α j+1), j ∈ Av.

(8.3)

By formula (3.5) for the G-function and the upper constraint on the density ρ, we obtain

that, for sufficiently small ε > 0 and x ∈ (α j, β j),

0 < ∓Re G(x ± iε) = 2πρ(x) + O(ε2) < 2πε + O(ε2). (8.4)

This, combined with property (3.7) of the g-function, implies that all jumps on horizontal

segments are exponentially close to the identity matrix, provided that they are bounded

away from the segment (α1, βq).

9 Model RHP

The model RHP appears when we drop in the jump matrix jS(z) the terms that vanish as

N → ∞:

(1) M(z) is analytic in C \ [α1, βq].
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26 P. Bleher and K. Liechty

(2) M+(z) = M−(z) jM(z) for z ∈ [α1, βq], where

jM(z) =

⎧⎪⎪⎨
⎪⎪⎩

(
0 1

−1 0

)
for z ∈ I 0,

e−i� j,Nσ3 for z ∈ (β j, α j+1).

(9.1)

(3) As z → ∞,

M(z) ∼ I + M1

z
+ M2

z2 + . . . . (9.2)

This model problem was first solved in the general multi-cut case in [7], and the

solution is given as follows, using the notation introduced in Section 4.

M(z) = F(∞)−1

⎛
⎝ γ (z)+γ −1(z)

2
θ(u(z)+ �N

2π
+d)

θ(u(z)+d)
γ (z)−γ −1(z)

−2i
θ(u(z)− �N

2π
−d)

θ(u(z)−d)

γ (z)−γ −1(z)
2i

θ(u(z)+ �N
2π

−d)

θ(u(z)−d)
γ (z)+γ −1(z)

2
θ(u(z)− �N

2π
+d)

θ(u(z)+d)

⎞
⎠ , (9.3)

where

F(∞) =
⎛
⎝ θ(u(∞)+ �N

2π
+d)

θ(u(∞)+d)
0

0
θ(u(∞)− �N

2π
+d)

θ(u(∞)+d)

⎞
⎠ . (9.4)

The asymptotics at infinity are given as

M(z) = I + M1

z
+ O(z−2). (9.5)

10 Parametrix at Band–Void Edge Points

We now consider small disks D(α j, ε) for j − 1 ∈ Av ∪ {0} and D(β j, ε) for j ∈ Av ∪ {q},
centered at the end points of bands which are adjacent to a void. Denote

D =
⎛
⎝ ⋃

j−1∈Av∪{0}
D(α j, ε)

⎞
⎠⋃⎛

⎝ ⋃
j∈Av∪{q}

D(β j, ε)

⎞
⎠ . (10.1)

We will seek a local parametrix UN(z) defined on D such that

(1)

UN(z) is analytic on D \ �S. (10.2)
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(2)

UN+(z) = UN−(z) jS(z) for z ∈ D ∩ �S. (10.3)

(3)

UN(z) = M(z)
(
I + O(N−1)

)
uniformly for z ∈ ∂ D. (10.4)

We first construct the parametrix near β j for j ∈ Av. The jumps jS are given by

jS(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for z ∈ (β j − ε, β j),

(
1 0

−e−NG(z) 1

)
for z ∈ (β j, β j + iε),

(
1 0

eNG(z) 1

)
for z ∈ (β j, β j − iε),

(
e−NG(z) eN(g+(z)+g−(z)−V(z)−l)

0 eNG(z)

)
for z ∈ (β j, β j + ε).

(10.5)

If we let

UN(z) = QN(z)e−N(g(z)− V(z)
2 − l

2 )σ3 , (10.6)

then the jump conditions on QN become

QN+(z) = QN−(z) jQ(z), (10.7)
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28 P. Bleher and K. Liechty

where

jQ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for z ∈ (β j − ε, β j),

(
1 0

−1 1

)
for z ∈ (β j, β j + iε),

(
1 0

1 1

)
for z ∈ (β j, β j − iε),

(
1 1

0 1

)
for z ∈ (β j, β j + ε),

(10.8)

where orientation is from left to right on horizontal contours and down to up on vertical

contours, according to Figure 3.

QN can be constructed using Airy functions. The Airy function solves the dif-

ferential equation y′′ = zy and has the following asymptotics at infinity (see, e.g., [13]):

Ai(z) = 1

2
√

πz1/4
e− 2

3 z3/2
(

1 − 5

48
z−3/2 + O(z−3)

)
,

Ai′(z) = − 1

2
√

π
z1/4e− 2

3 z3/2
(

1 + 7

48
z−3/2 + O(z−3)

)
,

(10.9)

as z → ∞ with arg z ∈ (−π + ε, π − ε) for any ε > 0. If we let

y0(z) = Ai(z), y1(z) = ωAi(ωz), y2(z) = ω2Ai(ω2z), (10.10)

where ω = e
2πi
3 , then the functions y0, y1, and y2 satisfy the relation

y0(z) + y1(z) + y2(z) = 0. (10.11)
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If we take

�rv(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
y0(z) −y2(z)

y′
0(z) −y′

2(z)

)
for arg z ∈

(
0,

π

2

)
,

(
−y1(z) −y2(z)

−y′
1(z) −y′

2(z)

)
for arg z ∈

(π

2
, π

)
,

(
−y2(z) y1(z)

−y′
2(z) y′

1(z)

)
for arg z ∈

(
−π,−π

2

)
,

(
y0(z) y1(z)

y′
0(z) y′

1(z)

)
for arg z ∈

(
−π

2
, 0

)
,

(10.12)

then �rv satisfies jump conditions similar to (10.8), but for jumps on rays emanating

from the origin rather than from β j. We thus need to map the disk D(β j, ε) onto some

convex neighborhood of the origin in order to take advantage of the function �rv. Our

mapping should match the asymptotics of the Airy function in order to have the match-

ing property (10.4).

To this end, notice that, by (2.23), for t ∈ [α j, β j], as t → β j,

ρ(t) = C (β j − t)1/2 + O
(
(β − t)3/2), C > 0. (10.13)

It follows that, for x ∈ [α j, β j] as x → β j,

∫ β j

x
ρ(t)dt = C (β j − x)3/2 + O

(
(β j − x)5/2) C0 = 2

3
C . (10.14)

Thus,

ψβ j (z) = −
{

3π

2

∫ β j

z
ρ(t)dt

}2/3

(10.15)

is analytic at β j, thus extends to a conformal map from D(β j, ε) (for small enough ε) onto

a convex neighborhood of the origin. Furthermore,

ψβ j (β j) = 0 ; ψ ′
β j

(β j) > 0. (10.16)
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30 P. Bleher and K. Liechty

Thus, ψβ j is real negative on (β j − ε, β j) and real positive on (β j, β j + ε). Also, we can

slightly deform the vertical pieces of the contour �S close to β j, so that

ψβ j {D(β j, ε) ∩ �S} = (−ε, ε) ∪ (−iε, iε). (10.17)

We now set

QN(z) = E
β j
N (z)�rv

(
N2/3ψβ j (z)

)
(10.18)

so that

UN(z) = E
β j
N (z)�rv

(
N2/3ψβ j (z)

)
e−N(g(z)− V(z)

2 − l
2 )σ3 , (10.19)

where

E
β j
N (z) = M(z)e± i� j,N

2 σ3L
β j
N (z)−1 for ± Im z > 0,

L
β j
N (z) = 1

2
√

π

⎛
⎝N−1/6ψ

−1/4
β j

(z) 0

0 N1/6ψ
1/4
β j

(z)

⎞
⎠(

1 i

−1 i

)
,

(10.20)

and we take the principal branch of ψ
1/4
β j

, which is positive on (β j, β j + ε) and has a

cut on (β j − ε, β j). The function �rv(N2/3ψβ j (z)) has the jumps jS, and we claim that the

prefactor E
β j
N is analytic in D(β j, ε) and, thus, does not change these jumps. This can be

seen, as

M+(z)e
i� j,N

2 σ3 = M−(z)e− i� j,N
2 σ3e

i� j,N
2 σ3 jMe

i� j,N
2 σ3; (10.21)

thus, the jump for the function M(z)e± i� j,N
2 σ3 is

e
i� j,N

2 σ3 jMe
i� j,N

2 σ3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
i� j,N

2 σ3

(
0 1

−1 0

)
e

i� j,N
2 σ3 for z ∈ (β j − ε, β j),

e
i� j,N

2 σ3e−i� j,Nσ3e
i� j,N

2 σ3 for z ∈ (β j, β j + ε),

(10.22)
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Uniform Asymptotics for Orthogonal Polynomials 31

or equivalently,

e
i� j,N

2 σ3 jMe
i� j,N

2 σ3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for z ∈ (β j − ε, β j),

(
1 0

0 1

)
for z ∈ (β j, β j + ε),

(10.23)

which is exactly the same as the jump conditions for L
β j
N . Thus, E

β j
N (z) =

M(z)e± i� j,N
2 σ3L

β j
N (z)−1 has no jumps in D(β j, ε). The only other possible singularity for

E
β j
N is at β j, and this singularity is at most a fourth root singularity, thus removable.

Thus, E
β j
N is analytic in D(β j, ε), and QN has the prescribed jumps. We are left only to

prove the matching condition (10.4). Using (10.9), one can check that, for z in each of the

sectors of analyticity, �rv(N2/3ψβ j (z)) satisfies the following asymptotics as N → ∞:

�rv

(
N2/3ψβ j (z)

) = 1

2
√

π
N− 1

6 σ3ψβ j (z)
− 1

4 σ3

[(
1 i

−1 i

)
+ ψβ j (z)

−3/2

48N

(
−5 5i

−7 −7i

)
+ O(N−2)

]

× e− 2
3 Nψβ j (z)

3/2σ3 ,

(10.24)

where we always take the principal branch of ψβ j (z)
3/2. As such, ψβ j (z)

3/2 is two-valued

for z ∈ (β j − ε, β j), so that

[
2

3
ψβ j (x)3/2

]
±

= ∓πi
∫ β j

x
ρ(t)dt. (10.25)

Notice that, by (3.9),

2g±(x) − V(x) = l ± 2πi
∫ βq

x
ρ(t)dt = l ± 2πi

∫ β j

x
ρ(t)dt ± i� j . (10.26)

This implies that for x ∈ (β j − ε, β j),

[2g+(β j) − V(β j)] − [2g+(x) − V(x)] = −2πi
∫ β j

x
ρ(t)dt ,

[2g−(β j) − V(β j)] − [2g−(x) − V(x)] = 2πi
∫ β j

x
ρ(t)dt .

(10.27)
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32 P. Bleher and K. Liechty

Combining these equations with (10.25) gives

[
2

3
ψβ j (x)3/2

]
±

= 1

2

[(
2g±(β j) − V(β j)

) − (
2g±(x) − V(x)

)]
. (10.28)

This equation can be extended into the upper and lower planes, respectively, giving

2

3
ψβ j (z)

3/2 = 1

2

[(
2g±(β j) − V(β j)

) − (
2g(z) − V(z)

)]
for ± Im z > 0. (10.29)

Since, by (10.26), 2g±(β j) − V(β j) = l ± i� j, we get that

2

3
ψβ j (z)

3/2 = −g(z) + V(z)

2
+ l

2
± i� j

2
(10.30)

for ±Im z > 0. Plugging (10.24) and (10.30) into (10.19), we get

UN(z) = M(z)e± i� j,N
2 L

β j
N (z)−1 1

2
√

π
N− 1

6 σ3ψβ j (z)
− 1

4 σ3

[(
1 i

−1 i

)
+ ψβ j (z)

−3/2

48N

(
−5 5i

−7 −7i

)

+ O(N−2)

]
eN(g(z)− V(z)

2 − l
2 ∓ i� j

2 )σ3e−N(g(z)− V(z)
2 − l

2 )σ3

= M(z)

[
I + ψβ j (z)

−3/2

48N

(
1 6ie±i� j,N

6ie∓i� j,N −1

)
+ O(N−2)

]

(10.31)

for ±Im z > 0. Thus, we have that UN satisfies conditions (10.2), (10.3), and (10.4).

A similar construction gives the parametrix at the α j for j − 1 ∈ Av. Namely, if

we let

ψα j (z) = −
{

3π

2

∫ z

α j

ρ(t)dt

}2/3

, (10.32)
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Uniform Asymptotics for Orthogonal Polynomials 33

then ψα j is analytic throughout D(α j, ε), real valued on the real line, and has negative

derivative at α j. Close to α j, the jumps jQ become

jQ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 1

0 1

)
for z ∈ (α j − ε, α j),

(
1 0

−1 1

)
for z ∈ (α j, α j + iε),

(
1 0

1 1

)
for z ∈ (α j, α j − iε),

(
0 1

−1 0

)
for z ∈ (α j, α j + ε),

(10.33)

where orientation is taken left to right on horizontal contours and up to down on vertical

contours according to Figure 3. After the change of variables ψα j (and a slight deforma-

tion of vertical contours), these jumps become the following jumps close to the origin:

jQ
(
ψα j (z)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for ψα j (z) ∈ (−ε, 0),

(
1 0

1 1

)
for ψα j (z) ∈ (0, iε),

(
1 0

−1 1

)
for ψα j (z) ∈ (0,−iε),

(
1 1

0 1

)
for ψα j (z) ∈ (0, ε),

(10.34)

where orientation is taken right to left on horizontal contours and down to up on vertical

contours. These jump conditions are satisfied by the function

�lv(z) = �rv(z)

(
1 0

0 −1

)
. (10.35)

Then we can take

UN(z) = E
α j
N (z)�lv

(
N2/3ψα j (z)

)
e−N(g(z)− V(z)

2 − l
2 )σ3 (10.36)
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34 P. Bleher and K. Liechty

for z ∈ D(α j, ε), where

E
α j
N (z) = M(z)e± i� j−1,N

2 σ3L
α j
N (z)−1 for ± Im z > 0,

L
α j
N (z) = 1

2
√

π

(
N−1/6ψ

−1/4
α j (z) 0

0 N1/6ψ
1/4
α j (z)

)(
1 −i

−1 −i

)
(10.37)

is an analytic prefactor. Similar to (10.24), we have that in each sector of analyticity,

�lv(N2/3ψα j (z)) satisfies

�lv
(
N2/3ψα j (z)

) = 1

2
√

π
N− 1

6 σ3ψα j (z)
− 1

4 σ3

[(
1 −i

−1 −i

)
+ ψα j (z)

−3/2

48N

(
−5 −5i

−7 7i

)
+ O(N−2)

]

× e− 2
3 Nψα j (z)

3/2σ3 .

(10.38)

Once again, we have that, for x ∈ (α j, α j + ε), ψα j (x)3/2 takes limiting values from above

and below, so that

[
2

3
ψα j (x)3/2

]
±

= ±πi
∫ x

α j

ρ(t)dt. (10.39)

In analog to (10.28), we have

2

3
ψα j (z)

3/2 = 1

2

[(
2g±(α j) − V(α j)

) − (
2g(z) − V(z)

)]
for ± Im z > 0. (10.40)

Since, by (10.26), 2g±(α j) − V(α j) = l ± πi, we get that

2

3
ψα j (z)

3/2 = −g(z) + V(z)

2
+ l

2
± i� j−1

2
for ± Im z > 0. (10.41)

Plugging (10.41) into (10.36) and (10.38) gives, as N → ∞,

UN(z) = M(z)L
α j
N (z)−1 1

2
√

π
N− 1

6 σ3ψα j (z)
− 1

4 σ3

[(
1 −i

−1 −i

)
+ ψα j (z)

−3/2

48N

(
−5 −5i

−7 7i

)

+ O(N−2)

]
eN(g(z)− V(z)

2 − l
2 ∓ i� j−1

2 )σ3e−N(g(z)− V(z)
2 − l

2 )σ3

= M(z)

⎡
⎣I + ψα j (z)

−3/2

48N

⎛
⎝ 1 −6ie

i� j−1,N
2 σ3

−6ie− i� j−1,N
2 σ3 −1

⎞
⎠ + O(N−2)

⎤
⎦ .

(10.42)
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Uniform Asymptotics for Orthogonal Polynomials 35

11 Parametrix at the Band–Saturated Region End Points

We now consider small disks D(α j, ε) for j − 1 ∈ As and D(β j, ε) for j ∈ As, centered at

the end points of bands which are adjacent to a saturated region. Denote

D̃ =
⎛
⎝ ⋃

j−1∈As

D(α j, ε)

⎞
⎠⋃⎛

⎝ ⋃
j∈As

D(β j, ε)

⎞
⎠ . (11.1)

We will seek a local parametrix UN(z) defined on D̃ such that

(1)

UN(z) is analytic on D̃ \ �S. (11.2)

(2)

UN+(z) = UN−(z) jS(z) for z ∈ D̃ ∩ �S. (11.3)

(3)

UN(z) = M(z)
(
I + O(N−1)

)
uniformly for z ∈ ∂ D̃. (11.4)

We first construct the parametrix near β j for j ∈ As. Let

UN(z) = Q̃N(z)e∓iNπzσ3e−N(g(z)− V(z)
2 − l

2 )σ3 for ± Im z > 0. (11.5)

Then the jumps for Q̃N are

jQ̃(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for z ∈ (β j − ε, β j),

(
−1 0

−1 −1

)
for z ∈ (β j, β j + ε),

(
1 −1

0 1

)
for z ∈ (β j, β j + iε),

(
1 1

0 1

)
for z ∈ (β j, β j − iε),

(11.6)
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36 P. Bleher and K. Liechty

where orientation is taken from left to right on horizontal contours and down to up on

vertical contours according to Figure 3. We now take

�rs(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
y2(z) −y0(z)

y′
2(z) −y′

0(z)

)
for arg z ∈

(
0,

π

2

)
,

(
y2(z) y1(z)

y′
2(z) y′

1(z)

)
for arg z ∈

(π

2
, π

)
,

(
y1(z) −y2(z)

y′
1(z) −y′

2(z)

)
for arg z ∈

(
−π,−π

2

)
,

(
y1(z) y0(z)

y′
1(z) y′

0(z)

)
for arg z ∈

(
−π

2
, 0

)
.

(11.7)

Then �rs(z) solves a RHP similar to that of Q̃N , but for jumps emanating from the origin

rather than from β j.

Once again,

ψβ j (z) = −
{

3π

2

∫ β j

z
(1 − ρ(t)) dt

}2/3

(11.8)

extends to a conformal map from D(β j, ε) onto a convex neighborhood of the origin, with

ψβ j (β j) = 0 ; ψ ′
β j

(β j) > 0. (11.9)

Again, we can slightly deform the vertical pieces of the contour �S close to β j, so that

ψβ j

{
D(β j, ε) ∩ �S

} = (−ε, ε) ∪ (−iε, iε). (11.10)

We now take

Q̃N(z) = E
β j
N (z)�rs

(
N2/3ψβ j (z)

)
, (11.11)

where

E
β j
N (z) = M(z)e± i� j,N

2 σ3L
β j
N (z)−1 for ± Im z ≥ 0,

L
β j
N (z) = 1

2
√

π

⎛
⎝N−1/6ψ

−1/4
β j

(z) 0

0 N1/6ψ
1/4
β j

(z)

⎞
⎠(

1 i

1 −i

)
,

(11.12)

 at IU
P

U
I U

niversity Library on A
pril 26, 2010 

http://im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org


Uniform Asymptotics for Orthogonal Polynomials 37

and we take the principal branch of ψ
1/4
β j

. The function �rs(N2/3ψβ j (z)) has the jumps

jS. Similar to the prefactor E
β j
N at band–void end points, the prefactor E

β j
N is analytic in

D(β j, ε) and, thus, does not change these jumps.

We now check that UN satisfies the matching condition (11.4). The large N asymp-

totics of �rs(N2/3ψβ j (z)) are given in the different regions of analyticity as follows:

�rs
(
N2/3ψβ j (z)

) = 1

2
√

π
N− 1

6 σ3ψβ j (z)
− 1

4 σ3

[
±

(
−i −1

−i 1

)
± ψβ j (z)

−3/2

48N

(
−5i 5

7i 7

)

+ O(N−2)

]
e

2
3 Nψβ j (z)

3/2σ3 for ± Im z > 0,

(11.13)

where we always take the principal branch of ψβ j (z)
3/2. As such, ψβ j (z)

3/2 is two-valued

for x ∈ (β j − ε, β j), so that

[
2

3
ψβ j (x)3/2

]
±

= ∓πi
∫ β j

x
(1 − ρ(t)) dt = ∓πi(β j − x) ± πi

∫ β j

x
ρ(t)dt. (11.14)

From (3.9), we have that

2g±(x) − V(x) = l ± 2πi
∫ βq

x
ρ(t)dt = l ± 2πi

∫ β j

x
ρ(t)dt ± i� j ∓ 2πiβ j, (11.15)

for x ∈ (β j − ε, β j). These equations imply that

(
2g±(x) − V(x)

) − (
2g±(β j) − V(β j)

) = ±2πi
∫ β j

x
ρ(t)dt. (11.16)

We can therefore write (11.14) as

[
2

3
ψβ j (x)3/2

]
±

= ∓πi(β j − x) + 1

2

[(
2g±(x) − V(x)

) − (
2g±(β j) − V(β j)

)]
. (11.17)

We can extend these equations into the upper and lower half plane, respectively,

obtaining

2

3
ψβ j (z)

3/2 = ∓πi(β j − z) + 1

2

[(
2g(z) − V(z)

) − (
2g±(β j) − V(β j)

)]
for ± Im z > 0.

(11.18)

Using (11.15) at x = β j, we can write

2

3
ψβ j (z)

3/2 = g(z) − V(z)

2
− l

2
± πiz ∓ i(� j,N − π)

2N
for ± Im z > 0. (11.19)
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38 P. Bleher and K. Liechty

Plugging (11.13) and (11.19) into (11.11) gives

UN(z) = M(z)e
i� j,N

2 σ3L
β j
N (z)−1 1

2
√

π
N− 1

6 σ3ψβ j (z)
− 1

4 σ3

×
[

±
(

−i −1

−i 1

)
± ψβ j (z)

−3/2

48N

(
−5i 5

7i 7

)
+ O(N−2)

]

× eN(g(z)− l
2 − V(z)

2 )σ3e±iNπzσ3e∓ i� j,N
2 σ3e± iπ

2 σ3e∓iNπzσ3e−N(g(z)− V(z)
2 − l

2 )σ3

= M(z)

[
I + ψβ j (z)

−3/2

48N

(
−1 −6ie±i� j,N

−6ie∓i� j,N 1

)
+ O(N−2)

]
for ± Im (z) > 0.

(11.20)

We can make a similar construction near α j for j − 1 ∈ As. Let

ψα j (z) = −
{

3π

2

∫ z

α j

(1 − ρ(t)) dt

}2/3

. (11.21)

This function is analytic in D(α j, ε) and has negative derivative at α j; thus, Im z and

Im ψα j (z) have opposite signs for z ∈ D(α j, ε). Then the jumps for Q̃N are

jQ̃(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for z ∈ (α j, α j + ε),

(
−1 0

−1 −1

)
for z ∈ (α j − ε, α j),

(
1 −1

0 1

)
for z ∈ (α j, α j + iε),

(
1 1

0 1

)
for z ∈ (α j, α j − iε),

(11.22)

where the contour is oriented from left to right on horizontal segments and up to down

on vertical segments according to Figure 3. After a slight deformation of the vertical

contours and the change of variables ψα j , these jumps become the following jumps close
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Uniform Asymptotics for Orthogonal Polynomials 39

to the origin:

jQ̃(ψα j (z)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for ψα j (z) ∈ (−ε, 0),

(
−1 0

−1 −1

)
for ψα j (z) ∈ (0, ε),

(
1 −1

0 1

)
for ψα j (z) ∈ (−iε, 0),

(
1 1

0 1

)
for ψα j (z) ∈ (0, iε),

(11.23)

where the contour is oriented from right to left on horizontal segments and down to up

on vertical segments. These jump conditions are satisfied by the function

�ls(z) = �rs(z)

(
1 0

0 −1

)
. (11.24)

Then we can take for z ∈ D(α j, ε),

UN(z) = M(z)e
±i� j,N

2 σ3L
α j
N (z)−1�ls(N2/3ψα j (z))e

∓iNπzσ3e−N(g(z)− V(z)
2 − l

2 )σ3 for ± Im z > 0,

(11.25)

where

L
α j
N (z) = 1

2
√

π

(
N−1/6ψ

−1/4
α j (z) 0

0 N1/6ψ
1/4
α j (z)

)(
−1 i

−1 −i

)
. (11.26)

We once again have

�ls
(
N2/3ψα j (z)

) = 1

2
√

π
N− 1

6 σ3ψα j (z)
− 1

4 σ3

[
±

(
−i 1

−i −1

)
± ψα j (z)

−3/2

48N

(
−5i −5

7i −7

)

+ O(N−2)

]
e

2
3 Nψα j (z)

3/2σ3 for ± Im ψα j (z) > 0 (so ∓ Im z > 0),

(11.27)

and for z ∈ D(α j, ε),

2

3
ψ3/2

α j
(z) = ±iπz + g(z) − V(z)

2
− l

2
∓ i(� j,N − π)

2N
for ± Im z > 0. (11.28)
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40 P. Bleher and K. Liechty

Combining (11.25), (11.27), and (11.28) gives

UN(z) = M(z)e
±i� j,N

2 σ3L
α j
N (z)−1 1

2
√

π
N− 1

6 σ3ψα j (z)
− 1

4 σ3

×
[
±

(
i −1

i 1

)
± ψα j (z)

−3/2

48N

(
5i 5

−7i 7

)
+ O(N−2)

]

× e±iNπzσ3eN(g(z)− V(z)
2 − l

2 )σ3e∓ i� j,N
2 σ3e± iπ

2 σ3e∓iNπzσ3e−N(g(z)− V(z)
2 − l

2 )σ3

= M(z)e
±i� j,N

2 σ3

[
I + ψα j (z)

−3/2

48N

(
−1 6i

6i 1

)
+ O(N−2)

]
e∓ i� j,N

2 σ3

= M(z)

[
I + ψα j (z)

−3/2

48N

(
−1 6ie±i� j,N

6ie∓i� j,N 1

)
+ O(N−2)

]
for ± Im z > 0.

(11.29)

12 The Third and Final Transformation of the RHP

We now consider the contour �X , which consists of the circles ∂ D(α j, ε) and ∂ D(β j, ε),

for j = 1, . . . q, all oriented counterclockwise, together with the parts of �S \ (⋃
j
[α j, β j]

)
which lie outside of the disks D(α, ε), D(α′, ε), D(β ′, ε), and D(β, ε), see Figure 4.

Fig. 4. The contour �X arising from the hypothetical equilibrium measure shown in Figure 1.

We let

XN(z) =
⎧⎨
⎩

SN(z)M(z)−1 for z outside the disks D(α j, ε), D(β j, ε),

SN(z)UN(z)−1 for z inside the disks D(α j, ε), D(β j, ε).
(12.1)

Then XN(z) solves the following RHP:

1. XN(z) is analytic on C \ �X .

2. XN(z) has the jump properties

XN+(x) = XN−(z) jX(z), (12.2)

where

jX(z) =
⎧⎨
⎩

M(z)UN(z)−1 for z on the circles,

M(z) jS(z)M(z)−1 otherwise.
(12.3)
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Uniform Asymptotics for Orthogonal Polynomials 41

3. As z → ∞,

XN(z) ∼ I + X1

z
+ X2

z2 + . . . . (12.4)

Additionally, we have that jX(z) is uniformly close to the identity in the following sense:

jX(z) =
⎧⎨
⎩

I + O(N−1) uniformly on the circles,

I + O(e−C (z)N) on the rest of �X,
(12.5)

where C (z) is a positive, continuous function satisfying (1.4). If we set

j0
X(z) = jX(z) − I, (12.6)

then (12.5) becomes

j0
X(z) =

⎧⎨
⎩

O(N−1) uniformly on the circles,

O(e−C (z)N) on the rest of �X .
(12.7)

The solution to the RHP for XN is based on the following lemma:

Lemma 12.1. Suppose v(z) is a function on �X solving the equation

v(z) = I − 1

2πi

∫
�X

v(u) j0
X(u)

z− − u
du for z ∈ �X, (12.8)

where z− means the value of the integral on the minus side of �X . Then

XN(z) = I − 1

2πi

∫
�X

v(u) j0
X(u)

z − u
du for z ∈ C \ �X (12.9)

solves the RHP for XN . �

The proof of this lemma is immediate from the jump property of the Cauchy

transform. By assumption,

XN−(z) = v(z), (12.10)
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42 P. Bleher and K. Liechty

and the additive jump of the Cauchy transform gives

XN+(z) − XN−(z) = v(z) j0
X(z) = XN−(z) j0

X(z); (12.11)

thus, XN+(z) = XN−(z) jX(z). Asymptotics at infinity are given by (12.9).

The solution to equation (12.8) is given by a series of perturbation theory.

Namely, the solution is

v(z) = I +
∞∑

k=1

vk(z), (12.12)

where

vk(z) = − 1

2πi

∫
�X

vk−1(u) j0
X(u)

z − u
du ; v0(z) = I. (12.13)

This function clearly solves (12.8) provided the series converges, which it does, for suf-

ficiently large N. Indeed, by (12.5),

|vk(z)| ≤
(

C

N

)k 1

1 + |z| for some constant C > 0 ; (12.14)

thus, the series (12.12) is dominated by a convergent geometric series and, thus, con-

verges absolutely. This in turn gives

XN(z) = I +
∞∑

k=1

XN,k(z), (12.15)

where

XN,k(z) = − 1

2πi

∫
�X

vk−1(u) j0
X(u)

z − u
du. (12.16)

In particular, this implies that

XN ∼ I + O
(

1

N(|z| + 1)

)
as N → ∞ (12.17)

uniformly for z ∈ C \ �X .
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13 Proof of Theorems 4.1–4.6

The transformations (6.18), (7.1), (8.1), and (12.1) give that, for z bounded away from the

real line,

PN(z) = K−1
N e

Nl
2 σ3XN(z)M(z)eN(g(z)− l

2 )σ3KN, (13.1)

and for z close to the real line but bounded away from the support of the equilibrium

measure,

PN(z) = K−1
N e

Nl
2 σ3XN(z)M(z)eN(g(z)− l

2 )σ3KNDu±(z)−1 for ± Im z ≥ 0. (13.2)

Expanding (13.1) or (13.2), we get that

PN(z) = [PN(z)]11 = eNg(z) ([M]11[X]11 + [M]21[X]12) , (13.3)

which, along with (12.17), proves Theorem 4.2.

The proof of Theorem 4.1 requires only the formulae (5.3), (5.7), and (5.8) and a

straightforward large z expansion of equation (13.1).

Similar to (13.1), we have that, for any interval J which is contained in and

bounded away from the end points of a band, in some neighborhood of J, we have

PN(z) =
⎧⎨
⎩

K−1
N e

Nl
2 σ3XN(z)M(z) j+(z)eN(g(z)− l

2 )σ3KNDu+(z)−1 for Im z ≥ 0,

K−1
N e

Nl
2 σ3XN(z)M(z) j−1− (z)eN(g(z)− l

2 )σ3KNDu−(z)−1 for Im z ≤ 0.
(13.4)

Expanding the left side of this equation for Im z ≥ 0, utilizing (3.9), and taking limits as

z approaches the real line, we get that

PN(x) = [PN(x)]11 = e
N
2 (V(x)+l)

(
eiNπφ(x)[M11]+(x) + e−iNπφ(x)[M12]+(x) + O(N−1)

)
,

(13.5)

where φ(x) is as defined in (4.27) and the + subscript indicates the limiting value from

the upper half plane. Notice that [M12]+ = [M11]− in this region and that M11(z) = M11(z).

This implies that [M12]+(x) = [M11]+(x), and thus, we can write (13.5) as

PN(x) = e
N
2 (V(x)+l)

(
eiNπφ(x)[M11]+(x) + eiNπφ(x)[M11]+(x) + O(N−1)

)
, (13.6)

which proves Theorem 4.3.
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44 P. Bleher and K. Liechty

For any interval J which is contained in and bounded away from the end points

of a saturated region, in some neighborhood of J, we have

PN(z) = K−1
N e

Nl
2 σ3XN(z)M(z)A−1± (z)eN(g(z)− l

2 )σ3KNDl±(z)−1 for ± Im z > 0. (13.7)

Notice that in this region, we can write

g±(x) = L(x) ± i� j

2
∓ iπx, (13.8)

where L(x) is defined in (4.29). Notice also that 2g±(x) − V(x) − l has positive real part.

Expanding (13.7) for Im z > 0 and taking the limit as z approaches the real line give

PN(x)11 = eNg+(x)
[
(1 − e2πiNx)(M11X11 + M21X12) + e−N(2g+(x)−V(x)−l)(M12X11 + M22X12)

]
= eNg+(x)

[
(1 − e2πiNx)(M11X11 + O(N−1)) + O(e−Nδ)

]
= eNL(x)

[
−2i sin(π Nx)e

iN� j
2 [M11]+(x)(1 + O(N−1)) + O(e−Nδ)

]
,

(13.9)

which proves Theorem 4.4.

Similarly, at the turning points α j and β j, explicit formulae can be written for PN

in terms of explicit transformations in each sector of analyticity of the local parametrix.

From these formulae and the properties of the g-function, Theorems 4.5 and 4.6 are

almost immediate, with Theorem 4.6 also requiring the identities (see, e.g., [13])

y1(z) = −1

2

(
Ai(z) − iBi(z)

)
,

y2(z) = −1

2

(
Ai(z) + iBi(z)

)
.

(13.10)
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