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The maximal point of the Airy2 process minus a parabola is believed to describe the
scaling limit of the end-point of the directed polymer in a random medium. This was
proved to be true for a few specific cases. Recently, two different formulas for the joint
distribution of the location and the height of this maximal point were obtained, one by
Moreno Flores, Quastel, and Remenik, and the other by Schehr. The first formula is
given in terms of the Airy function and an associated operator, and the second formula
is expressed in terms of the Lax pair equations of the Painlevé II equation. We give
a direct proof that these two formulas are the same. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4746694]

I. INTRODUCTION AND RESULT

Let A2(u) be the Airy2 process.1 It is a stationary process whose marginal distribution is the
Gaussian unitary ensemble Tracy-Widom distribution.2 Let M and T be the random variables
defined by

M := max
u∈R

(
A2(u) − u2

)
, (1)

and

T := arg max
u∈R

(
A2(u) − u2

)
. (2)

The Airy2 process is widely expected to be the universal limiting process for the spatial fluctuations
of the models in the Kardar-Parisi-Zhang (KPZ) universality class3 in 1 + 1 dimensions. This has
been proved for a few specific cases. For example, it is proven in the polynuclear growth model1

and the directed last passage percolation with geometric or exponential weights.4 The Airy2 process
also appears in the scaling limit of the totally asymmetric exclusion process (TASEP), random tiling
problems, and 1D non-intersecting processes (see, for example, Refs. 4–10 and references therein).

In the directed last passage percolations with geometric weights, the random variables M and
T represent the following observables. Consider a point-to-line percolation. It was shown4 that,
assuming that the A2(u) − u2 has a unique maximum almost surely, T describes the fluctuations
of the location of the end-point of the maximizing path. The uniqueness assumption was recently
proved in Ref. 11. On the other hand, M is the random variable for the limiting fluctuations of the
energy of the maximizing path.

The marginal distribution of M is known to be equal to the Gaussian orthogonal ensemble
(GOE) Tracy-Widom distribution.12 This was proved in Ref. 4 indirectly using a correspondence
between certain observables in the directed last passage percolation in point to point geometry and
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associated ones in point to line geometry for which the limiting distribution had been evaluated.13 This
correspondence was also previously observed in Ref. 14. A more direct proof was later obtained15

by showing that the scaled fluctuations of the maximal height of N non-intersecting Brownian
excursions is governed by the GOE Tracy-Widom distribution in the asymptotic large N limit. The
physical asymptotic analysis used in that paper was subsequently proved rigorously in Ref. 16 using
Riemann-Hilbert techniques. Another direct proof based on determinantal process was obtained in
Ref. 17 using the explicit determinantal formula of the Airy2 process.

Because of the broad relevance of the KPZ universality class, the distributions of M and T
have generated some recent interest in the theoretical literature18–26 as well as in the experimental
literature.27, 28

Exact expressions for the joint distribution of (M, T ) were obtained in two recent papers:
in Ref. 29 by Moreno Flores, Quastel, and Remenik, and in Ref. 30 by Schehr. The paper in
Ref. 29 is mathematical and rigorous, and the formula involves the Airy function and the resolvent
of an associated operator. On the other hand, the paper in Ref. 30 is physical and the distribution is
expressed in terms of the Lax pair for the Painlevé II equation. The purpose of this paper is to verify
directly that these two expressions are indeed the same. In doing so, we describe an explicit solution
to the Lax pair equation for the Painlevé II equation (see Proposition 2.1 below). This calculation
is closely related to the seminal work of Tracy and Widom2 on the identification of the Fredholm
determinant of the Airy operator in terms of the Painlevé II equation.

We now describe the formulas of Refs. 29 and 30. Let P̂(m, t) denote the joint density function
of (M, T ). We first describe the formula of Ref. 29. Let Ai be the Airy function,31 and let Bs be the
integral operator acting on L2[0, ∞) with kernel

Bs(x, y) = Ai(x + y + s) (3)

for each s ∈ R. It is known that 1 − Bs is invertible. We set

ρs(x, y) = (1 − Bs)−1(x, y), x, y ≥ 0. (4)

Define, for t, m ∈ R,

ψ(x ; t, m) = 2ex t [tAi(t2 + m + x) + Ai′(t2 + m + x)]. (5)

Then the formula of Ref. 29 is

P̂(m, t) = 21/3F1(22/3m)
∫ ∞

0
dx1

∫ ∞

0
dx2 ψ(21/3x1; −t, m)ρ22/3m(x1, x2) ψ(21/3x2; t, m), (6)

where F1(s) = det(1 − Bs) denotes the GOE Tracy-Widom distribution function.12, 32

The formula of Ref. 30 is as follows. Let q(s) be the particular solution of the Painlevé II
equation

q ′′(s) = 2q(s)3 + sq(s), (7)

satisfying

q(s) ∼ Ai(s), as s → +∞. (8)

This particular solution is known as the Hastings-McLeod solution,33, 34 and the uniqueness and the
global existence are well established. Now consider the following Lax pair equations associated
with the Hastings-McLeod solution of the Painlevé II equation, i.e., the following linear differential
equations for a two-dimensional vector � = �(ζ , s),

∂

∂ζ
� = A�,

∂

∂s
� = B�, (9)

where the 2 × 2 matrices A = A(ζ , s) and B = B(ζ , s) are given by

A(ζ, s) =
(

4ζq 4ζ 2 + s + 2q2 + 2q ′

−4ζ 2 − s − 2q2 + 2q ′ −4ζq

)
(10)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  216.220.176.6 On: Thu, 01 Sep 2016

11:45:56



083303-3 Baik, Liechty, and Schehr J. Math. Phys. 53, 083303 (2012)

and

B(ζ, s) =
(

q ζ

−ζ −q

)
. (11)

The above system is overdetermined, and the compatibility of the equations implies that q(s) solves
the Painlevé II equation.

Remark: This Lax pair is the one used in Ref. 35, and is a simple transformation of the Lax pair
equations of Flaschka and Newell.36 If we call the solution of the Flaschka-Newell Lax pair �̂, then

we have �̂ =
(

1 i
1 −i

)
�, where � solves (9).

Now let � =
(

�1

�2

)
be the unique solution of (9) satisfying the real asymptotics

�1(ζ ; s) = cos

(
4

3
ζ 3 + sζ

)
+ O(ζ−1), �2(ζ ; s) = − sin

(
4

3
ζ 3 + sζ

)
+ O(ζ−1), (12)

as ζ → ± ∞ for s ∈ R. There is such a solution,34, 35, 37 and it further satisfies the properties that
�1(ζ ; s) and �2(ζ ; s) are real for real ζ and s, and

�1(−ζ ; s) = �1(ζ ; s), �2(−ζ ; s) = −�2(ζ ; s). (13)

Define

h(s, w) :=
∫ ∞

0
ζ�2(ζ, s)e−wζ 2

dζ. (14)

The formula of Ref. 30 is that

P̂(m, t) = 4P(22/3m, 24/3t), (15)

where

P(s, w) := 4

π2
F1(s)

∫ ∞

s
h(u, w)h(u,−w) du. (16)

The main result of this paper is

Theorem 1.1: The two formulas (6) and (15) for P̂(m, t) are the same.

We give a direct verification of this statement. The derivation of the formula (15) in the work
Ref. 30 relies on an ansatz which is not rigorously justified. The above theorem gives an indirect
proof of the work of Ref. 30 and puts the formula (15) on a rigorous mathematical footing.

II. PROOF OF THEOREM

We start with the formula (15) and verify that it is equal to (6). For this purpose, we show that
the solution to the Lax pair, �, which appears in (14) can be expressed in terms of the operator Bs.
Let us first introduce some notations. Let Bs be as defined in (3). Then As := B2

s is the Airy operator
acting on L2[0, ∞), which has kernel

As(x, y) =
∫ ∞

0
Ai(x + s + ξ )Ai(y + s + ξ ) dξ

= Ai(x + s)Ai′(y + s) − Ai′(x + s)Ai(y + s)

x − y
.

(17)

We introduce the convention to be used throughout the paper that the Dirac delta function δ0 satisfies∫
[0, ∞)δ0(x)f(x)dx = f(0) for functions f which are right-continuous at 0. Define the functions Q and

R as

Q := (1 − As)−1Bsδ0, R := (1 − As)−1Asδ0. (18)
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Introduce also the functions


1(x) := cos

(
4

3
ζ 3 + (s + 2x)ζ

)
, 
2(x) := − sin

(
4

3
ζ 3 + (s + 2x)ζ

)
. (19)

The starting point of our analysis is the following explicit formula for the solution �.

Proposition 2.1: The particular solution

�(ζ, s) =
(

�1(ζ, s)

�2(ζ, s)

)
(20)

to the Lax pair (9) satisfying the conditions (12) is given by

�1(ζ, s) = 
1(0) + 〈
1, R − Q〉0, �2(ζ, s) = 
2(0) + 〈
2, R + Q〉0, (21)

where the functions Q and R are defined in (18), and 〈 · , · 〉0 is the inner product on L2[0, ∞).

The proof of this proposition is given in section III.
Using the definition of R and Q, �2(ζ , s) in (21) can be written as

�2(ζ, s) = 〈
2, δ0 + R + Q〉0 = 〈

2, (1 + (1 − B2

s )−1Bs + (1 − B2
s )−1B2

s )δ0
〉
0

= 〈

2, (1 − Bs)−1δ0

〉
0 .

(22)

Note that the only term which depends on ζ is 
2. The function h in (14) is defined as an integral
of ζe−wζ 2

�2(ζ, s) with respect to ζ . With (14) in mind, we therefore compute∫ ∞

0
ζe−wζ 2

sin

(
4

3
ζ 3 + sζ + 2xζ

)
dζ

= 1

2i

∫ ∞

−∞
ζ exp

[
i

(
4

3
ζ 3 + iwζ 2 + sζ + 2xζ

)]
dζ

= 1

2i

∫ ∞

−∞
ζ exp

[
i

(
1

3

(
22/3ζ + iw

24/3

)3

+ ζ

(
w2

4
+ s + 2x

)
+ iw3

48

)]
dζ.

(23)

Making the change of variables η = 22/3ζ + iw2−4/3, (23) becomes

1

i27/3
e

w3

24 + w
4 (s+2x)

∫ ∞

−∞

(
η − iw

24/3

)
exp

[
i

(
1

3
η3 + η

(
w2

28/3
+ s + 2x

22/3

))]
dη

= − π

24/3
e

w3

24 + w
4 (s+2x)

[
w

24/3
Ai

(
w2

28/3
+ s + 2x

22/3

)
+ Ai′

(
w2

28/3
+ s + 2x

22/3

)]
,

(24)

since

Ai(x) = 1

2π

∫ ∞

−∞
exp

[
i

(
1

3
η3 + xη

)]
dη. (25)

Comparing with the function ψ(x; t, m) in (5), we thus obtain∫ ∞

0
ζe−wζ 2

sin

(
4

3
ζ 3 + sζ + 2ζ x

)
dζ = − π

27/3
e

w3

24 + ws
4 ψ(21/3x ; 2−4/3w, 2−2/3s). (26)

Combining (26) with (22), we can write the function h as

h(s, w) = π

27/3
e

w3

24 + ws
4

〈
ψ(21/3x ; 2−4/3w, 2−2/3s), (1 − Bs)−1δ0

〉
0 , (27)

where x is the variable of integration in the inner product.
We now evaluate the integral∫ ∞

s
h(u, w)h(u,−w)du = 2

∫ ∞

0
h(2y + s, w)h(2y + s,−w)dy, (28)
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in the definition of P(s, w) in (16). For this purpose, it is more convenient to work in the space
L2(R) instead of L2[0, ∞). Let us denote by B̃s the operator which has the same kernel as (3) and
acts on L2(R). Let �r denote the projection onto L2[r, ∞) and let 〈 · , · 〉 be the inner product on
L2(R). Then from (27),

27/3

π
e− w3

24 − w(2y+s)
4 h(2y + s, w)

= 〈
ψ(21/3x ; 2−4/3w, 2−2/3(2y + s)), �0(1 − �0B̃2y+s�0)−1�0δ0

〉
,

(29)

where once again x is the variable of integration in the inner product.
We can push all dependence on y to the right side of the inner product as follows. Let Tr be

the translation operator (Trf)(x) = f(x + r). We clearly have �r = T− r�0Tr and �0 = Tr�rT− r.
Since (T−r K Tr )(u, v) = K (u − r, v − r ) for any kernel K, we find from the definition of B̃s that
(T−yB̃2y+sTy)(u, v) = Ai(u + v + s) = B̃s(u, v). Thus,

�0(1 − �0B̃2y+s�0)−1�0 = �0(1 − Ty�yT−yB̃2y+sTy�yT−y)−1�0

= �0(1 − Ty�yB̃s�yT−y)−1�0

= �0Ty(1 − �yB̃s�y)−1T−y�0

= Ty�y(1 − �yB̃s�y)−1�yT−y .

(30)

Notice also that the transpose of Ty is T− y and that T− yδ0(u) = δy(u). Hence (29) equals〈
T−yψ(21/3x ; 2−4/3w, 2−2/3(2y + s)), �y(1 − �yB̃s�y)−1�yδy

〉
. (31)

From the definition of ψ , it is easy to check that

ψ(a − r ; t, m + r ) = e−r tψ(a; t, m). (32)

Therefore (31) equals

e− 1
2 wy

〈
ψ(21/3x ; 2−4/3w, 2−2/3s), �y(1 − �yB̃s�y)−1�yδy

〉
. (33)

Define the resolvent

Ry := (1 − �yB̃s�y)−1 − 1. (34)

Note that Ry = �yRy�y and its kernel Ry(x1, x2) is smooth in x1, x2 ≥ y. Using this notation, we
obtain

27/3

π
e− w3

24 − ws
4 h(2y + s, w) = 
+(y) +

∫ ∞

−∞

+(x)Ry(x, y)dx, (35)

where we set


±(x) := ψ(21/3x ; ±2−4/3w, 2−2/3s). (36)

Note that the integrand in (35) vanishes for x < y due to the resolvent kernel.
Inserting (35) into equation (28), we find, using the fact that the kernel of Ry is symmetric, that

211/3

π2

∫ ∞

s
h(u, w)h(u,−w)du =

∫ ∞

0

+(y)
−(y)dy

+
∫ ∞

0
dy

∫ ∞

−∞
dx2
+(y)Ry(y, x2)
−(x2)

+
∫ ∞

0
dy

∫ ∞

−∞
dx1
+(x1)Ry(x1, y)
−(y)

+
∫ ∞

0
dy

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2
+(x1)Ry(x1, y)Ry(y, x2)
−(x2).

(37)
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Setting m = 2− 2/3s and t = 2−4/3w in (15) (see the relation between (15) and (16)) and noting that
ρs(x, y) = (1 + R0)(x, y), we see that the formula (15) implies the formula (6) if we show that (37)
is same as ∫ ∞

0

+(y)
−(y)dy +

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2
+(x1)R0(x1, x2)
−(x2). (38)

Now setting y = x1 in the first double integral of (37) and setting y = x2 in the second double integral,
we see that the equality follows if we show that

Rx1 (x1, x2) + Rx2 (x1, x2) +
∫ ∞

0
Ry(x1, y)Ry(y, x2)dy = R0(x1, x2) (39)

for all x1, x2 ≥ 0. This is a general identity, given in the following lemma.

Lemma 2.1: Let K be an integral operator on R such that for all y ≥ 0, �yK�y is bounded in
L2(R) and 1 − �yK�y is invertible. Set Ry := (1 − �yK�y)− 1 − 1. Suppose that the kernel
Ry(x1, x2) is continuous in x1, x2 ≥ y, for all y ≥ 0. Then

Rx1 (x1, x2) + Rx2 (x1, x2) +
∫ ∞

0
Ry(x1, y)Ry(y, x2)dy = R0(x1, x2) (40)

for all x1, x2 ≥ 0.

The proof of this lemma is given in Sec. IV. Therefore, we find that the formula (15) is equivalent
to the formula (6). Theorem 1.1 is proved.

III. PROOF OF PROPOSITION 2.1

A formula for the solution of a different Lax pair for the Hastings-McLeod solution to Painlevé
II in terms of the Airy function and (1 − As)− 1 was obtained in Ref. 38 (see (1.15) and the Remark
after Lemma 1.4). This was obtained in a indirect way. A direct proof of the same formula in the
spirit of Ref. 2 was obtained subsequently by Widom (see the Remark after Lemma 1.4. of Ref. 38)
but this proof was not published anywhere. It is possible to prove Proposition 2.1 using this formula
after some calculations. Instead of following this route, we give a direct and self-contained proof of
Proposition 2.1 in this section for the benefit of the reader. Our proof is similar to the calculation of
Widom mentioned above.

A. Preliminary work

In order to prove Proposition 2.1, we first set up some notations and give some preliminary
results which will be useful. We follow the notations of the work in Ref. 2.

Remark: In Ref. 2, the Airy kernel was defined without the parameter s and the associated
operators were defined in [s, ∞). In this paper, we use the different convention that the Airy kernel
contains the parameter s and the associated operators are defined in [0, ∞).

Let D be the differential operator, (Dh)(x) = h′(x). In addition to the functions

Q := (1 − As)−1Bsδ0, R := (1 − As)−1Asδ0, (41)

defined in (18), we introduce also the function

P := (1 − As)−1DBsδ0. (42)

Let a be the function

a(x) := Ai(x + s) = Bsδ0, (43)

and introduce also the notations

q(s) := 〈δ0, Q〉0 = Q(0), p(s) := 〈δ0, P〉0 = P(0), (44)
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and

u(s) := 〈a, Q〉0, v(s) := 〈a, P〉0 = 〈Q, Da〉0. (45)

It is shown in Ref. 2 that q(s) as defined in (44) is in fact the Hastings-McLeod solution to the
Painlevé II equation. For the convenience of the reader, we include a proof of this statement at the
end of this subsection.

Recall the general identities for any operators U and V such that U depends on a parameter s:

∂

∂s
(1 − U)−1 = (1 − U)−1

(
∂

∂s
U

)
(1 − U)−1, (46)

V(1 − U)−1 = (1 − U)−1[V, U](1 − U)−1 + (1 − U)−1V . (47)

We will use these identities as well as the following identities for the operators As and Bs, which are
easy to check from their definitions (3) and (17):

∂

∂s
As = −a ⊗ a, (48)

∂

∂s
Bs = DBs, (49)

[D, As] = −a ⊗ a + Aδ0 ⊗ δ0 , (50)

[M, As] = a ⊗ Da − Da ⊗ a , (51)

where we have denoted by M the multiplication by x, Mf(x) = xf(x), and have used the notation f⊗g
to stand for the rank one operator defined by (f ⊗ g)h := 〈g, h〉f for two functions f and g.

The key differential identities that we use to prove Proposition 2.1 are summarized in the
following lemma.

Lemma 3.1: We have the following identities:

∂ Q

∂s
= −uQ + P, (52)

DQ = −uQ + P + q R, (53)

∂ P

∂s
= (−2v + s + M)Q + u P, (54)

DP = (−2v + s + M)Q + u P + pR, (55)

∂ R

∂s
= −q Q, (56)

and

2v − u2 = −q2, (57)

q ′ = −uq + p. (58)

Moreover,

MR = pQ − q P. (59)
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Proof: Most of the equations (52)–(56) are straightforward to check using the identities
(46)–(51), and in fact most of them appear in Ref. 2. As an illustration, let us show how to prove
(54). We have

∂ P

∂s
=

(
∂

∂s
(1 − As)−1

)
Da + (1 − As)−1

(
∂

∂s
Da

)

= −(1 − As)−1a ⊗ a(1 − As)−1Da + (1 − As)−1

(
∂

∂s
Da

)
,

(60)

where we have used (46) and (48). Since in general (f ⊗ g)h = f〈g, h〉, the first term is −Q〈a, P〉
= −vQ. Notice that

(
∂
∂s Da

)
(x) = Ai′′(x + s) = (x + s)Ai(x + s) = ((M + s)a) (x). It follows that

(60) is

∂ P

∂s
= −vQ + (1 − As)−1(M + s)a

= −vQ + (M + s)(1 − As)−1a + [(1 − As)−1, M]a

= −vQ + (M + s)Q − (1 − As)−1[M, As](1 − As)−1a,

(61)

where we have used (47). We now apply (51) to obtain

∂ P

∂s
= −vQ + (M + s)Q − (1 − As)−1a ⊗ Da(1 − As)−1a

+ (1 − As)−1Da ⊗ a(1 − As)−1a

= (M + s − v)Q − Qv + Pu,

(62)

which is (54).
The identity (57) can be obtained as follows. Starting with

v = 〈Q, Da〉0, (63)

we integrate by parts to obtain (as q = Q(0))

v = −qa(0) − 〈DQ, a〉0

= −qa(0) − 〈−uQ + P + q R, a〉0

= −qa(0) − u2 − v − q〈R, a〉0,

(64)

where we have used (53). We now evaluate 〈R, a〉0 as

〈R, a〉0 = 〈
(1 − As)−1Asδ0, a

〉
0 = 〈−δ0 + (1 − As)−1δ0, a

〉
0 = −a(0) + q. (65)

Combining (65) and (64) gives (57). On the other hand, (58) is simply (52) evaluated at zero.
Finally we prove (59). Since Mδ0 = 0,

MR = M(1 − A)−1Aδ0 = M(−1 + (1 − A)−1)δ0 = M(1 − A)−1δ0. (66)

Hence, using Mδ0 = 0 one more time, as well as (47) and (51),

MR = [M, (1 − A)−1]δ0

= (1 − A)−1[M, A](1 − A)−1δ0

= (1 − A)−1(a ⊗ Da − Da ⊗ a)(1 − A)−1δ0

= 〈Da, (1 − A)−1δ0〉Q − 〈a, (1 − A)−1δ0〉0 P

= pQ − q P.

(67)

�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  216.220.176.6 On: Thu, 01 Sep 2016

11:45:56



083303-9 Baik, Liechty, and Schehr J. Math. Phys. 53, 083303 (2012)

For completeness, we give a proof that q(s) solves the Painlevé II equation. In addition to Lemma
3.1, we also have

u′ = −q2, (68)

p′ = −2vq + sq + up. (69)

Indeed, by differentiating the definition (45) of u, u′ = 〈a′, Q〉0 + 〈a, ∂
∂s Q〉0. By using the definition

(45) of v and using (52), we find that u′ = 2v − u2. Now (57) implies (68). On the other hand, (69)
follows by evaluating (55) at zero. By differentiating (58) and then using (68) and (69), we obtain
q ′′ = q3 + sq − uq ′ − 2vq + up. Inserting (58) for q′ and then using (57), this becomes q′′ = 2q3

+ sq. Thus q solves the Painlevé II equation.

B. Differential equations for �1 and �2

Here we show that �1 and �2, as defined in (21),

�1(ζ, s) = 
1(0) + 〈
1, R − Q〉0, �2(ζ, s) = 
2(0) + 〈
2, R + Q〉0, (70)

satisfy the Lax pair equations (9), i.e., the differential equations

∂

∂ζ
�1(ζ, s) = 4ζq�1(ζ, s) + (4ζ 2 + s + 2q2 + 2q ′)�2(ζ, s), (71)

∂

∂ζ
�2(ζ, s) = −(4ζ 2 + s + 2q2 − 2q ′)�1(ζ, s) − 4ζq�2(ζ, s), (72)

and
∂

∂s
�1(ζ, s) = q�1(ζ, s) + ζ�2(ζ, s), (73)

∂

∂s
�2(ζ, s) = −ζ�1(ζ, s) − q�2(ζ, s). (74)

We will use Lemma 3.1 as well as the identities

D
1 = 2ζ
2, D
2 = −2ζ
1, (75)

which are evident from the definition (19) of the functions. Using (75), integrating by parts, and
applying (53), it is easy to see that

2ζ 〈
1, Q〉0 = 〈−D
2, Q〉0 = q
2(0) + 〈
2,−uQ + P + q R〉0, (76)

and

2ζ 〈
2, Q〉0 = −q
1(0) − 〈
1,−uQ + P + q R〉0. (77)

Similarly, using (55), we see that

2ζ 〈
1, P〉0 = p
2(0) + 〈
2, (−2v + s + M)Q + u P + pR 〉0, (78)

and

2ζ 〈
2, P〉0 = −p
1(0) − 〈
1, (−2v + s + M)Q + u P + pR 〉0. (79)

We now prove Eq. (71). Notice that the ζ dependence comes entirely from the functions 
1.
Differentiating (70) with respect to ζ gives

∂

∂ζ
�1 = (4ζ 2 + s)
2(0) + 〈

(4ζ 2 + s + 2M)
2, R − Q
〉
0

= (4ζ 2 + s)�2 − 2(4ζ 2 + s)〈F2, Q〉0 + 2〈F2, M(R − Q)〉0 .

(80)
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We are therefore reduced to showing

2ζq
1(0) + (q2 + q ′)
2(0) + 2ζq〈
1, R − Q〉0 + (q2 + q ′)〈
2, R + Q〉0

= −(4ζ 2 + s)〈
2, Q〉0 + 〈
2, M(R − Q)〉0 .
(81)

In fact, inserting (77) into the term − 4ζ 2〈
2, Q〉0 = − 2ζ 〈2ζ
2, Q〉0 in (81), we find that it is
enough to show that

(q2 + q ′)
2(0) − 2ζq〈
1, Q〉0 + (q2 + q ′)〈
2, R + Q〉0

= −2ζu〈
1, Q〉0 + 2ζ 〈
1, P〉0 − s〈
2, Q〉0 + 〈
2, M(R − Q)〉0 .
(82)

We now apply (76) to the term − 2ζq〈
1, Q〉0 and (79) to the term 2ζ 〈
2, P〉0 in (82) and find that
it is enough to show that

(q ′ + uq − p)
2(0) + (q ′ + 2v + uq − u2 + q2)〈
2, Q〉0

+ (q ′ + uq − p)〈
2, R〉0 − q〈
2, P〉0 = 〈
2, MR〉0.
(83)

Using (57) and (58), this is equivalent to

p〈
2, Q〉0 − q〈
2, P〉0 = 〈
2, MR〉0 . (84)

This follows from (59), which proves (71). The proof of (72) is similar.
We now prove Eq. (73). Differentiating (21) with respect to s gives

∂

∂s
�1 = ζ
2(0) + 〈ζ
2, R − Q〉0 +

〈

1,

∂

∂s
(R − Q)

〉
0

= ζ�2 − 2ζ 〈
2, Q〉0 +
〈
F1,

∂

∂s
(R − Q)

〉
0

.

(85)

Using (77), this is

∂

∂s
�1 = ζ�2 + q
1(0) + 〈
1,−uQ + P + q R〉0 +

〈

1,

∂

∂s
(R − Q)

〉
0

. (86)

We now apply (52) and (56) to obtain

∂

∂s
�1 = ζ�2 + q
1(0) + q〈
1, R − Q〉0, (87)

which is clearly ζ�2 + q�1. This proves (73). The proof of (74) is nearly identical.

C. Asymptotics of �1 and �2

In order to complete the proof of Proposition 2.1, we must show that the functions �1 and �2

as defined in (21) have the real asymptotics (12). Since 
1(0) and 
2(0) are precisely the leading
terms of the asymptotics (12), it is enough to show that

〈
1, R − Q〉0 = O
(
ζ−1

)
, 〈
2, R + Q〉0 = O

(
ζ−1

)
, (88)

as ζ → ± ∞. Since the only dependence on ζ is in 
1 and 
2, from the definitions (18) of Q and
P, the asymptotics (88) is proved if we show that∫ ∞

0
ei( 4

3 ζ 3+(s+2x)ζ)Ai(x + s + ξ )dx = O
(
ζ−1

)
(89)

as ζ → ± ∞ uniformly in ξ ∈ [0, ∞) for a fixed s ∈ R. But from the definition of the Airy function,
the integral in (89) equals

1

2π

∫ ∞

0
ei( 4

3 ζ 3+(s+2x)ζ)
∫

�

ei( 4
3 η3+(x+s+ξ )η)dηdx, (90)
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where � can be taken to be a contour in C+ whose asymptotes are the rays of angle π /6 and
5π /6. Changing the order of integrals and integrating in x, we obtain, by noting that the real part of
i(2ζ + η)x < 0, that (90) equals

−ei( 4
3 ζ 3+sζ)

2π i

∫
�

ei( 4
3 η3+(s+ξ )η)

2ζ + η
dη. (91)

This is clearly O(ζ − 1) uniformly in ξ ∈ [0, ∞) and for a fixed s ∈ R. Thus, (89) is proved and this
completes the proof of Proposition 2.1.

IV. PROOF OF LEMMA 2.1

The following simple proof is due to Deift. This simplifies the original proof of ours which was
more involved.

We use the notations

Ky := �yK�y, Ry := (1 − Ky)−1 − 1. (92)

We evaluate ∂
∂y Ry(x1, x2) for y > 0. Let ε > 0 and consider

Ry+ε − Ry = (1 − Ky+ε)−1 − (1 − Ky)−1

= (1 − Ky+ε)−1(Ky+ε − Ky)(1 − Ky)−1

= (1 + Ry+ε)
(
(�y+ε − �y)K�y+ε + �yK(�y+ε − �y)

)
(1 + Ry),

(93)

where the last equality is obtained by adding and subtracting �yK�y + ε inside the parentheses.
Since Ry + ε = �y + εRy + ε�y + ε, we have Ry + ε(�y + ε − �y) = 0. Also note that

lim
ε↓0

�y+ε − �y

ε
= −Mδy , (94)

where Mδy is the operator of multiplication by δy. Therefore, we obtain

∂

∂y+
Ry = ( − Mδy K�y − �yKMδy − Ry�yKMδy

)
(1 + Ry), (95)

where ∂
∂y+

means that this is a right-sided derivative. Note that Mδy K = Mδy �yK and KMδy

= K�yMδy . Hence (95) can be written as

∂

∂y+
Ry = −(

Mδy Ky + KyMδy + RyKyMδy

)
(1 + Ry). (96)

From the definition (92) of Ry we have RyKy = KyRy = Ry − Ky. Using this, (96) simplifies to

∂

∂y+
Ry = −Mδy Ry − RyMδy − RyMδy Ry . (97)

A similar computation for the left-sided derivative shows that (97) holds as a derivative from both
sides. Hence we obtain

∂

∂y
Ry(x1, x2) = −δy(x1)Ry(x1, x2) − Ry(x1, x2)δy(x2) − Ry(x1, y)Ry(y, x2). (98)

Now we integrate the both sides from y = 0 to y = ∞ and find that

−R0(x1, x2) = −Rx1 (x1, x2) − Rx2 (x1, x2) −
∫ ∞

0
Ry(x1, y)Ry(y, x2)dy. (99)

This is precisely (40).
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