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Abstract
We obtain an asymptotic expansion for the tails of the random variable
T = arg maxu∈R(A2(u)−u2) where A2 is the Airy2 process. Using the formula
of Schehr (2012 J. Stat. Phys. 149 385) that connects the density function
of T to the Hastings–McLeod solution to the second Painlevé equation, we
prove that as t → ∞, P(|T | > t) = Ce− 4

3 ϕ(t)t−145/32(1 + O(t−3/4)), where
ϕ(t) = t3 − 2t3/2 + 3t3/4, and the constant C is given explicitly.

Mathematics Subject Classification: 60K35, 37A50, 35Q15

1. Introduction and statement of the main result

Directed polymers in a random medium (DPRM) were introduced by Huse and Henley [27]
to describe domain walls in a ferromagnetic Ising model with random impurities, sometimes
called a dirty ferromagnet. In the two-dimensional Ising model, a typical domain wall is
a lattice path in the plane, and DPRM in 1+1 dimensions is a statistical mechanical model
whose states are such paths. For concreteness, we consider the square lattice N × N, and the
graph with edges connecting nearest neighbors, so that the midpoints of the vertical edges
have the Cartesian coordinates (i, j + 1/2) for some i, j ∈ N, and the horizontal edges have
the coordinates (i + 1/2, j) for some i, j ∈ N. On each vertex, we place a random weight
εij independently from some distribution, and consider some set of allowable lattice paths �

which originate at (0, 0) and always move up and to the right. We then define the random
Gibbs measure on � as follows. For a path P ∈ �,

µ(P ) = 1

Z
exp

 1

T

∑
(i,j)∈P

εij

 ,
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where

Z =
∑
P∈�

exp

 1

T

∑
(i,j)∈P

εij

 ,

is the (random) partition function, and T > 0 denotes temperature. For the set of allowable
paths �, usually we consider

� ≡ �(m,n) = {up-right paths ending at the point (m, n)},
in which case the model is said to have point-to-point geometry, or we consider

� ≡ �n = {up-right paths of length n},
in which case the model is said to have point-to-line geometry.

In the limit as T → 0, the Gibbs measure becomes a delta function on the path with the
greatest weight, and the randomness in the model comes entirely from the random weights εij .
This is known as directed last passage percolation. In the case of point-to-line directed last
passage percolation with geometric or exponential weights on sites, it has been proven [28]
that the limiting fluctuations of both the energy of the maximizing path, and of the location of
the endpoint of the polymer can be described in terms of the Airy2 process.

The Airy2 process [34], which we denote A2(u), is a stationary process whose marginal
distributions are the Gaussian unitary ensemble (GUE) Tracy–Widom distribution [40], and is
expected to be a universal process governing the limiting spatial fluctuations of random growth
models in the Kardar–Parisi–Zhang (KPZ) universality class [29] in 1 + 1 dimensions. This
has been proven in the case of the polynuclear growth (PNG) model [28, 34]. Now let M and
T be the random variables defined by

M := max
u∈R

(
A2(u) − u2

)
and

T := arg max
u∈R

(
A2(u) − u2

)
.

Then M describes the limiting fluctuations of the energy of the maximizing path in geometric
point-to-line last passage percolation. The limiting fluctuations of the endpoint of the path
are described by T . This fact was proved by Johansson [28] assuming that the maximum of
A2(u) − u2 is attained at a unique point almost surely. This assumption was later proved by
Corwin and Hammond [15]. For DPRM at finite temperature, there are some recent results. For
a continuum version and a semi-discrete version [33] of DPRM, as well as discrete DPRM with
log-Gamma weights, the correct scaling exponents and a limit theorem for the free energy have
been obtained at finite temperature [1, 6, 10, 11, 16, 38, 39]. A limit theorem for the fluctuations
of the endpoint of the polymer with point-to-line geometry, however, has only been proven in
the case of geometric or exponential last passage percolation [28]. Nonetheless, T is expected
to govern the fluctuations of the endpoint of a polymer in DPRM at finite temperature as well,
for a wide range of random weights εij . For a review of the KPZ universality class in the
physical literature, see [25]. For a more recent review in the mathematics literature, see [14].

Remark. Although T has only been proven rigorously to govern endpoint fluctuations in
the case of geometric last passage percolation, a formula for the endpoint fluctuations of a
continuum version of DPRM was recently obtained nonrigorously by Dotsenko [20]. This
formula is equivalent to the known formulae for T , given in (1.4) and (1.10). The author
of that paper was unable to prove this equivalence, and for the sake of completeness in the
literature, we give a short proof in appendix B.
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The distribution of M is, up to rescaling by a constant, the same as the Tracy–Widom
distribution for the Gaussian orthogonal ensemble (GOE) [41]. Specifically, we have

P (M � t) = F1(2
2/3t),

where F1 is the Tracy–Widom GOE distribution function, defined below in (1.5) and (1.12).
This fact was proved by Johansson [28] by first proving a functional limit theorem for
the convergence of the PNG model to the Airy2 process and using connections between
PNG and the longest increasing subsequence of a random permutation found by Baik and
Rains [5]. A more direct, although nonrigorous, proof was given in [24] by analysing the
fluctuations of nonintersecting Brownian excursions. A rigorous direct proof based on the
explicit determinantal formula for the Airy2 process was given in [17], and the approach
of [24] was made rigorous in [30]. Since the Tracy–Widom GOE distribution has been well
studied over the past 15–20 years, a lot is known about the distribution of M. In particular,
the asymmetric tail behavior of F1 is

F1(s) =


1 − e− 2

3 s3/2

4
√

πs3/2

(
1 + O

(
s−3/2

) )
, as s → +∞,

τ1e− |s|3
24 − |s|3/2

3
√

2

|s|1/16

(
1 + O

(|s|−3/2
) )

, as s → −∞,

(1.1)

where

τ1 = e
1
2 ζ ′(−1)

211/48
,

and ζ(·) denotes the Riemann zeta-function. Similar formulae exist for the Tracy–Widom
GUE and Gaussian symplectic ensemble (GSE) distribution functions, see [2, 3, 18]. Recently,
some similar formulae have appeared for the general β Tracy–Widom distributions as well
[12, 13, 21].

Much less attention has been dedicated to the study of T . Exact expressions for the joint
distribution of (M, T ) were obtained in two recent papers: in [32] by Moreno Flores, Quastel,
and Remenik; and in [37] by Schehr. The formula of [32] involves the Airy function and the
resolvent of an associated operator and is derived rigorously, while the formula of [37] involves
a solution to the Lax pair for the Painlevé II equation, and is derived nonrigorously. It was
shown in [4] that these formulae are indeed the same, and therefore the formula of [37] is put
on rigorous footing.

Let us describe the two formulae. In order to do so, we first need to fix some notation
which we will use throughout the paper. Let P̂ (m, t) denote the joint density function of
(M, T ). Let Ai(x) be the Airy function [7], and let Bs be the integral operator acting on
L2[0, ∞) with kernel

Bs(x, y) = Ai(x + y + s), (1.2)

where s ∈ R is a parameter. It is known that 1 − Bs is invertible for any s ∈ R. Let

ρs(x, y) = (1 − Bs)
−1(x, y), x, y � 0. (1.3)

Define, for t, m ∈ R,

ψ(x; t, m) = 2ex t [tAi(t2 + m + x) + Ai′(t2 + m + x)].

Then the formula of [32] is

P̂ (m, t) = 21/3F1(2
2/3m)

∫ ∞

0

∫ ∞

0
ψ(21/3x1; −t, m)ρ22/3m(x1, x2) ψ(21/3x2; t, m) dx1 dx2.

(1.4)
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In terms of the operator Bs , the GOE Tracy–Widom distribution function F1 equals

F1(s) = det(1 − Bs), (1.5)

see [22, 36].
We now present the formula of [37]. To this end let q(s) be the particular solution of the

second Painlevé equation,

q ′′(s) = sq(s) + 2q(s)3,

satisfying

q(s) ∼ Ai(s), as s → +∞.

This particular solution is known as the Hastings–McLeod solution [23, 26], and its uniqueness
and global existence are well established. Consider now the following Lax-system (see [8])
associated to the Hastings–McLeod solution of the Painlevé II equation, i.e. the system of
linear differential equations for a two-dimensional vector 
 = 
(ζ, s),

∂


∂ζ
= A
,

∂


∂s
= B
, (1.6)

where the 2 × 2 matrices A = A(ζ, s) and B = B(ζ, s) are given by

A(ζ, s) =
(

4ζq 4ζ 2 + s + 2q2 + 2q ′

−4ζ 2 − s − 2q2 + 2q ′ −4ζq

)
, (1.7)

and

B(ζ, s) =
(

q ζ

−ζ −q

)
. (1.8)

The above system (1.6) is overdetermined, and the compatibility of the equations implies that

q(s) solves the Painlevé II equation. Now let 
 =
(


1


2

)
be the unique solution of (1.6) which

satisfies the real asymptotics


1(ζ ; s) = cos
(

4
3ζ 3 + sζ

)
+ O(ζ−1), 
2(ζ ; s) = − sin

(
4
3ζ 3 + sζ

)
+ O(ζ−1),

as ζ → ±∞ for s ∈ R. Such a solution exists (see e.g. [8, 19, 23]), and it further satisfies the
property that 
1(ζ ; s) and 
2(ζ ; s) are real for real ζ and s, as well as the symmetry relations


1(−ζ ; s) = 
1(ζ ; s), 
2(−ζ ; s) = −
2(ζ ; s), ζ ∈ C, s ∈ R.

Define for nonnegative w and real s,

h(s, w) :=
∫ ∞

0
ζ
2(ζ ; s)e−wζ 2

dζ. (1.9)

The formula of [37] for the joint density of M and T is

P̂ (m, t) = 4P(22/3m, 24/3t), (1.10)

where

P(s, w) = 4

π2
F1(s)

∫ ∞

s

h(u, w)h(u, −w) du, (1.11)

and h(s, −w), w > 0 is understood as the analytic continuation of h(·, w) to the negative real
axis. In terms of the Painlevé function q(s), the Tracy–Widom GOE distribution function F1

can be written as [41]

F1(s) = exp

[
−1

2

∫ ∞

s

q(x) dx − 1

2

∫ ∞

s

∫ ∞

t

q(x)2 dx dt

]
. (1.12)
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The marginal density function for T equals

P̂ (t) :=
∫ ∞

−∞
P̂ (m, t) dm,

and using (1.10), we have

P̂ (t) := 24/3P(24/3t), (1.13)

where we introduced

P(w) =
∫ ∞

−∞
P(s, w) ds. (1.14)

Our main result in the present paper is an asymptotic expansion of the density function P̂ (t)

for large t .

Theorem 1.1. As t → ∞, the marginal density function P̂ (t) satisfies

P̂ (t) = τe− 4
3 ϕ(t)t−81/32

(
1 +

15

4t3/4
+ O(t−3/2)

)
,

which extends to a full asymptotic series in powers of t−3/4. The function ϕ(t) is

ϕ(t) = t3 − 2t3/2 + 3t3/4,

and the constant τ is given by

τ = 2−29/6e5/4e
1
2 ζ ′(−1)π3/2,

with ζ(z) denoting the Riemann zeta-function.

Integrating the above density, theorem 1.1 implies the following corollary.

Corollary 1.2. As t → ∞,

P(|T | > t) = Ce− 4
3 ϕ(t)t−145/32

(
1 +

15

4t3/4
+ O(t−3/2)

)
. (1.15)

where C = τ/2.

Remark. The leading decay order of e−ct3
in (1.15) was first predicted in the physics literature

by Halpin–Healy and Zhang [25], compare also [31]. The first rigorous confirmation of this
rate of decay appeared in the paper [15] of Corwin and Hammond, in which they give e−ct3

as an upper bound on P(|T | > t), although they do not give the value of the constant c. In
the paper [37] of Schehr, the author uses formula (1.10) to find that the leading coefficient is
c = 4/3, although he did not employ complete and rigorous estimates. Recently Quastel and
Remenik [35] rigorously obtained explicit bounds on c, and remarked that they believe that
the correct rate of decay is in fact 4/3. Corollary 1.2 confirms this rigorously, and in addition
gives subleading terms and constants. In principle, all terms in the asymptotic expansion are
computable by the methods of this paper, but calculations become more involved.

The setup for the remainder of the paper is as follows. We will prove theorem 1.1 using
(1.11), (1.13), and (1.14). In section 2 we evaluate h(s, w) as w → ∞ by analysing system
(1.6) close to the origin. In section 3 we prepare h(s, −w) for asymptotic analysis as w → ∞
using the global identity from [4] which allows us to express 
2(ζ ; s) in terms of the resolvent
of a Hankel operator on L2[0, ∞) whose kernel is constructed out of the Airy function. Then in
section 4 we split P(w) into two parts, one which can be estimated using asymptotics (1.1) of
the Tracy–Widom distribution function F1(s), and another which we evaluate asymptotically
by Laplace’s method. Theorem 1.1 then follows via (1.13), and the proof of corollary 1.2 will
be given in section 5.
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2. Expansion of h(s, w) as w → +∞

With the change of variables λ = ζ
√

2w, (1.9) becomes

h(s, w) = 1

2w

∫ ∞

0
λ
2

(
λ√
2w

; s

)
e− λ2

2 dλ. (2.1)

We thus see that we need the Taylor expansion of 
2(ζ ; s) at ζ = 0. To this end let us consider
(1.6) as a system for a 2 × 2 matrix-valued function 
,

∂


∂ζ
=
( 2∑

n=0

An(s)ζ
n

)

,

∂


∂ζ
=
( 1∑

n=0

Bn(s)ζ
n

)

, 
(ζ, s) = (


(ζ, s), 
̂(ζ, s)
)
,

(2.2)

where

A0 =
(

0 v(s) + 4q ′(s)
−v(s) 0

)
, A1 =

(
4q(s) 0

0 −4q(s)

)
, A2 =

(
0 4

−4 0

)
,

B0 =
(

q(s) 0
0 −q(s)

)
, B1 =

(
0 1

−1 0

)
,

are determined from (1.7) and (1.8), and

v(s) := s + 2q(s)2 − 2q ′(s). (2.3)

The matrix function 
 can alternatively be defined as the solution of a certain oscillatory
Riemann–Hilbert problem, see appendix A. This Riemann–Hilbert formulation appears in
one form or another throughout the literature on the integrable structure of Painlevé II, and is
the basis for many results (see [23]). In particular, we will use the facts that


(−ζ ; s) = σ3
(ζ ; s)σ3, ζ ∈ C, s ∈ R, σ3 =
(

1 0
0 −1

)
(2.4)

and


(0; s) = e−σ3
∫∞
s

q(x) dx, (2.5)

which are justified in appendix A.
Since the coefficient function A(ζ, s) is analytic at the origin, there exists a solution 
(ζ, s)

of equation (2.2) which is holomorphic in some neighborhood of the origin and uniquely
determined by its value 
(0, s) = 
0(s) (see [42]). The Taylor expansion of 
 about ζ = 0 is


(ζ, s) =
∞∑

n=0


n(s)ζ
n, |ζ | < ρ, ρ > 0. (2.6)

Inserting (2.6) into (2.2) and comparing coefficients yields for n ∈ Z�0 first,

(n + 1)
n+1 = A0
n(s) + A1
n−1(s) + A2
n−2(s), 
−1(s) = 
−2(s) ≡ 0, (2.7)

and secondly,

d
n

ds
= q(s)σ3
n(s) + iσ2
n−1(s), σ3 =

(
1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
.

The latter differential recursion implies


0(s) = e−σ3
∫∞
s

q(x) dxC0,
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for some 2 × 2 invertible matrix-valued constant C0. In fact, from (2.5) we see that C0 = I .
In order to obtain the rest of the Taylor coefficients, we use the recursion (2.7) to write 
k

explicitly in terms of the matrices A0, A1, A2. The first two coefficients are


1(s) = A0e−σ3
∫∞
s

q(x) dx, 
2(s) = 1
2

(
A2

0 + A1
)
e−σ3

∫∞
s

q(x) dx. (2.8)

At this point we would like to connect the coefficients 
n(s) to the required values of 
1(ζ ; s)

and 
2(ζ ; s). The aformentioned global symmetry relation (2.4) implies


n(s) = (−1)nσ3
n(s)σ3, n ∈ Z�0,

i.e. all coefficients 
2n(s) are diagonal whereas all coefficients 
2n+1(s) are off-diagonal. We
therefore have


1(ζ ; s) =
∞∑

n=0



(11)
2n (s)ζ 2n, 
2(ζ ; s) =

∞∑
n=0



(21)
2n+1(s)ζ

2n+1,


n = (

(ij)

n

)2
i,j=1, |ζ | < ρ. (2.9)

From (2.7) (see explicitly (2.8)),



(21)
2n+1(s) = Pn

(
s, q(s), q ′(s)

)
e− ∫∞

s
q(x) dx, (2.10)

with polynomials Pn in three variables. Integrating (2.1), we obtain the following proposition.

Proposition 2.1. As w → +∞, the function h(s, w) satisfies the asymptotic expansion

h(s, w) =
√

π

4w3/2
e− ∫∞

s
q(x) dx

∞∑
n=0

Qn(s, q(s), q ′(s))w−n, (2.11)

where

Qn(s, q(s), q ′(s)) = e
∫∞
s

q(x) dx

(21)
2n+1(s)

(2n + 1)!

n!4n
,

is a polynomial in three variables. This expansion is uniform in s on compact subsets of the
real line. The first two terms in expansion (2.11) are

Q0(s, q(s), q ′(s)) = −v(s), Q1(s, q(s), q ′(s)) = v(s)3

4
+ v(s)

(
v(s)q ′(s) + q(s)

)− 2,

(2.12)

where v(s) is defined in (2.3). Moreover, as s → −∞, the polynomial Qn(s, q(s), q ′(s))
satisfies

Qn(s, q(s), q ′(s)) = O
(
(−s)(n−1)/2

)
. (2.13)

Proof. Replacing 
2 in (2.1) by its power series (2.9) gives

h(s, w) = 1

(2w)3/2

∞∑
n=0



(21)
2n+1(s)

(2w)n

∫ ∞

0
λ2n+2e− λ2

2 dλ

=
√

π

4w3/2

∞∑
n=0



(21)
2n+1(s)(2n + 1)!

4nn!
w−n.

Using the structure (2.10) of 

(21)
2n+1(s), we can thus write, as w → ∞,

h(s, w) =
√

π

8w3/2
e− ∫∞

s
q(x) dx

∞∑
n=0

Qn(s, q(s), q ′(s))w−n.
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For the asymptotics (2.13), we use [19]3. Namely as s → −∞,

q(s) =
√−s

2

(
1 +

1

8s3
− 73

128s6
+

10657

1024s9
+ O(s−12)

)
,

q ′(s) = − 1

23/2
√−s

(
1 − 5

8s3
+

803

128s6
− 181169

1024s9
+ O(s−12)

)
,

(2.14)

from which it follows

v(s) = 1√−2s

(
1 − (−s)−3/2

2
√

2
− 5

8s3
− 9(−s)−9/2

4
√

2
+

803

128s6
− 1323(−s)−15/2

32
√

2

− 181169

1024s9
+ O

(
(−s)−21/2

))
.

From these we find that as s → −∞,


2n(s) =
(

O((−s)n/2) 0
0 O((−s)n/2)

)
e−σ3

∫∞
s

q(x) dx,


2n+1(s) =
(

0 O((−s)(n−1)/2)

O((−s)(n−1)/2) 0

)
e−σ3

∫∞
s

q(x) dx,

which is easily checked by induction using recursion (2.7). �

Let us now consider h(s, w) as w → −∞.

3. Airy formula for h(s, w) and discussion

In order to analyse h(s, w) for large negative values of w it is convenient to use a formula for

2 which was obtained in [4]. Let us review the notation of [4]. As in (1.2), let Bs be the
integral operator acting on L2[0, ∞) with kernel

Bs(x, y) = Ai(x + y + s).

Let As := B2
s be the Airy operator acting on L2[0, ∞), which has kernel

As(x, y) =
∫ ∞

0
Ai(x + s + ξ)Ai(y + s + ξ) dξ

= Ai(x + s)Ai′(y + s) − Ai′(x + s)Ai(y + s)

x − y
.

Define the functions Q and R as

Q := (1 − As)
−1Bsδ0, R := (1 − As)

−1Asδ0, (3.1)

where δ0 is the Dirac delta function at zero. As in [4] we use the convention that the Dirac delta
function satisfies

∫
[0,∞)

δ0(x)f (x) dx = f (0) for functions f which are right-continuous at 0.
Introduce also the function

�(x) := − sin
(

4
3ζ 3 + (s + 2x)ζ

)
.

Proposition 2.1 of [4] is


2(ζ, s) = �(0) + 〈�, R + Q〉, (3.2)

3 We would like to point out the following small detail. In [2] the coefficient of O(s−9) is given as 10219
1024 , whereas

in [19, 40] it is 10657
1024 .
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where the functions Q and R are defined in (3.1), and 〈·, ·〉 is the inner product on L2[0, ∞).
Notice that the function R + Q can be written in terms of the resolvent kernel of the operator
Bs . Indeed, let

Rs := (1 − Bs)
−1 − 1,

be the resolvent of the operator Bs . It is an integral operator as well, and let us use Ks to
denote the function Rsδ0. We then have

R + Q = (1 − B2
s )

−1(Bs + B2
s )δ0 = (1 − Bs)

−1Bsδ0 = (1 − Bs)
−1(1 − (1 − Bs))δ0

= ((1 − Bs)
−1 − 1)δ0 = Ks,

(3.3)

and (3.2) becomes


2(ζ, s) = �(0) + 〈�, Ks〉. (3.4)

Substituting (3.4) into (1.9) gives

h(s, w) = −
∫ ∞

0
ζ sin

(
4
3ζ 3 + sζ

)
e−wζ 2

dζ +
∫ ∞

0
ζ 〈�, Ks〉 e−wζ 2

dζ

= a(s, w) +
∫ ∞

0
a(s + 2x, w)

(
(1 − Bs)

−1TsAi
)
(x) dx, (3.5)

with

a(y, w) = −
∫ ∞

0
ζ sin

(
4
3ζ 3 + yζ

)
e−wζ 2

dζ, y ∈ R, (3.6)

and the translation operator(
Tsf

)
(x) = f (x + s).

Equation (1.9) involves h(·, w) for all real w, however when w lies off the halfplane Re w � 0,
the integral in (3.6) diverges. In order to obtain the analytical continuation of a(·, w) to the
full complex w-plane, set ζ = −iz. Then

a(y, w) = 1

i

∫ i·∞

0
z sinh

(
4
3z3 − yz

)
ewz2

dz = 1

2i

∫ i·∞

−i·∞
ze

4
3 z3+wz2−yz dz,

and by Cauchy’s theorem we can deform the contour of integration such that

a(y, w) = 1

2i

∫
L

ze
4
3 z3+wz2−yz dz, (3.7)

where L is any contour that starts at the point infinity with argument arg z = −π
3 (see figure 1)

and ends at the conjugated point. We make the following observations. First (3.7) converges
absolutely and uniformly in any compact w domain, hence (3.7) determines the analytic
continuation of a(·, w) to the entire real line and it allows us to consider (3.5) now for all
w ∈ R. Secondly using the definition

Ai(z) = 1

2πi

∫
L

e
1
3 t3−tz dt, z ∈ C,

we obtain (see [4] for a similar computation),

a(y, w) = π

24/3
e

w3

24 + wy

4

(
Ai′
(
2−2/3y + 2−8/3w2

)
+

w

24/3
Ai
(
2−2/3y + 2−8/3w2

))
, w, y ∈ R.

In particular, notice that for y 
 −w2/4 we have, as w → ∞,

a(y, −w) = −
√

π
√

w

8
e− w3

24 − wy

4

∞∑
n,m=0

(
4y

w2

)n(
− 3

2

)m(
2−2/3y + 2−8/3w2

)− 3m
2

×
[(1/4

n

)
dm +

(−1/4
n

)
cm

]
exp

[
− 2

3

(
2−2/3y + 2−8/3w2

)3/2
]
, (3.8)
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Figure 1. The integration contour L chosen in (3.7). The dashed lines are the rays arg z = ± π
6

and arg z = ± π
3 .

with (see [7])

c0 = d0 = 1, cn = �(3n + 1
2 )

54nn!�(n + 1
2 )

, dn = − 6n + 1

6n − 1
cn, n � 1.

We now go back to (3.5) and investigate the kernel Ks(x). We consider it as a function of
both x and s, so let us write

K(x, s) ≡ Ks(x) =
(
(1 − Bs)

−1TsAi
)
(x), x � 0,

which solves the Fredholm integral equation

Ai(x + s) = K(x, s) −
∫ ∞

0
Ai(x + y + s)K(y, s) dy. (3.9)

Recall at this point that the Hankel operator Bs : L2[0, ∞) → L2[0, ∞) is a bounded operator
and 1−Bs is invertible for any fixed s ∈ R. Thus K(x, ·) ∈ L1[0, ∞). In fact, as a consequence
of (3.9), we have K(x, ·) ∈ C∞[0, ∞) ∩ L1[0, ∞) for fixed s ∈ R and

K(x, s) = Ai(x + s)
(
1 + o(1)

)
, x → ∞,

uniformly on any compact subset of {s : −∞ < s < ∞}. For regularity of K(·, s) as a
function in s, we get via Hölder’s inequality and (3.9),

K(·, s) ∈ C∞(R).

To obtain a statement on the large positive and negative s behavior of K(·, s), we can view Bs

equivalently as an operator B acting on L2[s, ∞) with kernel

B(x, y) = Ai(x + y).

A small norm argument for B then shows that K(·, s) is approaching zero exponentially fast
as s → +∞ for any fixed x ∈ R. On the other hand from (3.9), K(·, s) can grow at most
power-like as s → −∞, again for any fixed x ∈ R. For our purposes we are especially
interested in the behavior of K(0, s) as s → −∞. By (3.3), K(0, s) is

K(0, s) = R(0) + Q(0),
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and thus (see [4, 40]),

K(0, s) =
∫ ∞

s

q(t)2 dt + q(s).

Hence (see [19, 40]),

K(0, s) = s2

4

(
1 +

2
√

2

(−s)3/2
− 1

2s3
−

√
2

4(−s)9/2
+ O

(
s−6
))

, as s → −∞. (3.10)

4. Large w expansion of P (w)

We have now gathered enough information to compute the asymptotics of P(w) as w → ∞.
Let us write P(w) as

P(w) = P1(w) + P2(w),

where

P1(w) =
∫ ∞

−∞
F1(s)

[ ∫ ∞

s

h(u, w)a(u, −w) du

]
ds,

P2(w) =
∫ ∞

−∞
F1(s)

[ ∫ ∞

s

h(u, w)

{∫ ∞

0
a(u + 2x, −w)K(x, u) dx

}
du

]
ds.

We first focus on P1(w).

4.1. Expansion of P1(w)

Using (2.11), we have as w → ∞,

P1(w) = π3/2

210/3w3/2
e− w3

24

∫ ∞

−∞

[
F1(s)

∞∑
n=0

1

wn

∫ ∞

s

e− wu
4 −∫∞

u
q(x) dxGn(u, w) du

]
ds,

where

Gn(s, w) = Qn

(
s, q(s), q ′(s)

)(
Ai′
(
2−2/3s + 2−8/3w2

)− w

24/3
Ai
(
2−2/3s + 2−8/3w2

))
. (4.1)

Let us write this as

P1(w) = π3/2

210/3w3/2
e− w3

24

∞∑
n=0

1

wn

∫ ∫
�

Hn(s, u) du ds, (4.2)

with

Hn(s, u) = F1(s)e
− wu

4 −∫∞
u

q(x) dxGn(u, w); � = {
(s, u) ∈ R

2 : −∞ < s � u < ∞}
.

At this point recall the asymptotics from [2], as s → −∞,

F1(s) = τ1e− |s|3
24 − |s|3/2

3
√

2

|s|1/16

(
1 − |s|−3/2

24
√

2
+

55|s|−3

2304
− 10675|s|−9/2

165888
√

2
+

3970225|s|−6

31850496

+ O
(|s|−15/2

))
, τ1 = e

1
2 ζ ′(−1)

211/48
, (4.3)

as well as for u → −∞,

e− ∫∞
u

q(x) dx = 1√
2

e−
√

2
3 |u|3/2

(
1 − |u|−3/2

12
√

2
+

|u|−3

576
− 2629|u|−9/2

20736
√

2
+

10513|u|−6

1990656

+O
(|u|−15/2

))
.
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Since Gn(s, w) has at most polynomial growth as s → −∞ and is exponentially decaying as
s → ∞, we see that Hn(s, u) is indeed integrable over � (here we used that F1(s)e− ∫∞

u
q(x) dx

is bounded as s, u → +∞). Thus we can apply Fubini’s theorem in (4.2) and obtain∫ ∫
�

Hn(s, u) du ds =
∫ ∞

−∞
F(u)e− wu

4 −∫∞
u

q(x) dxGn(u, w) du, (4.4)

where

F(u) :=
∫ u

−∞
F1(s) ds.

For large negative u, we can integrate (4.3) and obtain the following proposition.

Proposition 4.1. As u → −∞,

F(u) = 8τ1

|u|33/16
e− |u|3

24 − |u|3/2

3
√

2

(
1 − 97

√
2

48|u|3/2
− 19337

2304|u|3 +
24666605

√
2

331776|u|9/2

+
1358238769

31850496|u|6 + O
(|u|−15/2

))
, (4.5)

and τ1 is given in (4.3).

Proof. We start with (4.3) and obtain for |u| sufficiently large after a change of variables

F(u) = τ1

∫ ∞

|u|

e− x3

24 − x3/2

3
√

2

x1/16

(
1 − x−3/2

24
√

2
+

55x−3

2304
− 10675x−9/2

165888
√

2

+
3970225x−6

31850496
+ O

(
x−15/2

))
dx. (4.6)

Put t = x3

24 + x3/2

3
√

2
, or equivalently,

x = 81/3
(− 1 +

√
1 + 3t

)2/3
, (4.7)

so that as t → ∞,

x = 241/3t1/3

(
1 − 2t−1/2

3
√

3
+

2

27t
+

5t−3/2

243
√

3
− 16

2187t2
+ O

(
t−5/2

))
and

dx = 241/3

3t2/3

(
1 +

t−1/2

3
√

3
− 4

27t
− 35t−3/2

486
√

3
+

80

2187t2
+ O

(
t−5/2

))
dt.

Substituting (4.7) into (4.6), we obtain

F(u) = τ1245/16

3

∫ ∞

|u|3
24 + |u|3/2

3
√

2

e−t t−11/16
(

1 +
35t−1/2

96
√

3
− 8129

55296t
− 1278127t−3/2

15925248
√

3

+
661165345

18345885696t2
+ O

(
t−5/2

))
dt,

which can be readily integrated by parts to produce (4.5). �

Notice in particular that by (4.3) and (4.5), as u → −∞,

F1(u)

F (u)
= u2

8

(
1 +

2
√

2

|u|3/2
+

33

2|u|3 − 97
√

2

4|u|9/2
− 4791

16|u|6 + O
(|u|−15/2

))
.
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We split the integral in (4.4) in the following way. For some α > 0, which will be specified
more precisely in the following, let∫ ∫

�

Hn(s, u) du ds = I1,n + I2,n, (4.8)

where

I1,n =
∫ −wα

−∞
F(u)e− wu

4 −∫∞
u

q(x) dxGn(u, w) du,

I2,n =
∫ ∞

−wα

F (u)e− wu
4 −∫∞

u
q(x) dxGn(u, w) du.

For I1,n, choose w > 0 sufficiently large and replace F(u) by its asymptotics (4.5):

I1,n = 8τ1

∫ −wα

−∞
e

u3

24 − (−u)3/2

3
√

2
− wu

4 −∫∞
u

q(x) dx
(−u)−33/16Gn(u, w)

(
1 + O

(
(−u)−3/2

))
du

= 8τ1

∫ ∞

wα

e
−
(

t3

24 + t3/2

3
√

2
− wt

4 +
∫∞
−t

q(x) dx
)
t−33/16Gn(−t, w)

(
1 + O

(
t−3/2

))
dt. (4.9)

Since (see [2]) ∫ ∞

−t

q(x) dx =
√

2

3
t3/2 +

1

2
log 2 −

∫ −t

−∞

(
q(x) −

√−x

2

)
dx,

we can use (2.14) and obtain∫ ∞

−t

q(x) dx =
√

2
3 t3/2 + 1

2 log 2 +
√

2
24 t−3/2 + O

(
t−9/2

)
, as t → ∞.

To evaluate (4.9) asymptotically, we use these asymptotics to obtain

I1,n = 4
√

2τ1

∫ ∞

wα

e−
(

t3

24 + t3/2√
2

− wt
4

)
t−33/16Gn(−t, w)

(
1 + O

(
t−3/2

))
dt.

In order to ensure convergence of the integral, we need to impose

1 +
24√

2
t−3/2 − 6w

t2
> 0, as w → ∞,

which can be guaranteed for any α > 1
2 . Let us use the change of variables

u = t3

24
+

t3/2

√
2

− wt

4
, t > 0.

As u → ∞,

t = 241/3u1/3

(
1 −

√
12

3
u−1/2 +

241/3w

12
u−2/3 + O

(
u−1

))
, (4.10)

and we notice that the only critical point of the function u = u(t) as w → ∞ is given by

t0 =
√

2w
(

1 + O
(
w−3/4

))
,

which by the choice α > 1
2 lies not in the domain of integration. Moreover,

dt = 241/3

3
u−2/3

(
1 −

√
12

6
u−1/2 − 241/3w

12
u−2/3 + O

(
u−1

))
du,

and we conclude

I1,n = 4

3

√
2τ124−17/48

∫ ∞

w3α

24 + w3α/2√
2

− wα+1
4

e−uu−65/48Gn

(− t (u), w
)(

1 + O
(
u−1/2

))
du. (4.11)
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Since Gn(−t (u), w) in the integral above grows at most like a polynomial as w → ∞, we
have the estimate

|I1,n| � ce− w3α

24 − w3α/2√
2

+ wα+1

4 |Rn

(
wα
)|, as w → ∞, (4.12)

for some polynomial Rn and c ∈ R.
For I2,n,

I2,n =
∫ ∞

−wα

F (u)e− wu
4 −∫∞

u
q(x) dxGn(u, w) du,

we choose more specific bounds on α, namely 1 < α < 2. Then, as w → ∞,

2−2/3u + 2−8/3w2 → +∞,

and we can use expansion (3.8) for a(u, −w). This gives

Gn(u, w) = −2−2/3

√
w

π
Qn

(
u, q(u), q ′(u)

)
�(u, w)e− 2

3 (2−2/3u+2−8/3w2)3/2
, as w → ∞,

where �(u, w) can be read from (3.8):

�(u, w) = 1

2

∞∑
n,m=0

(
4u

w2

)n(
− 3

2

)m(
2−2/3u + 2−8/3w2

)− 3m
2

[(
1/4
n

)
dm +

(−1/4
n

)
cm

]

= 1 +
1

3w3
+

u2

2w4
+ O

(
w−6

)
, as w → +∞. (4.13)

In general, the coefficient of w−k in the latter series is a polynomial in u of degree at most k/2.
Let us now write

I2,n = −2−2/3

√
w

π
Ln(w),

where

Ln(w) =
∫ ∞

−wα

e−wH(u)Qn

(
u, q(u), q ′(u)

)
�(u, w) du,

and

H(u) ≡ H(u|w) = − 1

w
ln F(u) +

u

4
+

1

w

∫ ∞

u

q(x) dx +
w2

24

(
1 +

4u

w2

)3/2

, u ∈ R.

The derivative of the function H(u) is

H ′(u) = − F1(u)

wF(u)
+

1

4
− q(u)

w
+

1

4

√
1 +

4u

w2
.

As w → ∞, the only zero u0 of the function H ′(u) will lie in a neighborhood of u = −∞, so
we can use proposition 4.1, (4.3) and (2.14) to determine it. The solution is

u0 = −2
√

w
(

1 − 3

2w3/4
− 65

32w3/2
− 3

8w9/4
+ O

(
w−3

))
, as w → ∞, (4.14)

and the integral Ln(w) can be evaluated as w → ∞ by Laplace’s method. Notice that as
w → ∞,

e− wu0
4 − w3

24

(
1+ 4u0

w2

)3/2

= e− w3

24 +w3/2− 3
2 w3/4− 97

32

(
1 +

21

8w3/4
+ O

(
w−3/2

))
,

e− ∫∞
u0

q(x) dx = e3

√
2

e− 4
3 w3/4

(
1 +

35

12w3/4
+ O

(
w−3/2

))
,

F (u0) = 215/16τ1

w33/32
e− w3/2

3 + 5
6 w3/4+ 41

32

(
1 − 25

24w3/4
+ O

(
w−3/2

))
,
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which implies

e−wH(u0|w) = 25/24e
1
2 ζ ′(−1)e5/4

w33/32
e− w3

24 + 2
3 w3/2−2w3/4

(
1 +

9

2
w−3/4 + O

(
w−3/2

))
. (4.15)

Also, (
wH ′′(u0)

)−1/2 =
√

2

w1/4

(
1 +

3

8w3/4
+ O

(
w−3/2

))
, as w → ∞. (4.16)

Combining (4.15) and (4.16), Laplace’s method gives

Ln(w) = 229/54√πe
1
2 ζ ′(−1)e5/4

w41/32
e− w3

24 + 2
3 w3/2−2w3/4

Qn

(
u0, q(u0), q

′(u0)
)

× �(u0, w)

(
1 +

39

8w3/4
+ O

(
w−3/2

))
.

It follows that

I2,n = − 213/24e
1
2 ζ ′(−1)e5/4

w25/32
e− w3

24 + 2
3 w3/2−2w3/4

Qn

(
u0, q(u0), q

′(u0)
)

× �(u0, w)

(
1 +

39

8w3/4
+ O

(
w−3/2

))
, as w → ∞.

From (4.13) and the property that the coefficient of w−k in the asymptotic series for �(u, w)

is a polynomial in u of degree at most k/2, we find

�(u0, w) = 1 + O
(
w−3

)
, as w → ∞. (4.17)

Plugging into (4.2) and (4.8), we obtain

P1(w) = π3/2

210/3w3/2
e− w3

24

∞∑
n=0

1

wn

(
I1,n + I2,n

)
= − π3/2e

1
2 ζ ′(−1)e5/4

w73/32267/24
e− w3

12 + 2
3 w3/2−2w3/4

(
1 +

39

8w3/4
+ O

(
w−3/2

))
×

∞∑
n=0

Qn

(
u0, q(u0), q

′(u0)
)
w−n, (4.18)

where we have used estimate (4.12) which shows that I1,n does not contribute to the leading
order asymptotics when α > 1. Next by proposition 2.1, as w → ∞,

∞∑
n=0

Qn

(
u0, q(u0), q

′(u0)
)
w−n = Q0

(
u0, q(u0), q

′(u0)
)

+
1

w
Q1
(
u0, q(u0), q

′(u0)
)

+ O
(
w−7/4

)
,

and from (2.12),

Q0
(
u0, q(u0), q

′(u0)
) = −v(u0) = − 1

2w1/4

(
1 +

5

8w3/4
+ O

(
w−3/2

))
, as w → ∞,

and

Q1
(
u0, q(u0), q

′(u0)
) = − 3

2 + O
(
w−3/4

)
.
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Thus
∞∑

n=0

Qn

(
u0, q(u0), q

′(u0)
)
w−n = − 1

2w1/4

(
1 +

29

8w3/4
+ O

(
w−3/2

))
, as w → ∞.

(4.19)

Combining this with (4.18) we find, as w → ∞,

P1(w) = κe− w3

12 + 2
3 w3/2−2w3/4

w−81/32

(
1 +

17

2w3/4
+ O

(
w−3/2

))
, (4.20)

with

κ = 2−91/24π3/2e
1
2 ζ ′(−1)e5/4. (4.21)

We now turn our attention to P2.

4.2. Expansion of P2(w)

Following the philosophy of the previous subsection, write

P2(w) = π3/2

210/3w3/2
e− w3

24

∞∑
n=0

1

wn

∫ ∫ ∫
�̂

Ĥn(s, u, x) dx du ds,

with

Ĥn(s, u, x) = F1(s)e
− w(u+2x)

4 −∫∞
u

q(t) dt G̃n(u, w, x),

G̃n(u, w, x) = Qn

(
u, q(u), q ′(u)

)(
Ai′
(

u + 2x

22/3
+

w2

28/3

)
− w2

24/3
Ai

(
u + 2x

22/3
+

w2

28/3

))
×K(x, u),

and the domain of integration

�̂ = {
(s, u, x) ∈ R

3 : −∞ < s � u < ∞, x � 0
}
.

Recalling the behavior of K(x, u) as we approach the boundary of �̂, we can again apply
Fubini’s theorem to obtain∫ ∫ ∫

�̂

Ĥn(s, u, x) dx du ds =
∫ ∞

−∞
F(u)e− wu

4 −∫∞
u

q(t) dt Ĝn(u, w) du,

where (compare (4.1))

Ĝn(u, w) =
∫ ∞

0
G̃n(u, w, x)K(x, u) dx

= Qn

(
u, q(u), q ′(u)

)
×
∫ ∞

0
e− wx

2

[
Ai′
(

u + 2x

22/3
+

w2

28/3

)
− w2

24/3
Ai

(
u + 2x

22/3
+

w2

28/3

)]
K(x, u) dx.

(4.22)

Introducing 1 < α < 2, we again split the integral as∫ ∫ ∫
�̂

Ĥn(s, u, x) dx du ds = Î1,n + Î2,n

≡
∫ −wα

−∞
F(u)e− wu

4 −∫∞
u

q(t) dt Ĝn(u, w) du +
∫ ∞

−wα

F (u)e− wu
4 −∫∞

u
q(t) dt Ĝn(u, w) du.
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For Î1,n we follow the same steps as for I1,n and conclude (see (4.11)),

Î1,n = 4

3

√
2τ124−17/48

∫ ∞

w3α

24 + w3α/2√
2

− wα+1
4

e−uu−65/48Ĝn

(− t (u), w)
)(

1 + O
(
u−1/2

))
du,

with t = t (u) given in (4.10). Also here, Ĝn(u, w) grows at most like a polynomial as
u → −∞, hence we have the estimate

|Î1,n| � ĉe− w3α

24 − w3α/2√
2

+ wα+1

4 |R̂n(w
α)|, as w → ∞,

for some polynomial R̂n.
For Î2,n we can replace the Airy functions in (4.22) with their large argument asymptotics,

giving

Ĝn(u, w) = −2−2/3

√
w

π

∫ ∞

0
e−wJ(u,x|w)�(u + 2x, w)K(x, u) dx,

with

J (u, x) ≡ J (u, x|w) = x

2
+

w2

24

(
1 +

4(u + 2x)

w2

)3/2

.

Plugging this into the integral Î2,n gives

Î2,n = −2−2/3

√
w

π

∫ ∫
D

e−w(Ĥ (u|w)+J (u,x|w))Qn

(
u, q(u), q ′(u)

)
�(u + 2x, w)K(x, u) dx du,

where the domain of integration D equals

D = {
(u, x) ∈ R

2 : −wα < u < ∞, x � 0
}
,

where α ∈ (1, 2) is fixed, and Ĥ = Ĥ (u|w) is given by

Ĥ (u|w) = − 1

w
ln F(u) +

u

4
+

1

2

∫ ∞

u

q(x) dx.

Since

∂

∂u

(
Ĥ (u|w) + J (u, x|w)

) = − F1(u)

wF(u)
+

1

4
− q(u)

w
+

1

4

√
1 +

4(u + 2x)

w2
,

∂

∂x

(
Ĥ (u|w) + J (u, x|w)

) = 1

2
+

1

2

√
1 +

4(u + 2x)

w2
> 0,

we see that Ĥ (u|w) + J (u, x|w) has no critical point in the interior of D. However its partial
derivative with respect to u vanishes in a neigbhorhood of (−∞, x). More precisely, it vanishes
for u = u0(x), where

u0(x) = −2
√

w

(
1 − 3

2w3/4
− 65

32w3/2
+

x

w2
− 3

8w9/4
+

3x

4w11/4
+ O

(
w−3

))
,

as w → ∞.

Notice that u0(0) = u0 as given in (4.14). Laplace’s method now indicates that we need to
expand the integrand of Î2,n in a neighborhood of the point (u0(0), 0). First,

Ĥ (u|w) + J (u, x|w) = H(u0|w) + Jx(u0, 0|w)x

+
1

2
(u − u0, x)M(u0, 0|w)

(
u − u0

x

)
+ O

(
(u − u0)

3x3
)
,
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which is valid in a neighborhood of (u0(0), 0), with M(u, x|w) denoting the Hessian matrix
of Ĥ (u|w) + J (u, x|w). Since the mixed partial Jxu differs from Jxx by a factor of 1/2, we
have

M(u0, 0|w) =
(

H ′′(u0)
1
2Jxx(u0, 0)

1
2Jxx(u0, 0) Jxx(u0, 0)

)
, Jxx(u0, 0) = 2

w2

(
1 +

4u0

w2

)−1/2

,

and therefore,

M(u0, 0|w) = 1

2
√

w

[(
1 0
0 0

)
− 3

4w3/4

(
1 0
0 0

)
+

1

2w3/2

(−7 4
4 8

)
− 9

64w9/4

(
1 0
0 0

)
+ O

(
w−5/2

)]
, as w → ∞.

Here we have used that (compare (4.16))

H ′′(u0) = 1

2
√

w

(
1 − 3

4w3/4
− 7

2w3/2
− 9

64w9/4
+ O

(
w−5/2

))
, as w → ∞.

Moving on with Laplace’s method, we have

Î2,n = − 2−2/3

√
w

π

∫ ∫
D

e−w(Ĥ (u,w)+J (u,x|w))Qn

(
u, q(u), q ′(u)

)
�(u + 2x, w)K(x, u) dx dx

= − 2−2/3

√
w

π
e−wH(u0|w)Qn

(
u0, q(u0), q

′(u0)
)
�(u0, w)K(0, u0)

∫ ∞

0
e−wJx(u0,0|w)x dx

×
∫ ∞

−∞
e
−

√
w

4

(
1− 3

4w3/4

)
u2

du
(

1 + O
(
w−1

))
.

The integrals in the above expression can be expanded for large w as∫ ∞

0
e−wJx(u0,0|w)x dx = 1

w

(
1 − 2

w3/2
+ O

(
w−9/4

))
and ∫ ∞

−∞
e
−

√
w

4

(
1− 3

4w3/4

)
u2

du = 2
√

π

w1/4

(
1 +

3

8w3/4
+

27

128w3/2
+ O

(
w−9/4

))
.

Combining with (4.15), we obtain

Î2,n = − 213/24e
1
2 ζ ′(−1)e5/4

w57/32
e− w3

24 + 2
3 w3/2−2w3/4

Qn

(
u0, q(u0), q

′(u0)
)

× �(u0, w)K(0, u0)

(
1 +

39

8w3/4
+ O

(
w−3/2

))
.

Applying the same arguments as in the computation of P1(w), we get from (4.17) and (4.19)

P2(w) = π3/2

210/3w3/2
e− w3

24

∞∑
n=0

1

wn

(
Î1,n + Î2,n

)
= κe− w3

12 + 2
3 w3/2−2w3/4

w−113/32K(0, u0)

(
1 +

17

2w3/4
+ O

(
w−3/2

))
, (4.23)

with κ given in (4.21). At this point recall (3.10), which gives

K(0, u0) = w

(
1 − 2

w3/4
+ O

(
w−3/2

))
, as w → ∞.

Inserting this asymptotics into (4.23), we find

P2(w) = κe− w3

12 + 2
3 w3/2−2w3/4

w−81/32

(
1 +

13

2w3/4
+ O

(
w−3/2

))
. (4.24)
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4.3. Asymptotic expansion of P(w)

Since P(w) = P1(w) + P2(w), we add (4.20) and (4.24), which leads us to

P(w) = 2κe− w3

12 + 2
3 w3/2−2w3/4

w−81/32

(
1 +

15

2w3/4
+ O

(
w−3/2

))
, as w → ∞,

with the constant κ

κ = 2−91/24π3/2e
1
2 ζ ′(−1)e5/4.

Plugging into (1.13), we get theorem 1.1.

5. Proof of corollary 1.2

Since P̂ (·, t) is an even function, see (1.4) or (1.10) and (1.11), we use the symmetry of the
density function P̂ (t). As t → ∞,

P(|T | > t) = 2
∫ ∞

t

P̂ (s) ds

= 2τ

∫ ∞

t

e− 4
3 ϕ(s)s−81/32

(
1 +

15

4s3/4
+ O

(
s−3/2

))
ds.

Let us use the change of variables

u = ϕ(t) = t3 − 2t3/2 + 3t3/4.

As u → ∞,

t = 3
√

u

(
1 +

2

3u1/2
− 1

u3/4
+ O

(
u−1

))
, dt = 1

3u2/3

(
1 − 1

3u1/2
+

5

4u3/4
+ O

(
u−1

))
du,

and we obtain

P(|T | > t) = 2τ

3

∫ ∞

ϕ(t)

e− 4
3 uu−145/96

(
1 +

15

4u1/4
+ O

(
u−1/2

))
du.

The latter integral can be readily integrated by parts and we obtain (1.15).
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Appendix A. Riemann–Hilbert problem for Φ

As mentioned in section 2, the matrix function 
(ζ ; s) described in that section can be defined
as the solution to a Riemann–Hilbert problem (RHP). The exact formulation of this RHP is as
follows. Define the rays �j for j = 1, 2, 3, 4 as

�1 = {ζ : arg ζ = π/6}, �2 = {ζ : arg ζ = 5π/6},
�3 = {ζ : arg ζ = −5π/6}, �4 = {ζ : arg ζ = −π/6},

and give them the orientation from left to right, as shown in figure 2. The plus- (respectively
minus-) side of the contour is then the side which lies to the left (respectively right) side of the
contour when facing in the direction of the orientation, as shown in figure 2. The RHP consists
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Figure 2. The jump contour associated with the 
-RHP.

in finding the piecewise analytic 2 × 2 matrix function 
(ζ ; s) = (
ψij (ζ ; s)

)2
i,j=1 such that

(1) 
(ζ ; s) is analytic for ζ ∈ C \ ∪4
j=1�j .

(2) For ζ ∈ ∪4
j=1�j , 
(ζ ; s) takes limiting values from the plus- and minus-sides, and these

limiting values are related by


+(ζ ; s) = 
−(ζ ; s)j
(ζ ),

where

j
(ζ ) =


j1 = 1

2

(
3 i

i 1

)
ζ ∈ �1 ∪ �2,

j2 = 1
2

(
1 i

i 3

)
ζ ∈ �3 ∪ �4.

(3) As ζ → ∞


(ζ ; s) = (
I + O(ζ−1)

) (cos
(

4
3ζ 3 + sζ

)
sin
(

4
3ζ 3 + sζ

)
− sin

(
4
3ζ 3 + sζ

)
cos

(
4
3ζ 3 + sζ

)) .

(4) 
(ζ, s) is bounded for ζ close to the origin.

This RHP is uniquely solvable [9], and the vector 
(ζ, s) defined in (1.6) is the first
column of 
. That is,


1(ζ ; s) = ψ11(ζ ; s), 
2(ζ ; s) = ψ21(ζ ; s).

Since the jump matrices satisfy the symmetry relation

j−1
1 = σ3j2σ3, σ3 =

(
1 0
0 −1

)
,

we also have


(−ζ ; s) = σ3
(ζ ; s)σ3, ζ ∈ C, s ∈ R,

which is (2.4).
To justify (2.5), we appeal to a result from the paper [5] of Baik and Rains. In that paper

the authors consider a different RHP for a different Lax pair for the Painlevé II equation. Our
RHP can be transformed to theirs by a series of explicit transformations. After doing so,
equation (2.5) is equivalent to lemma 2.1 (iii) in [5].
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Appendix B. The formula of Dotsenko

Using the so-called replica Bethe ansatz, Dotsenko recently derived a formula for the
distribution of the fluctuations of the endpoint of a continuum directed polymer in a random
medium. In this appendix we show that his formula coincides with the known formulae
of [32, 37] for T , given in this paper in equations (1.4) and (1.10), respectively. In his article
[20], Dotsenko derives an expression for the distribution function W(x) for the fluctuations
of a directed polymer’s endpoint. The conjectured relation between W(x) and the density
function for T is

W(x) =
∫ ∞

x

P (w) dw, or equivalently W(x) =
∫ ∞

x

∫ ∞

−∞
1
4 P̂ (2−2/3m, 2−4/3t) dm dt,

(B.1)

where P(w) and P̂ (m, t) are defined in (1.14) and (1.4), respectively. The formula of Dotsenko
is (see equations (6), (7) and (8) in [20])

W(x) =
∫ ∞

−∞
F1(s)

[∫ ∞

0

∫ ∞

0
ρs(ω, ω′)
ω′ω(s, x) dω dω′

]
ds, (B.2)

where F1 is the Tracy–Widom GOE distribution function, and Bs and ρs are as defined in (1.2)
and (1.3), respectively. The function 
ωω′ is given as the integral


ωω′(s, x) = − 1

2

∫ ∞

0

[(
∂

∂ω
− ∂

∂ω′

)

(ω +

s

2
+ y; x)
(ω′ +

s

2
+ y; −x)

+

(
∂

∂ω
+

∂

∂ω′

)

(ω +

s

2
− y; x)
(ω′ +

s

2
+ y; −x)

]
dy, (B.3)

with


(ω; x) = 1

2πi

∫
L

exp

[
z3

6
− x

4
z2 − ωz

]
dz, (B.4)

and L is any contour that starts at the point infinity with argument arg z = −π/3 and ends
at the conjugated point. Notice that we have used slightly different variables than in [20]. In
order to prove relation (B.1), we need to show that for any t ∈ R,

− W ′(t) = 1

4

∫ ∞

−∞
P̂ (2−2/3m, 2−4/3t) dm. (B.5)

From a quick examination of (1.4) and (B.2), one sees that (B.5) holds given the following
lemma, which is subsequently proven.

Lemma Appendix B.1. For any x1, x2 � 0, m ∈ R, and t ∈ R,

− ∂

∂t

x2x1(m, t) = 2−5/3ψ(21/3x1; −2−4/3t, 2−2/3m)ψ(21/3x2; 2−4/3t, 2−2/3m). (B.6)

Proof. Consider first the right-hand side of (B.6). Since

Ai(z) = 1

2πi

∫
L

e
1
3 t3−tz dt, z ∈ C,

we have

ψ
(
21/3x; −2−4/3t, 2−2/3m

) = e− xt
2

πi

∫
L

(− 2−4/3t − ζ
)
e

ζ3

3 −ζ(2−8/3t2+2−2/3m+21/3x)dζ,
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which after the change of variables ζ = 2−1/3η − 2−4/3t , simplifies to

ψ
(
21/3x; −2−4/3t, 2−2/3m

) = −2−2/3

πi
e

t3

24 + tm
4

∫
L

ηe
η3

6 −η(x+ m
2 )− t

4 η2
dη.

The right hand side of (B.6) can now be written as

2−5/3ψ(21/3 x1; −2−4/3t, 2−2/3m)ψ(21/3x2; 2−4/3t, 2−2/3m)

= − 1

8π2

∫
L

∫
L

η1η2e
η3

1+η3
2

6 −η1(x1+ m
2 )−η2(x2+ m

2 )− t
4 (η2

1−η2
2)dη1 dη2. (B.7)

For the left-hand side of (B.4) we have



(
x2 +

m

2
+ y; t

)


(
x1 +

m

2
+ y; −t

)
= − 1

4π2

∫
L

∫
L

e
ζ3
1 +ζ3

2
6 −ζ1(x2+ m

2 )−ζ2(x1+ m
2 )− t

4 (ζ 2
1 −ζ 2

2 )−y(ζ1+ζ2)dζ1 dζ2,

and



(
x2 +

m

2
− y; t

)


(
x1 +

m

2
+ y; −t

)
= − 1

4π2

∫
L

∫
L

e
ζ3
1 +ζ3

2
6 −ζ1(x2+ m

2 )−ζ2(x1+ m
2 )− t

4 (ζ 2−ζ 2
2 )+y(ζ1−ζ2) dζ1 dζ2.

Plugging these formulae into (B.3) and interchanging differentiation and integration, we obtain


x2x1(m, t) = − 1

8π2

∫ ∞

0

[∫
L

∫
L

e
ζ3
1 +ζ3

2
6 −ζ1(x2+ m

2 )−ζ2(x1+ m
2 )− t

4 (ζ 2
1 −ζ 2

2 )

×
(

e−y(ζ1+ζ2)
(
ζ1 − ζ2

)
+ ey(ζ1−ζ2)

(
ζ1 + ζ2

))
dζ1 dζ2

]
dy. (B.8)

The function

f (y) := e−y(ζ1+ζ2)
(
ζ1 − ζ2

)
+ ey(ζ1−ζ2)

(
ζ1 + ζ2

)
, ζi ∈ L, ζ1 
= ζ2,

is integrable over [0, ∞) since for ζi ∈ L we have Re ζi > 0, and if Re ζ1 < Re ζ2, then∣∣f (y)
∣∣ � C Re(ζ2)e

−yRe(ζ2−ζ1).

On the other hand for Re ζ1 > Re ζ2 we have for δ > 0,∣∣f (y)
∣∣ � C Re(ζ1)

(
e−2yRe(ζ1) + e−yδ

)
,

hence integrability follows. Since for ζ1 
= ζ2,∫ ∞

0
f (y) dy = ζ1 − ζ2

ζ1 + ζ2
− ζ1 + ζ2

ζ1 − ζ2
= − 4ζ1ζ2

ζ 2
1 − ζ 2

2

,

we can use Fubini’s theorem in (B.8) to obtain


x2x1(m, −t) = 1

2π2

∫
L

∫
L

ζ1ζ2

ζ 2
1 − ζ 2

2

e
ζ3
1 +ζ3

2
6 −ζ1(x2+ m

2 )−ζ2(x1+ m
2 )+ t

4 (ζ 2
1 −ζ 2

2 ) dζ1 dζ2.

This integral appears singular, but one of the contours L could be deformed from the beginning
such that ζ1 and ζ2 never coincide. Now differentiating with respect to t (and exchanging
integration and differentiation) gives

∂

∂t

x2x1(m, −t) = 1

8π2

∫
L

∫
L

ζ1ζ2 e
ζ3
1 +ζ3

2
6 −ζ1(x2+ m

2 )−ζ2(x1+ m
2 )+ t

4 (ζ 2
1 −ζ 2

2 ) dζ1 dζ2.

Comparing the last line with (B.7), we have shown
∂

∂t

x2x1(m, −t) = 2−5/3ψ(21/3x1; −2−4/3t, 2−2/3m)ψ(21/3x2; 2−4/3t, 2−2/3m).

The change of variables t �→ −t gives (B.6). �
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