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Six-vertex model with partial domain wall boundary
conditions: Ferroelectric phase
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We obtain an asymptotic formula for the partition function of the six-vertex model with
partial domain wall boundary conditions in the ferroelectric phase region. The proof
is based on a formula for the partition function involving the determinant of a matrix
of mixed Vandermonde/Hankel type. This determinant can be expressed in terms of
a system of discrete orthogonal polynomials, which can then be evaluated asymp-
totically by comparison with the Meixner polynomials. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4908227]

I. INTRODUCTION

We consider the six-vertex model on a rectangular lattice of size (n − m) × n for any positive
integer n and any integer m with 0 ≤ m < n. The states of the model are realized by placing arrows
on edges of the lattice obeying the ice rule, meaning that at each vertex there are exactly two arrows
pointing in and two arrows pointing out. There are six possible configurations of arrows at each
vertex, and we label the six vertex types as shown in Fig. 1. The partial domain wall boundary
conditions (pDWBC) are defined in the following way. On the left and right boundaries all arrows
point out of the lattice, and on the bottom boundary all arrows point in. The top boundary is free,
and the ice-rule implies that there are exactly m arrows pointing out on this boundary, and the
remaining (n − m) arrows point in. In Fig. 2 below, an example of the arrow configuration with the
partial domain wall boundary conditions is shown on the 3 × 5 lattice.

For each of the six vertex types, we assign a weight wi, i = 1, . . . ,6, and define the weight of an
arrow configuration as the product of the weights of the vertices in the configuration. That is, for a
configuration σ of arrows, its weight w(σ) is defined to be

w(σ) =


x∈Vn−m,n

wt(x;σ) =
6
j=1

w
Ni(σ)
i , (1)

where Vn−m,n is the set of vertices in the lattice, t(x;σ) is the type of vertex at the vertex x ∈ Vn−m,n

in the configuration σ, and Ni(σ) is the number of vertices of type i in the configuration σ. The
Gibbs measure on states is then defined as

µ(σ) = w(σ)
Zn−m,n

, Zn−m,n ≡ Zn−m,n(w1, w2, w3, w4, w5, w6) =

σ

w(σ), (2)

where Zn−m,n is the partition function, and the sum is over all configurations obeying the pDWBC.
When m = 0, the pDWBC reduces to the domain wall boundary conditions on the n × n lat-

tice,1 and the asymptotic expansion of the partition function Zn,n as n → ∞ has been studied in
detail in a series of papers by the first author of the current paper and various coauthors. For a
complete description, see the monograph2 of the current authors. The main purpose of the current
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FIG. 1. The six types of vertices allowed under the ice-rule.

work is to obtain an asymptotic expansion for the pDWBC partition function as well. Let us also
note that the pDWBC partition function has recently appeared in the literature as an expression for
certain quantities related to the XXX spin chain, and related models in mathematical physics, see
Refs. 3 and 4 and references therein.

A. Conservation laws and reduction of parameters

A priori the six-vertex model has six parameters: the weights w1, . . . , w6. By observing some
quantities which are conserved in each state, we can reduce the number of parameters to three.
Namely, we have the following proposition.

Proposition 1.1. In the six-vertex model on the (n − m) × n lattice, the following equations hold
for every state σ satisfying pDWBC:

N1(σ) + N2(σ) + N3(σ) + N4(σ) + N5(σ) + N6(σ) = n(n − m),
N5(σ) − N6(σ) = n − m,

N1(σ) − N2(σ) + N4(σ) − N3(σ) = m(n − m).
(3)

The first equation in (3) is trivial and simply counts the total number of vertices. The second
equation follows from the fact that in each row there is one more type-5 vertex than type-6 vertex,

FIG. 2. An example of the arrow configuration with the partial domain wall boundary conditions on the 3×5 lattice.
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which is a direct consequence of the domain wall boundary condition in each row. We prove the
third equation in Appendix A in the end of the paper.

Remark: In the case m = 0, the third equation of (3) can be split into the two equations
N1(σ) − N2(σ) = N4(σ) − N3(σ) = 0, giving four conserved quantities. In this case, the general
six-vertex model can be reduced to two parameters, see Refs. 2 and 5.

Let us now discuss how to use Proposition 1.1 to reduce the number of parameters. Let us write

w1 = ae−α, w2 = aeα, w3 = be−β, w4 = beβ, w5 = ce−ξ, w6 = ceξ, (4)

where

a =
√
w1w2, eα =


w2

w1
, b =

√
w3w4, eβ =


w4

w3
,

c =
√
w5w6, eξ =


w6

w5
.

(5)

Then

w
N1
1 w

N2
2 w

N3
3 w

N4
4 w

N5
5 w

N6
6 = aN1+N2bN3+N4cN5+N6eα(N2−N1)+β(N4−N3)+ξ(N6−N5). (6)

Let

α = η + θ, β = η − θ; η =
α + β

2
, θ =

α − β

2
. (7)

Then

w
N1
1 w

N2
2 w

N3
3 w

N4
4 w

N5
5 w

N6
6 = aN1+N2bN3+N4cN5+N6

× eη(N2−N1+N4−N3)+θ(N2−N1−N4+N3)+ξ(N6−N5).
(8)

Using the second and third equations of (3), we obtain that

w
N1
1 w

N2
2 w

N3
3 w

N4
4 w

N5
5 w

N6
6 = aN1+N2bN3+N4cN5+N6eη(N2−N1+N4−N3)−θm(n−m)−ξ(n−m)

= (ae−η)N1(aeη)N2(be−η)N3(beη)N4cN5cN6e−θm(n−m)−ξ(n−m).
(9)

From (5), (7),

e−θ =
(
w1w4

w2w3

)1/4

, e−ξ =
(
w5

w6

)1/2

, (10)

hence

w
N1
1 w

N2
2 w

N3
3 w

N4
4 w

N5
5 w

N6
6 = (ae−η)N1(aeη)N2(be−η)N3(beη)N4cN5cN6

×
(
w1w4

w2w3

)m(n−m)/4(
w5

w6

) (n−m)/2

.
(11)

This implies the relation between partition functions,

Zn−m,n(w1, w2, w3, w4, w5, w6) =
(
w1w4

w2w3

)m(n−m)/4(
w5

w6

) (n−m)/2

× Zn−m,n(ae−η,aeη,be−η,beη,c,c),
(12)

and between Gibbs measures,

µ(σ; w1, w2, w3, w4, w5, w6) = µ(σ; ae−η,aeη,be−η,beη,c,c). (13)

Furthermore, using the first equation of (3), we have

Zn−m,n(ae−η,aeη,be−η,beη,c,c) = cn(n−m)Zn−m,n

(
ae−η

c
,
aeη

c
,

be−η

c
,

beη

c
,1,1

)
,

µ(σ; ae−η,aeη,be−η,beη,c,c) = µ

(
σ;

ae−η

c
,
aeη

c
,

be−η

c
,

beη

c
,1,1

)
,

(14)
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and so the model reduces to the three parameters, a
c
, b

c
, and η.

B. The main result: Asymptotics of the partition function

Fix two real parameters t and γ, with 0 < |γ | < t, and introduce the parameterization of a, b, c
as

a = sinh(t − γ) , b = sinh(t + γ) , c = sinh(2|γ |). (15)

Set

a± = e±γa , b± = e±γb . (16)

In the current work, we consider the partition function

Zn−m,n(a−,a+,b−,b+,c,c) = Zn−m,n(ae−γ,aeγ,be−γ,beγ,c,c), (17)

depending on the two parameters, t and γ. It is a specialization of the three parameter family,
Zn−m,n(ae−η,aeη,be−η,beη,c,c) in (12) to the case when η = γ.

Notice that 0 < γ < t corresponds to the regime

b−b+ > a−a+ + c2 , (18)

and γ < 0 < |γ | < t, corresponds to the regime

a−a+ > b−b+ + c2 . (19)

These two regimes are natural extensions of the two components of the ferroelectric regime consid-
ered in Ref. 5. Without loss of generality, we will consider only the component (18) corresponding
to 0 < γ < t.

Remark: According to the conservation laws (3),

Zn−m,n(a−,a+,b−,b+,c,c) = e−γm(n−m)Zn−m,n(a,a,e−2γb,e2γb,c,c)
= e−m(n−m)γan(n−m)Zn−m,n

(
1,1,

e−2γb
a

,
e2γb

a
,

c
a
,

c
a

)
,

(20)

where the weights in the latter equation match the weights which appear in Ref. 4 after a simple
change of variables.

Our main results concern the asymptotic behavior of the partition function Zn−m,n as n → ∞.

Theorem 1.2. Fix two parameters t, γ with 0 < t < γ, and let

Zn−m,n ≡ Zn−m,n(a−,a+,b−,b+,c,c), (21)

where a±,b±, and c are as in (15), (16). Fix any ε > 0. Then there is a constant κ > 0 such that as
n → ∞,

Zn−m,n = [sinh(t + γ)]n(n−m)em(n−m)γ e−(n−m)(t−γ)�1 + O(e−κn)�, (22)

uniformly with respect to m in the interval

nε ≤ m < n. (23)

Remark. Observe that there is no constant factor in (22), i.e., the constant factor is 1. In addi-
tion, the error term is exponentially small. This should be compared with the paper Ref. 5 (see also
Ref. 2), where a similar result was obtained for m = 0.

The case of m ≤ nε, including when m remains bounded, is covered by the following theorem.

Theorem 1.3. Fix the parameters of the six-vertex model as in Theorem 1.2. For any ε > 0,
there is a constant n0 > 0 such that for any n ≥ n0 and any 0 ≤ m < n,

Zn−m,n = C(m)[sinh(t + γ)]n(n−m)em(n−m)γ e−(n−m)(t−γ)�1 + ξnm
�
, (24)
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where

C(m) = 1 − e−4γ(m+1), (25)

and

|ξnm| ≤ ρme−n
1−ε

, ρ = e−2γ < 1. (26)

The proofs of Theorems 1.2 and 1.3 are based on a determinantal formula for Zn−m,n and esti-
mates for corresponding orthogonal polynomials. In fact, Theorem 1.2 follows from Theorem 1.3,
but the proof of Theorem 1.3 is more involved, and to facilitate the reading we will first prove
Theorem 1.2.

It is interesting to notice that the limiting free energy per site F depends on the aspect ratio
r = n−m

n
of the rectangular lattice of size (n − m) × n. Namely, from (24),

F = lim
n,m→∞; n−m

n → r

1
(n − m)n ln Zn−m,n = ln[sinh(t + γ)] + (1 − r)γ. (27)

Indeed, F is determined entirely by the weight of the ground state configuration. Before proceeding
with the proof of Theorems 1.2 and 1.3, let us briefly discuss the ground state.

C. Ground state configuration

The ground state configuration is the one with the largest weight. For the weights described in
Theorem 1.2, the weight of a configuration σ is

w(σ) = (a−)N1(σ)(a+)N2(σ)(b−)N3(σ)(b+)N4(σ)(c)N5(σ)+N6(σ)

= e−γ(N1(σ)−N2(σ))e−γ(N3(σ)−N4(σ))aN1(σ)+N2(σ)bN3(σ)+N4(σ)cN5(σ)+N6(σ).
(28)

Using the conservation laws (3), we can write (28) as

w(σ) = e−m(n−m)γe2γ(N4(σ)−N3(σ))aN1(σ)+N2(σ)bN3(σ)+N4(σ)cN5(σ)+N6(σ). (29)

Since b > a + c, we see that the ground state configuration is the one which maximizes both
N4 + N3 and N4 − N3. This is achieved by placing type-5 vertices along the up-left diagonal starting
from the bottom-right corner. Above this diagonal, all arrows point down or right, and so all vertices
are of type 3. Below and to the left of this diagonal, all arrows point up or left, and so all vertices are
of type 4. See Fig. 3 for the ground state configuration on the 4 × 7 lattice. The diagonal of type-5
vertices is circled.

FIG. 3. The ground state configuration on the 4×7 lattice. On the circled diagonal all vertices are of type 5. To the right of
this diagonal all vertices are of type 3, and to the left of it all vertices are of type 4.
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The weight of the ground state configuration σgs is

w(σgs) = (b+)(n−m)(n+m−1)/2(b−)(n−m)(n−m−1)/2cn−m

= em(n−m)γb(n−m)(n−1)cn−m

= bn(n−m)em(n−m)γ
( c

b

)n−m
.

(30)

Comparing (22) and (24) with (30) we find that as m,n → ∞,

Zn−m,n

w(σgs) =
(

e2γ − e−2t

e2γ − e−2γ

)n−m
(1 + ξnm), (31)

where ξnm is estimated in Theorem 1.3. A comparison of (22) or (24) with (30) shows that the
limiting free energy per site F defined in (27) comes entirely from the ground state configuration.
This was known for m = 0, see Ref. 5.

D. Outline of the rest of the paper

The rest of the paper is organized as follows. In Sec. II, we state the determinantal formula for
the partition function Zn−m,n, and use it to write a formula for Zn−m,n in terms of certain orthogonal
polynomials on the positive integer lattice. In Sec. III, we recall the Meixner polynomials, and in
Sec. IV, we introduce the Interpolation Problem (IP) in order to compare our orthogonal polyno-
mials with the Meixner ones. In Secs. V and VI, we prove Theorem 1.2 by a careful comparison of
the normalizing constants for our orthogonal polynomials with those of the Meixner polynomials.
In Sec. VII, the analogous analysis is carried out for the proof of Theorem 1.3, and in Secs. VIII
and IX, the proof of Theorem 1.3 is completed by finding an explicit formula for the constant term
C(m) using the Toda equation. Finally, Sec. X gives a short discussion of the phase transition in the
underlying orthogonal polynomials.

II. AN ORTHOGONAL POLYNOMIAL FORMULA FOR Zn−m,n

Introduce the notations

ϕ(t) := sinh(t − γ) sinh(t + γ) = ab ,

φ(t) : =
sinh(2γ)

sinh(t − γ) sinh(t + γ) =
c

ab
.

(32)

The starting point for our analysis is the following determinantal formula for the partition function.

Proposition 2.1. For the six-vertex model on the (n − m) × n lattice with pDWBC and weights
as described in (15) and (16), the partition function Zn−m,n is given by the following formula:

Zn−m,n =
(−1)m(m+1)/2−nmϕ(t)n(n−m)em(n−m)t

2m(m−1)/2 n−m−1
j=0 j!

n−1
j=0 j!

τn−m,n, (33)

where

τn−m,n B det

*................
,

1 (−2) (−2)2 . . . (−2)n−1

...
...

...
. . .

...

1 (−2m) (−2m)2 . . . (−2m)n−1

φ(t) φ′(t) φ′′(t) . . . φ(n−1)(t)
φ′(t) φ′′(t) φ′′′(t) . . . φ(n)(t)
...

...
...

. . .
...

φ(n−m−1)(t) φ(n−m)(t) φ(n−m+1)(t) . . . φ(2n−m−2)(t)

+////////////////
-

(34)
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is a determinant of mixed Vandermonde/Hankel type.

This proposition follows from the Izergin–Korepin formula for the partition function of the
inhomogeneous six-vertex model with domain wall boundary conditions on the square lattice.6,7 A
similar formula for the inhomogeneous six-vertex model was derived in Ref. 4. For completeness,
we present a proof in Appendix B. When m = 0, it simplifies to the usual formula for the partition
function of the six-vertex model with domain wall boundary conditions:

Zn,n =
[ϕ(t)]n2n−1
j=0 ( j!)2 τn,n, τn,n = det

�
φ j+k−2(t)�n

j,k=1. (35)

Remark: The proof of Proposition 2.1 relies on the particular parametrization (15) and (16)
of the weights. For the general class of weights (12), there does not seem to be any determi-
nantal formula for the partition function unless η = γ. See the remark following the proof of
Lemma B.1

It is straightforward that for 0 < γ < t, the function φ(t) can be represented as the discrete
Laplace transform

φ(t) = 2
∞
x=1

u(x) , u(x) B 2e−2t x sinh(2γx) = e−2(t−γ)x − e−2(t+γ)x . (36)

Indeed,

2
∞
x=1

u(x) = 2
∞
x=1

(
e−2(t−γ)x − e−2(t+γ)x) = 2


e−2(t−γ)

1 − e−2(t−γ) −
e−2(t+γ)

1 − e−2(t+γ)



=
2
�
e−2(t−γ) − e−2(t+γ)�

�
1 − e−2(t−γ)� �1 − e−2(t+γ)� =

sinh(2γ)
sinh(t − γ) sinh(t + γ) = φ(t) . (37)

From (36),

φ(k)(t) = 2
∞
x=1

(−2x)ku(x), (38)

and by multi-linearity of the determinant, we obtain from (34) that

τn−m,n = 2n−m
∞

x1, ...,xn−m=1

det

*......................
,

1 (−2) . . . (−2)n−1

1 (−4) . . . (−4)n−1

...
...

. . .
...

1 (−2m) . . . (−2m)n−1

1 −2x1 . . . (−2x1)n−1

−2x2 (−2x2)2 . . . (−2x2)n
...

...
. . .

...

(−2xn−m)n−m−1 (−2xn−m)n−m . . . (−2xn−m)2n−m−2

+//////////////////////
-

×
n−m
j=1

u(x j)
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= 2n−m(−2)(n−m−1)(n−m)/2(−2)n(n−1)/2
∞

x1, ...,xn−m=1

det

*...................
,

1 1 . . . 1
1 2 . . . 2n−1

...
...

. . .
...

1 m . . . mn−1

1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

. . .
...

1 xn−m . . . xn−1
n−m

+///////////////////
-

×x0
1x1

2 · · · x
n−m−1
n−m

n−m
j=1

u(x j)

= (−1)m(m+1)/2−nm2n(n−m)+m(m−1)/2
∞

x1, ...,xn−m=1

∆n(y)
n−m
j=1

x j−1
j u(x j), (39)

where ∆n(y) =
1≤ j<k≤n(yk − y j) is the n-dimensional Vandermonde determinant, and y = (y1, y2,

. . . , yn) is an n-dimensional vector whose first m components are the first m natural numbers, and
whose remaining n − m components are the summation variables x j:

y j = j, j = 1,2, . . . ,m,

ym+ j = x j , j = 1,2, . . . ,n − m.
(40)

Define the vector A B (1,2,3, . . . ,m), and introduce the function

gm(x) B
m
k=1

(x − k) . (41)

Observe that the Vandermonde determinant ∆n(y) can be factored as

∆n(y) = ∆n−m(x)∆m(A)
n−m
j=1

gm(x j) , (42)

where ∆n−m and ∆m are the (n − m)- and m-dimensional Vandermonde determinants, respectively,
and x = (x1, . . . , xn−m). We thus can write (39) as

τn−m,n = (−1)m(m+1)/2−nm2n(n−m)+m(m−1)/2
∆m(A)υn−m,n , (43)

where

υn−m,n =

∞
x1, ...,xn−m=1

∆n−m(x) *.
,

n−m
j=1

x j−1
j gm(x j)u(x j)+/

-
. (44)

A standard symmetrization argument then gives

υn−m,n =
1

(n − m)!
∞

x1, ...,xn−m=1

∆n−m(x)2 *.
,

n−m
j=1

gm(x j)u(x j)+/
-
. (45)

Since the function gm(x) vanishes for x = 1,2, . . . ,m, this sum is in fact

υn−m,n =
1

(n − m)!
∞

x1, ...,xn−m=m+1

∆n−m(x)2 *.
,

n−m
j=1

gm(x j)u(x j)+/
-
. (46)

It is convenient to shift x j’s by m + 1, giving

υn−m,n =
1

(n − m)!
∞

x1, ...,xn−m=0

∆n−m(x)2
n−m
j=1

w(x j) , (47)
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where

w(x) = gm(x + m + 1)u(x + m + 1)

=

e−2(t−γ)(x+m+1) − e−2(t+γ)(x+m+1)

m
k=1

(x + m + 1 − k). (48)

The last product can be rearranged as follows:

w(x) = 
e−2(t−γ)(x+m+1) − e−2(t+γ)(x+m+1)

m
k=1

(x + k). (49)

Notice that we assume that t > γ > 0, hence w(x) > 0 for x ≥ 0. Therefore, we can introduce monic
polynomials orthogonal with respect to the weight w(x):

∞
x=0

pj(x)pk(x)w(x) = hkδ jk , (50)

where hk = hk(m) > 0 are normalizing constants. We then have

υn−m,n =

n−m−1
k=0

hk . (51)

Observe that

∆m(A) =


1≤ j<k≤m
(k − j) =

m−1
j=0

j! , (52)

hence by (43),

τn−m,n = (−1)m(m+1)/2−nm2n(n−m)+m(m−1)/2 *.
,

m−1
j=0

j!+/
-
υn−m,n. (53)

Thus, from (33) and (51) we obtain the following formula for the partition function:

Zn−m,n = (2ab)n(n−m)em(n−m)t *
,

m−1
j=0 j!n−m−1

j=0 j!
n−1

j=0 j!
+
-

n−m−1
j=0

h j , (54)

where

a = sinh(t − γ), b = sinh(t + γ). (55)

Equivalently, it can be written as follows:

Proposition 2.2.

Zn−m,n = (2ab)n(n−m)em(n−m)t
n−m−1
j=0

h j

j! ( j + m)! . (56)

III. APPROXIMATION BY THE MEIXNER POLYNOMIALS

Let us rewrite formula (49) as

w(x) = 
e−2(t−γ)(x+m+1) − e−2(t+γ)(x+m+1) (x + m)!

x!
, (57)

or

w(x) = 
e−2(t−γ)(x+m+1) − e−2(t+γ)(x+m+1) m!(m + 1)x

x!
, (58)
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where

(β)x = β(β + 1) . . . (β + x − 1), (59)

is the Pochhammer symbol. As an approximation to w(x), let us consider the weight

wM(x) = e−2(t−γ)(x+m+1) m!(m + 1)x
x!

= Cme−2(t−γ)x (m + 1)x
x!

,

Cm = m!e−2(t−γ)(m+1),
(60)

so that

w(x) = wM(x) 1 − e−4γ(x+m+1) . (61)

The orthogonal polynomials with respect to the weight wM(x) are the Meixner polynomials.
The Meixner polynomials Mk(z; β,q) with parameters β > 0 and 0 < q < 1 are defined as

Mk(z; β,q) = 2F1 *
,

−k,−z
β

; 1 − q−1+
-
=

k
j=0

(−k) j(−z) j(1 − q−1) j
(β) j j!

=

k
j=0

(1 − q−1) j
j−1
i=0

(k − i)
j−1
i=0

(z − i)

(β) j j! . (62)

They satisfy the orthogonality condition,

∞
x=0

Mj(x; β,q)Mk(x; β,q) (β)xqx

x!
=

k! δ jk
(β)kqk(1 − q)β , (63)

see, e.g., Ref. 8. By (62), the leading coefficient in the Meixner polynomial Mk(z; β,q) is

Mk(z; β,q) = (1 − q−1)k
(β)k zk + · · ·. (64)

For the corresponding monic polynomials,

pM
k (z) =

(β)k
(1 − q−1)k Mk(z; β,q) (65)

(M in pM
k

stands for Meixner), the orthogonality condition reads

∞
x=0

pM
j (x)pM

k (x)
(β)xqx

x!
=

(β)kqkk! δ jk
(1 − q)β+2k . (66)

To relate it to the weight wM(x) in (60), we set

β = m + 1, q = e−2(t−γ). (67)

Then (60), (66) imply that

wM(x) = Cmqx (m + 1)x
x!

, Cm = m!qm+1,

∞
x=0

pM
j (x)pM

k (x) wM(x) = hM
k δ jk , hM

k =
k! (k + m)! qk+m+1

(1 − q)2k+m+1 .
(68)

As an approximation to the partition function Zn−m,n in (54), we introduce the Meixner partition
function,

ZM
n−m,n = (2ab)n(n−m)em(n−m)t

n−m−1
j=0

hM
j

j! ( j + m)! . (69)
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Remark: The factor
n−m−1

j=0 hM
j appearing in the Meixner partition function is identical to the

normalizing constant in a particular expression for the last passage time in the point-to-point last
passage percolation model on a rectangular lattice with geometric weights, see Proposition 1.3 of
Ref. 9.

From (68), we obtain that
n−m−1
j=0

hM
j

j! ( j + m)! =
n−m−1
j=0

q j+m+1

(1 − q)2 j+m+1 =
q(n+m+1)(n−m)/2

(1 − q)n(n−m) , (70)

hence

ZM
n−m,n = (2ab)n(n−m)em(n−m)t q(n+m+1)(n−m)/2

(1 − q)n(n−m) . (71)

By (55),

2a = et−γ − e−(t−γ) =
1 − q
q1/2 . (72)

Substituting this into (71) and simplifying, we obtain that

ZM
n−m,n = bn(n−m)em(n−m)t q(m+1)(n−m)/2 = bn(n−m)em(n−m)t e−(m+1)(n−m)(t−γ)

= bn(n−m)em(n−m)γ e−(n−m)(t−γ) .
(73)

Now we would like to estimate the ratio,

Zn−m,n

ZM
n−m,n

=

n−m−1
k=0

hk

hM
k

. (74)

This will be done in Secs. V and VII, by showing that hk/hM
k

is exponentially close to 1 as
k → ∞. As a means to compare the two systems of orthogonal polynomials, let us first introduce the
Interpolation Problem for each system.

IV. RIEMANN HILBERT APPROACH: INTERPOLATION PROBLEM

The Riemann-Hilbert approach to discrete orthogonal polynomials is based on the following
IP, which was introduced in the paper (Ref. 10) of Borodin and Boyarchenko under the name of
the discrete Riemann-Hilbert problem. See also the monograph (Ref. 11) of Baik, Kriecherbauer,
McLaughlin, and Miller, in which it is called the interpolation problem. Let w(l) ≥ 0 be a weight
function on Z+ = {l = 0,1,2, . . .} (it can be a more general discrete set, as discussed in Refs. 10 and
11, but we will need Z+ in our problem).

Interpolation problem. For a given k = 0,1, . . ., find a 2 × 2 matrix-valued function P(z; k) =
(Pi j(z; k))1≤i, j≤2 with the following properties:

1. Analyticity: P(z; k) is an analytic function of z for z ∈ C \ Z+.
2. Residues at poles: At each node l ∈ Z+, the elements P11(z; k) and P21(z; k) of the matrix

P(z; k) are analytic functions of z, and the elements P12(z; k) and P22(z; k) have a simple pole
with the residues,

Res
z=l

P j2(z; k) = w(l)P j1(l; k), j = 1,2. (75)

Equivalently, the latter relation can be written in the matrix form as

Res
z=l

P(z; k) = P(l; k) *
,

0 w(l)
0 0

+
-
. (76)

3. Asymptotics at infinity: As z → ∞, P(z; k) admits the asymptotic expansion,

P(z; k) ∼
(
I +

P1

z
+

P2

z2 + · · ·
)
*.
,

zk 0

0 z−k
+/
-
, z ∈ C \



∞
l=0

D(l,rl)

, (77)
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where D(z,r) is a disk of radius r > 0 centered at z ∈ C and

lim
l→∞

rl = 0. (78)

It is not difficult to see (see Refs. 10 and 11) that under some mild conditions on w(l), the IP has
a unique solution, which is

P(z; k) = *.
,

pk(z) C(wpk)(z)
(hk−1)−1pk−1(z) (hk−1)−1C(wpk−1)(z)

+/
-
, (79)

where the discrete Cauchy transformation C is defined by the formula,

C( f )(z) =
∞
l=0

f (l)
z − l

, (80)

and pk(z) = zk + · · · are monic polynomials orthogonal with the weight w(l), so that

∞
l=0

pj(l)pk(l)w(l) = h jδ jk . (81)

It follows from (79) that

hk = [P1]21, (82)

where [P1]21 is the (21)-element of the matrix P1 on the right in (77). In what follows we will
consider the solution P(z; k) for the weight w, introduced in (58).

In principle, we could apply the nonlinear steepest descent method of Deift and Zhou to this
interpolation problem to obtain asymptotic expressions for the normalizing constants hk as k → ∞.
This analysis is very similar to the steepest descent analysis for the Meixner polynomials which
was carried out by Wang and Wong,12 although they considered the parameter β in (66) to be fixed,
while we allow it to grow with k. In this paper, we take a different approach and compare the
normalizing constants hk with the Meixner normalizing constants hM

k
, for which we have the exact

formulae (68). In order to compare them, it is convenient to also introduce the Riemann-Hilbert
problem for the Meixner polynomials.

Let PM be a solution to the IP with the weight wM,

PM(z; k) = *.
,

pM
k (z) C(wMpM

k )(z)
(hM

k−1)−1pM
k−1(z) (hM

k−1)−1C(wMpM
k−1)(z)

+/
-
. (83)

Consider the quotient matrix,

X(z; k) = P(z; k)[PM(z; k)]−1. (84)

Observe that det PM(z; k) has no poles and it approaches 1 as z → ∞ outside of the disks D(l,rl),
l = 1,2, . . ., hence

det PM(z; k) = 1, (85)

and

[PM(z; k)]−1 =
*.
,

(hM
k−1)−1C(wMpM

k−1)(z) −C(wMpM
k )(z)

−(hM
k−1)−1pM

k−1(z) pM
k (z)

+/
-
. (86)

The matrix-valued function X(z; k) solves the following IP:
Interpolation problem for X(z; k).

1. Analyticity: X(z; k) is an analytic function of z for z ∈ C \ Z+.
2. Residues at poles: At each node l ∈ Z+,

Res
z=l

X(z; k) = X(l; k)JX(l; k), (87)
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where

JX(l; k) = PM(l; k) *
,

0 w(l) − wM(l)
0 0

+
-
[PM(l; k)]−1

= [w(l) − wM(l)] *.
,

−(hM
k−1)−1pM

k−1(l)pM
k (l) [pM

k (l)]2
[(hM

k−1)−1pM
k−1(l)]2 (hM

k−1)−1pM
k−1(l)pM

k (l)
+/
-
.

(88)

3. Asymptotics at infinity: As z → ∞, X(z; k) admits the asymptotic expansion,

X(z; k) ∼
(
I +

X1

z
+

X2

z2 + · · ·
)
, z ∈ C \



∞
l=0

D(l,rl)

. (89)

From (84), we obtain that in (89)

I +
X1

z
+

X2

z2 + · · · =
(
I +

P1

z
+

P2

z2 + · · ·
)
*
,
I +

PM
1

z
+

PM
2

z2 + · · · +
-

−1

, (90)

where on the right hand side we use a formal multiplication and inversion of power series in 1/z. In
particular,

X1 = P1 − PM
1 , (91)

hence by (82),

[X1]12 = hk − hM
k . (92)

It is easy to check that the matrix

X(z; k) = I + C[(wM − w)R](z; k), (93)

where

R(z; k) = *.
,

(hM
k−1)−1pk(z)pM

k−1(z) −pk(z)pM
k (z)

(hk−1hM
k−1)−1pk−1(z)pM

k−1(z) −(hk−1)−1pk−1(z)pM
k (z)

+/
-

(94)

solves the IP for X(z; k). The uniqueness of the solution of the IP implies that X(z; k) is given by
formula (93).

From (93) and (94) we obtain that

hk − hM
k =

∞
l=0

pk(l)pM
k (l) [w(l) − wM(l)]. (95)

We will use this identity to estimate |hk − hM
k
|.

We would like to remark that identity (95) can be also derived as follows. Observe that since pk
and pM

k
are monic polynomials, the difference, pk − pM

k
, is a polynomial of degree less than k, hence

∞
l=0

pk(l)[pk(l) − pM
k (l)]w(l) = 0. (96)

By adding this to Eq. (81) with j = k, we obtain that

hk =

∞
l=0

pk(l)pM
k (l)w(l). (97)

Similarly, we obtain that

hM
k =

∞
l=0

pk(l)pM
k (l)wM(l). (98)

By subtracting the last two equations, we obtain identity (95).
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V. EVALUATION OF THE RATIO hk /hM
k FOR nε ≤ m < n

In this section, we prove the following result:

Proposition 5.1. Fix any ε > 0. Then there is a constant κ > 0 such that

hk = hM
k erk, (99)

where

rk = O(e−κn), k = 0,1,2, . . . , (100)

uniformly with respect to m in the interval nε ≤ m < n and k ∈ Z+.

Proof. Applying the Cauchy-Schwarz inequality to identity (95), we obtain that

|hk − hM
k | ≤



∞
l=0

[pk(l)]2 |w(l) − wM(l)|


1/2

∞
l=0

[pM
k (l)]2 |w(l) − wM(l)|



1/2

, (101)

which implies that
�������
*
,

hk

hM
k

+
-

1/2

− *
,

hM
k

hk

+
-

1/2�������
≤



1
hk

∞
l=0

[pk(l)]2 |w(l) − wM(l)|


1/2

×


1
hM
k

∞
l=0

[pM
k (l)]2 |w(l) − wM(l)|



1/2

,

(102)

From (61),

|w(l) − wM(l)| = w(l)
e4γ(l+m+1) − 1

≤ C0w(l), l ≥ 0, C0 =
1

e4γ(m+1) − 1
,

|w(l) − wM(l)| = wM(l) e−4γ(l+m+1) ≤ C1w
M(l), l ≥ 0, C1 = e−4γ(m+1) ,

(103)

hence

1
hk

∞
l=0

[pk(l)]2 |w(l) − wM(l)| ≤ C0
1
hk

∞
l=0

[pk(l)]2w(l) = C0,

1
hM
k

∞
l=0

[pM
k (l)]2 |w(l) − wM(l)| ≤ C1

1
hM
k

∞
l=0

[pM
k (l)]2wM(l) = C1 .

(104)

Using this in (102), we obtain that
�������
*
,

hk

hM
k

+
-

1/2

− *
,

hM
k

hk

+
-

1/2�������
≤ (C0C1)1/2 =

e−4γ(m+1)

[1 − e−4γ(m+1)]1/2
. (105)

This implies that
������
*
,

hk

hM
k

+
-
− 1

������
≤ C2e−4γ(m+1) , (106)

where C2 > 0. Since m ≥ nε, estimate (100) follows. �

VI. PROOF OF THEOREM 1.2

By (74) and (99),

Zn−m,n = ZM
n−m,n

n−m−1
j=0

h j

hM
j

= ZM
n−m,n

n−m−1
j=0

er j = ZM
n−m,neO(ne

−κn) , (107)

hence formula (22) follows from (73) because ne−κn = O(e−κ′n) for any κ′ < κ.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  216.220.176.6

On: Thu, 01 Sep 2016 11:48:21



023302-15 P. Bleher and K. Liechty J. Math. Phys. 56, 023302 (2015)

VII. EVALUATION OF THE RATIO hk /hM
k FOR 0 ≤ m < n

In this section, we prove the following result:

Proposition 7.1. Fix any 1 > ε > 0. Then there is a constant Cε > 0 such that

hk = hM
k erk, (108)

where

|rk | ≤ Cεe−2γm−k1−ε
, (109)

for all m in the interval 0 ≤ m < n and k ∈ Z+.

Proof. From (102)–(104), we obtain that

�������
*
,

hk

hM
k

+
-

1/2

− *
,

hM
k

hk

+
-

1/2�������
≤


e−4γ(m+1)

1 − e−4γ(m+1)

1/2

×


1
hM
k

∞
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1)



1/2

.

(110)

We will estimate the sum in the right hand side by using an explicit formula for the Meixner
polynomial pM

k
(l). Let us partition the sum as

∞
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1) =

L−1
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1)

+

∞
l=L

[pM
k (l)]2 wM(l) e−4γ(l+m+1),

(111)

where

L = ⌊k1−ε⌋ . (112)

Then

1
hM
k

∞
l=L

[pM
k (l)]2 wM(l) e−4γ(l+m+1) ≤ e−4γ(L+m+1) 1

hM
k

∞
l=L

[pM
k (l)]2 wM(l)

≤ e−4γ(L+m+1) ≤ e−4γk1−ε−4γm,

(113)

hence

e−4γ(m+1)

(1 − e−4γ(m+1)) hM
k

∞
l=L

[pM
k (l)]2 wM(l) e−4γ(l+m+1) ≤ Ce−4γk1−ε−8γm. (114)

It remains to estimate the term

δL = e−4γ(m+1) 1
hM
k

L−1
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1). (115)

We may assume that k ≥ 1 because δL = 0 for k = 0 (the sum contains no terms for k = 0).
Let us express δL in terms of the Meixner polynomial Mk(l; m + 1,q), recalling the notation

q = e−2(t−γ) defined in (67). By (68),

wM(l) = Cm
(m + 1)lql

l!
= qm+1m!

(m + 1)lql

l!
=

ql+m+1(l + m)!
l!

. (116)

Also, by (65) and (68)

pM
k (l) =

(k + m)!
m!(1 − q−1)k Mk(l; m + 1,q), hM

k =
k! (k + m)! qk+m+1

(1 − q)2k+m+1 , (117)
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hence

1
hM
k

L−1
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1) =

(1 − q)2k+m+1

k! (k + m)! qk+m+1

×
L−1
l=0

 (k + m)!qk

m!(1 − q)k Mk(l; m + 1,q)
2 ql+m+1(l + m)!

l!
e−4γ(l+m+1)

=
(k + m)!qk(1 − q)m+1

k!m!

L−1
l=0

[Mk(l; m + 1,q)]2 (l + m)!ql

l!m!
e−4γ(l+m+1),

(118)

hence

δL = e−4γ(m+1) 1
hM
k

L−1
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1)

=
(k + m)!qk

�(1 − q)e−4γ�m+1

k!m!

L−1
l=0

[Mk(l; m + 1,q)]2 (l + m)!ql

l!m!
e−4γ(l+m+1) .

(119)

To estimate (k+m)!
k!m! , we use the inequality

akbm(k + m)!
k!m!

≤ (a + b)k+m, a,b > 0. (120)

Applying this inequality to (120) with

a = q, b = (1 − q)e−4γ, (121)

we obtain that

δL ≤ ρk+m
L−1
l=0

[Mk(l; m + 1,q)]2 (l + m)!ql

l!m!
e−4γ(l+m+1), (122)

where

ρ = q + (1 − q)e−4γ < 1. (123)

Using (121) with k = l, a = e2γ − 1, and b = 1, we obtain that

(l + m)!
l!m!

≤ e2γ(l+m)

(e2γ − 1)l , (124)

hence

δL ≤ ρk+me−2γm
L−1
l=0

[Mk(l; m + 1,q)]2 αl ; α =
q

e2γ(e2γ − 1) =
e−2t

e2γ − 1
. (125)

Let us write Mk(l; m + 1,q) starting from the lowest order term:

Mk(l; m + 1,q) = 1 +
(1 − q−1)kl

m + 1
+
(1 − q−1)2k(k − 1)l(l − 1)

2!(m + 1)(m + 2)
+
(1 − q−1)3k(k − 1)(k − 2)l(l − 1)(l − 2)

3!(m + 1)(m + 2)(m + 3) + · · ·.
(126)

The latter sum consists of at most (l + 1) nonzero terms and for l ≤ L − 1 each term is estimated by
(|1 − q−1|kL)L, hence

Mk(l; m + 1,q) ≤ L(|1 − q−1|kL)L. (127)

Using this estimate in (125), we obtain that

δL ≤ ρk+me−2γmL2(|1 − q−1|kL)L . (128)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  216.220.176.6

On: Thu, 01 Sep 2016 11:48:21



023302-17 P. Bleher and K. Liechty J. Math. Phys. 56, 023302 (2015)

Thus,

δL ≤ ρme−2γm exp
�
k ln ρ + O(k1−ε ln k)� ≤ Cεe−2γm−k1−ε

, (129)

for some Cε > 0. From (110), (114), and (129) we obtain that

�������
*
,

hk

hM
k

+
-

1/2

− *
,

hM
k

hk

+
-

1/2�������
≤ Cεe−2γm−k1−ε

(130)

for some Cε > 0. This implies (108) and (109). �

Substituting (108), (109) into (74), we obtain that for any fixed 1 > ε > 0 there is Cε > 0 such
that

Zn−m,m = C(m) ZM
n−m,meξnm, |ξnm| ≤ Cεe−2γm exp *

,

∞
k=n−m

e−k
1−ε+

-
,

C(m) =
∞
k=0

hk

hM
k

.

(131)

This implies that for any fixed 1 > ε > 0 there is Cε > 0 such that

|ξnm| ≤ Cεe−2γme−n
1−ε

. (132)

Our next goal will be to calculate the constant factor C(m). From estimate (109), we have that as
m → ∞,

C(m) = 1 + O(ρm), ρ = e−2γ < 1. (133)

VIII. EVALUATION OF THE CONSTANT FACTOR C(m)
The evaluation of the constant factor C(m) in formula (131) will be done in two steps: first, with

the help of the Toda equation, we will find the form of the dependence of C(m) on t; and second,
we will find the large t asymptotics of C(m). By combining these two steps, we will obtain the exact
value of C(m). In this section we carry out the first step of our program, and in section IX we carry
out the second step.

The weight w(x) in (57) can be written as

w(x) = e−2t(x+m+1)u(x) ; u(x) = 2 sinh[2γ(x + m + 1)] (x + m)!
x!

. (134)

Since the dependence of w(x) on t is a linear exponent, we have the Toda equation (see e.g., Ref. 2):

*
,
ln

n−m−1
k=0

hk
+
-

′′

=
4hn−m

hn−m−1
,

( ) ′
=

∂

∂t
. (135)

From (108), (109), and (68) we obtain that

hn−m

hn−m−1
=

hM
n−m

hM
n−m−1

ern−m−rn−m−1 =
(n − m)nq
(1 − q)2 + O

(
ρme−n

1−ε
)
. (136)

We have that

4q
(1 − q)2 =

4e2γ−2t

(1 − e2γ−2t)2 =
 (−2)

1 − e2γ−2t

 ′
=
�
− ln(1 − e2γ−2t)�′′, (137)

hence

*
,
ln

n−m−1
k=0

hk
+
-

′′

= (n − m)n�− ln(1 − e2γ−2t)�′′ + O
(
ρme−n

1−ε
)
. (138)
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Integrating twice, we obtain that for t in any bounded interval [t1, t2] on the line,

ln *
,

n−m−1
k=0

hk
+
-
= C0 + C1t + (n − m)n �− ln(1 − e2γ−2t)� + O

(
ρme−n

1−ε
)

= C0 + C1t − (n − m)n ln(1 − q) + O
(
ρme−n

1−ε
)
.

(139)

On the other hand, from (56), (69), and (131) we obtain that

ln *
,

n−m−1
k=0

hk
+
-
= ln *

,

n−m−1
k=0

hM
k
+
-
+ ln C(m) + ξnm, (140)

hence

ln C(m) = C0 + C1t − (n − m)n ln(1 − q) − ln *
,

n−m−1
k=0

hM
k
+
-
+ O

(
ρme−n

1−ε
)
. (141)

By (70),

ln *
,

n−m−1
k=0

hM
k
+
-
= C2 + C3t − (n − m)n ln(1 − q), (142)

where C2,C3 are independent of t, hence

ln C(m) = C4 + C5t + O
(
ρme−n

1−ε
)
, (143)

where C4,C5 are independent of t (but they may depend on m,n). However, ln C(m) does not depend
on n and according to the latter equation, as n → ∞ it is a limit of linear functions of the argument t.
This implies that ln C(m) is a linear function of t as well, so that

ln C(m) = d0(m) + d1(m)t . (144)

In Sec. IX, we will calculate d0(m) and d1(m).

IX. EXPLICIT FORMULA FOR C(m)
In this section, we find the exact value of C(m), and by doing this we will finish the proof of

Theorem 1.3. Consider the following regime:

γ is fixed, m is fixed, t → ∞, (145)

and let us evaluate the asymptotics of C(m) in this regime. Applying the formula,

∞
l=0

e−xl
m
k=1

(l + k) = m!
(1 − e−x)m+1 , (146)

to (49) and (50), we obtain that

h0 =

∞
l=0

w(l) =
∞
l=0



(
e−2(t−γ)(l+m+1) − e−2(t+γ)(l+m+1)) m

k=1

(l + k)


= m!


e−2(t−γ)(m+1)

(1 − e−2(t−γ))m+1
− e−2(t+γ)(m+1)

(1 − e−2(t+γ))m+1


.

(147)

Similarly,

hM
0 =

∞
l=0

wM(l) =
∞
l=0


e−2(t−γ)(l+m+1)

m
k=1

(l + k)

=

m!e−2(t−γ)(m+1)

(1 − e−2(t−γ))m+1
, (148)
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hence as t → ∞,

h0

hM
0

= 1 − e−4γ(m+1)
(

1 − e−2t+2γ

1 − e−2t−2γ

)m+1

= 1 − e−4γ(m+1) + O(e−2t). (149)

Let us evaluate the quotient hk
hM
k

for k ≥ 1. We prove the following result:

Proposition 9.1. Suppose that γ and m are fixed. Then there are c > 0 and t0 > 0 such that

hk

hM
k

= erk, |rk | ≤ e−ct−k
1/2
, (150)

for all t ≥ t0 and k ≥ 1.

Proof. The proof will be based on estimate (110). We take

L = ⌊t + k2/3⌋ . (151)

Then

1
hM
k

∞
l=L

[pM
k (l)]2 wM(l) e−4γ(l+m+1) ≤ e−4γ(L+m+1) 1

hM
k

∞
l=L

[pM
k (l)]2 wM(l)

≤ e−4γ(t+k2/3).

(152)

It remains to estimate the term

δL = e−4γ(m+1) 1
hM
k

L−1
l=0

[pM
k (l)]2 wM(l) e−4γ(l+m+1). (153)

By (119),

δL =
(k + m)!qk

�(1 − q)e−4γ�m+1

k!m!

L−1
l=0

[Mk(l; m + 1,q)]2 (l + m)!ql

l!m!
e−4γ(l+m+1). (154)

To estimate (k+m)!
k!m! , we use inequality (121) with

a =
1 − e−4γ

2
, b = (1 − q)e−4γ. (155)

This gives

δL ≤
(

2q
1 − e−4γ

)k
ρk+m

L−1
l=0

[Mk(l; m + 1,q)]2 (l + m)!ql

l!m!
e−4γ(l+m+1), (156)

where

ρ =
1 + e−4γ

2
< 1. (157)

The key point here that we still have the factor qk in (156) on the right, where q = e−2t+2γ is
exponentially small as t → ∞. Similar to (130), we obtain that

�������
*
,

hk

hM
k

+
-

1/2

− *
,

hM
k

hk

+
-

1/2�������
≤ C

(
2q

1 − e−4γ

)k
ρm exp

�
−k2/3� (158)

for some C > 0. Together with (152) this proves (150). �

Using formulae (74), (149), and (150), we can calculate C(m). Namely, from these formulae,
we obtain that

Zn−m,n

ZM
n−m,n

=

n−m−1
k=0

hk

hM
k

=

1 − e−4γ(m+1) + O(e−2t)

n−m−1
k=1

erk, |rk | ≤ e−ct−k
1/2

, (159)
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hence by (131), as t → ∞,

C(m) = lim
n→∞

Zn−m,n

ZM
n−m,n

= 1 − e−4γ(m+1) + O(e−2t) , (160)

so that

ln C(m) = ln

1 − e−4γ(m+1) + O(e−2t) . (161)

Comparing this with (144), we conclude that d0(m) = ln
�
1 − e−4γ(m+1)� and d1(m) = 0, hence

C(m) = 1 − e−4γ(m+1) . (162)

X. ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS: A PHASE TRANSITION

The interpolation problem discussed in Sec. IV can be used to obtain an asymptotic formula
for the orthogonal polynomials pk(z) with respect to the weight w(x) = w(x; m) defined in (57). We
consider here a scaling regime, when m, k → ∞ in such a way that m = kξ where 0 ≤ ξ ≤ A for
some A > 0. To describe the corresponding equilibrium measure, introduce the potential function

V (x) = 2(t − γ)x + x ln x − x ln(x + ξ) − ξ ln(x + ξ) + ξ, (163)

and the energy functional

IV(ν) = −


x,y

log |x − y |dν(x)dν(y) +


V (x)dν(x). (164)

The equilibrium measure νeq minimizes IV(ν) over the space of probability measures ν on the line
with the constraint

νE ≤ mE, (165)

for any measurable set E, where mE is the Lebesgue measure. The equilibrium measure is an
essential part of the steepest descent analysis of the interpolation problem, and in particular gives
the limiting density of zeroes of the polynomials pk after a rescaling as k → ∞.

An analysis of the minimization problem (see Sec. 6 of Ref. 9) reveals a phase transition at
ξ = ξc, where

ξc = e2t−2γ − 1. (166)

Namely, for 0 ≤ ξ < ξc there are numbers 0 < a < b such that the equilibrium measure νeq is
saturated on the interval [0,a] so that

dνeq(x)
dx

= 1, 0 ≤ x ≤ a, (167)

and νeq has a band on the interval (a,b), so that

0 <
dνeq(x)

dx
< 1, a < x < b. (168)

Finally, the interval [0,∞) is a void one, so that

dνeq(x)
dx

= 0, x ≥ b. (169)

For ξ > ξc, there is no saturated interval, and the equilibrium measure is supported by a band (a,b),
where 0 < a < b.

It is interesting to notice that the phase transition in the equilibrium problem has no effect on
the asymptotic behavior of the partition function Zn−m,m in Theorems 1.2 and 1.3.
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APPENDIX A: PROOF OF PROPOSITION A.1

To prove the last equation in (3), fix a configuration σ and consider the corresponding height
function h(v) defined on the faces of the lattice (or on the vertices of the dual lattice V ′) by the
condition that for any two neighboring faces v,w,

h(w) − h(v) = (−1)s, (A1)

where s = 0 if the arrow σe on the edge e ∈ E, crossing the segment [v,w], is oriented in such a
way that it points from left to right with respect to the vector v⃗w , and s = 1 if σe is oriented from
right to left with respect to v⃗w. The ice-rule ensures that the height function h = hσ exists for any
configuration σ. An example of a configuration and its corresponding height function is given in
Figure 4. The height function is defined up to an additive constant, and we fixed it by assigning 0 to
the face in the right lower corner. Observe that due to the partial domain wall boundary conditions,
on the boundary the height function is linear on the left and right sides, and on the lower boundary.
Introduce the coordinates on the dual lattice such that the origin is at the right lower corner, and
the x-axis going left and the y-axis going up. Then on the left and right sides, and on the lower
boundary,

h(0, k) = k, 0 ≤ k ≤ n − m,

h( j,0) = j, 0 ≤ j ≤ n,

h(n, k) = n − k, 0 ≤ k ≤ n − m.

(A2)

The height function can be used to calculate the differences N2(σ) − N1(σ) and N4(σ) − N3(σ).
Consider any line L on the dual lattice parallel to the diagonal y = x. Then along this line the height
function jumps by 2 on any vertex configuration of type 1 and by (−2) on any vertex configuration
of type 2. The height function does not change on any vertex configuration of types 3, 4, 5, 6 (See
Figure 5).

Let v1, . . . , vk be the vertices of the dual lattice V ′ along the line L. Then

h(vk) − h(v1) = 2N1(σ,L) − 2N2(σ,L), (A3)

where Ni(σ; L) is the number of vertex states of type i in σ on the line L. By summing up over all
possible lines L, we obtain that

H − S = 2N1(σ) − 2N2(σ), (A4)

where H is the sum of the heights h(v) along the top row,

H = h(1,n − m) + h(2,n − m) + · · · + h(n − 1,n − m). (A5)

FIG. 4. The height function.
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FIG. 5. The height function on vertex arrow configurations.

and

S = [1 + · · · + (n − m − 1)] + [1 + · · · + (m − 1)]
=

(n − m − 1)(n − m)
2

+
(m − 1)m

2
.

(A6)

Similarly, summing up along the lines parallel to the diagonal y = −x, we obtain that

H − T = 2N3(σ) − 2N4(σ), (A7)

where

T = [(m + 1) + · · · + n] + [(n − 1) + · · · + (n − m + 1)]
=

(n − m)(n + m + 1)
2

+
(m − 1)(2n − m)

2
.

(A8)

Since

T − S = 2m(n − m), (A9)

we obtain from (A4) and (A7) that

[N1(σ) − N2(σ)] − [N3(σ) − N4(σ)] = T − S
2
= m(n − m). (A10)

This proves the last equation in (3).

APPENDIX B: PROOF OF PROPOSITION B.1

We begin with a partially inhomogeneous six-vertex model with DWBC. That is, consider the
n × n square lattice with parameters (λ1, . . . ,λn) assigned to horizontal lines from top to bottom, see
Fig. 6. We label the six vertex types as in Fig. 1, and use different weights in each row:

w j =




a−(λ j) B e−γa(λ j) if vertex in row j is of type 1

a+(λ j) B eγa(λ j) if vertex in row j is of type 2

b−(λ j) B e−γb(λ j) if vertex in row j is of type 3

b+(λ j) B eγb(λ j) if vertex in row j is of type 4

c(λ j) B sinh(2γ) if vertex in row j is of type 5 or 6

, (B1)
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FIG. 6. The n×n square lattice with spectral parameters (λ1, . . .,λn).

where

a(λ) = sinh(λ − γ) , b(λ) = sinh(λ + γ) , c(λ) ≡ c = sinh(2γ). (B2)

Introduce the notations

ϕ(λ) : = a(λ)b(λ) = sinh(λ − γ) sinh(λ + γ) ,
φ(λ) : =

sinh(2γ)
sinh(λ − γ) sinh(λ + γ) .

(B3)

The Izergin-Korepin formula for the partially inhomogeneous partition function is6,7

Z inh
n =

(−1)n(n−1)/2 n
j=1 ϕ(λ j)nn−1

j=0 j!


1≤ j<k≤n sinh(λ j − λk)
det

�
φ(k−1)(λ j)�nj,k=1, (B4)

where φ(k) is the kth derivative of φ. Observe that the factor (−1)n(n−1)/2 comes from our ordering of
sinh(λ j − λk) in the denominator.

Now introduce the following notations. Let Z inh
n−m,n be the partition function for the six-vertex

model on the (n − m) × n lattice with the parameters (λm+1, . . . ,λn), with arrows pointing out on
the left and right boundaries, in on the bottom boundary, and the top boundary free. On the top
boundary, there are exactly m arrows pointing up, and n − m arrows pointing down. For an m-tuple
of integers 1 ≤ k1 < k2 < · · · < km ≤ n, consider the partially inhomogeneous six-vertex model on
the (n − m) × n lattice with the following fixed boundary conditions: arrows on left and right bound-
aries point out, arrows on bottom boundary point in, and the up-pointing arrows on the top boundary
are placed k1th, k2th, . . . , and kmth location from the right. We denote the partition function of this
model with parameters (λm+1, . . . ,λn) by Z inh(k1,k2, ...,km)

n−m,n . Clearly, then we have

Z inh
n−m,n =


1≤k1<k2< · · ·<km≤n

Z inh(k1,k2, ...,km)
n−m,n . (B5)

For what follows, we set Z inh
n,n = Z inh

n .
Introduce the notation

fr(γ) = e2γr + e2γ(r−2) + e2γ(r−4) + · · · + e−2γr =
e2γ(r+1) − e−2γ(r+1)

e2γ − e−2γ . (B6)

The formula for Z inh
n−m,n follows from the following inductive lemma.

Lemma B.1. The partition function Z inh
n−m−1,n is obtained from Z inh

n−m,n via the limit,

Z inh
n−m−1,n =

2n−1

c fm(γ) lim
λm+1→∞

e−(n−1)λm+1Z inh
n−m,n . (B7)
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Proof. For a configuration on the (n − m) × n lattice, let us consider the weight of the first row
when there is exactly one c-type vertex in that row. This can happen when there is an up-pointing
arrow in the second row of arrows directly below each up-pointing arrow in the first row. The
remaining up-pointing arrow in the second row of arrows may be placed anywhere else and gives
the c-type vertex in the first row of vertices. Counting the weight of the first row of vertices, we find

Z inh(k1,k2, ...,km)
n−m,n =

c
 

1≤l<k1

b−(λm+1)l−1a+(λm+1)n−l−mb+(λm+1)mZ inh(l,k1,k2, ...,km)
n−m−1,n

+


k1<l<k2

b−(λm+1)l−2a−(λm+1)a+(λm+1)n−l−m+1b+(λm+1)m−1Z inh(k1,l,k2, ...,km)
n−m−1,n

+


k2<l<k3

b−(λm+1)l−3a−(λm+1)2a+(λm+1)n−l−m+2b+(λm+1)m−2Z inh(k1,k2,l,k3...,km)
n−m−1,n

...

+


km−1<l<km

b−(λm+1)l−ma−(λm+1)m−1a+(λm+1)n−l−1b+(λm+1)Z inh(k1, ...,km−1,l,km)
n−m−1,n

+


km<l≤n
b−(λm+1)l−m−1a−(λm+1)ma+(λm+1)n−lZ inh(k1,k2, ...,km,l)

n−m−1,n



+weights of configurations with more than one c−type vertex in first row .

(B8)

Now consider the limit as λm+1 → +∞. In this limit, we have

a+(λm+1) = eλm+1

2

(
1 + O(e−2λm+1)) , a−(λm+1) = eλm+1e−2γ

2

(
1 + O(e−2λm+1)) ,

b+(λm+1) = eλm+1e2γ

2

(
1 + O

(
e−2λm+1

))
, b−(λm+1) = eλm+1

2

(
1 + O

(
e−2λm+1

))
,

(B9)

and configurations with more than one c-type vertex in the first row are O(e(n−2)λm+1). We therefore
find

Z inh(k1,k2, ...,km)
n−m,n =

e(n−1)λm+1 c
2n−1


e2mγ


1≤l<k1

Z inh(l,k1,k2, ...,km)
n−m−1,n

+ e2(m−2)γ 
k1<l<k2

Z inh(k1,l,k2, ...,km)
n−m−1,n + . . .

+ e−2(m−2)γ 
km−1<l<km

Z inh(k1,k2, ...,km−1,l,km)
n−m−1,n

+ e−2mγ


km<l≤n
Z inh(k1,k2, ...,km−1,km,l)
n−m−1,n


(1 + O(e−λm+1)) .

(B10)

Taking the sum over all ordered m-tuples 1 ≤ k1 < k2 < · · · < km ≤ n, we find
1≤k1<k2< · · ·<km≤n

Z inh(k1,k2, ...,km)
n−m,n =

e(n−1)λm+1 c
2n−1

×

e2mγ


1≤k1<k2< · · ·<km≤n


1≤l<k1

Z inh(l,k1,k2, ...,km)
n−m−1,n

+ e2(m−2)γ 
1≤k1<k2< · · ·<km≤n


k1<l<k2

Z inh(k1,l,k2, ...,km)
n−m−1,n + . . .

+ e−2(m−2)γ 
1≤k1<k2< · · ·<km≤n


km−1<l<km

Z inh(k1,k2, ...,km−1,l,km)
n−m−1,n

+ e−2mγ


1≤k1<k2< · · ·<km≤n


km<l≤n

Z inh(k1,k2, ...,km−1,km,l)
n−m−1,n


(1 + O(e−λm+1)) .

(B11)
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By (B5), the left-hand side of the latter equation is equal to Z inh
n−m,n. Also, by (B5),

1≤k1<k2< · · ·<km≤n


1≤l<k1

Z inh(l,k1,k2, ...,km)
n−m−1,n

=


1≤k1<k2< · · ·<km≤n


k1<l<k2

Z inh(k1,l,k2, ...,km)
n−m−1,n = · · ·

=


1≤k1<k2< · · ·<km≤n


km−1<l<km

Z inh(k1,k2, ...,km−1,l,km)
n−m−1,n

=


1≤k1<k2< · · ·<km≤n


km<l≤n

Z inh(k1,k2, ...,km−1,km,l)
n−m−1,n = Z inh

n−m−1,n,

(B12)

hence from (B11) we obtain that

Z inh
n−m,n =

e(n−1)λm+1 c
2n−1 Z inh

n−m−1,n fm(γ)(1 + O(e−λm+1)) . (B13)

Taking the limit as λm+1 → ∞, we obtain (B7), and Lemma B.1 is proved. �

Remark: Notice that the coefficient of each of the fixed-boundary partition functions on the
right-hand side of (B10) does not depend on l, even though the analogous coefficients in (B8)
(before taking λm+1 → ∞) do depend on l. This is a consequence of the particular asymptotics (B9),
which in turn follow from the particular choice of weights (B1). If we let a±(λ j) = a(λ j)e±η and
b±(λ j) = b(λ j)e±η for η , γ (see (12)), then the l-dependence of these coefficients persists in (B10).
In this case, the multi-sums on the right-hand side of (B11) do not yield the pDWBC partition
function.

We can apply this lemma inductively, starting from

Z inh
n,n ≡ Z inh

n =
(−1)n(n−1)/2 n

j=1 ϕ(λ j)nn−1
j=0 j!


1≤ j<k≤n sinh(λ j − λk)

det
�
φ(k−1)(λ j)�nj,k=1 . (B14)

Namely, we have the following proposition:

Proposition B.2. The partition function Z inh
n−m,n is given by

Z inh
n−m,n =

(−1)n(n−1)/2 n
j=m+1

�
emλ jϕ(λ j)n�

2m(m−1)/2 n−1
j=0 j!


m+1≤ j<k≤n sinh(λ j − λk)

× det

*.............
,

1 (−2) (−2)2 . . . (−2)n−1

...
...

...
. . .

...

1 (−2m) (−2m)2 . . . (−2m)n−1

φ(λm+1) φ′(λm+1) φ′′(λm+1) . . . φ(n−1)(λm+1)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+/////////////
-

.

(B15)

Proof. From (B14),

lim
λ1→∞

e−(n−1)λ1Z inh
n,n = lim

λ1→∞

(−1)n(n−1)/2e−(n−1)λ1 n
j=1 ϕ(λ j)nn−1

j=0 j!


1≤ j<k≤n sinh(λ j − λk)

× det

*........
,

φ(λ1) φ′(λ1) φ′′(λ1) . . . φ(n−1)(λ1)
φ(λ2) φ′(λ2) φ′′(λ2) . . . φ(n−1)(λ2)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+////////
-

.

(B16)
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Notice that as λ j → ∞,

ϕ(λ j) = sinh(λ j − γ) sinh(λ j + γ) = e2λ j

4

(
1 + O(e−2λ j)) ,

sinh(λ j − λk) = eλ j−λk

2

(
1 + O(e−2λ j)) . (B17)

Consider now

φ(λ j) = sinh(2γ)
sinh(λ j − γ) sinh(λ j + γ) =

4 sinh(2γ)�
eλ j−γ − e−λ j+γ

��
eλ j+γ − e−λ j−γ

�

=
4 sinh(2γ)

e2λ j
�
e−2γ − e−2λ j

��
e2γ − e−2λ j

�

=
4 sinh(2γ)

e2λ j
�
e2γ − e−2γ

�
(

1
e−2γ − e−2λ j

− 1
e2γ − e−2λ j

)

=
4 sinh(2γ)�
e2γ − e−2γ

�
∞
q=1

�
e2qγ − e−2qγ� e−2qλ j = 4 sinh(2γ)

∞
r=0

fr(γ)e−2(r+1)λ j, (B18)

where fr(γ) is defined in (B6) (we set q = r + 1 in the last line). Differentiating k times, we obtain
that

φ(k)(λ j) = 4 sinh(2γ)
∞
r=0

fr(γ)[−2(r + 1)]ke−2(r+1)λ j. (B19)

Keeping the term r = 0 only and taking j = 1, we have that

φ(k)(λ1) = 4 sinh(2γ) f0(γ)(−2)ke−2λ1 + O(e−4λ1). (B20)

Substituting the latter formula into (B16), we obtain that

lim
λ1→∞

e−(n−1)λ1Z inh
n = lim

λ1→∞

(−1)n(n−1)/24 sinh(2γ) f0(γ) e−(n+1)λ1 n
j=1 ϕ(λ j)nn−1

j=0 j!


1≤ j<k≤n sinh(λ j − λk)

× det

*........
,

1 (−2) (−2)2 . . . (−2)n−1

φ(λ2) φ′(λ2) φ′′(λ2) . . . φ(n−1)(λ2)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+////////
-

. (B21)

Now, from (B17) we find that

lim
λ1→∞

e−(n+1)λ1ϕ(λ1)nn
k=2 sinh(λ1 − λk) = lim

λ1→∞

e−(n+1)λ1
(
e2λ1

4

)n
n

k=2
eλ1−λk

2

=
1

2n+1

n
k=2

eλk, (B22)

hence

lim
λ1→∞

e−(n−1)λ1Z inh
n =

(−1)n(n−1)/2 sinh(2γ) f0(γ)n
j=2

�
eλ jϕ(λ j)n�

2n−1 n−1
j=0 j!


2≤ j<k≤n sinh(λ j − λk)

× det

*........
,

1 (−2) (−2)2 . . . (−2)n−1

φ(λ2) φ′(λ2) φ′′(λ2) . . . φ(n−1)(λ2)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+////////
-

. (B23)
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Thus, by (B7) [remind that c = sinh(2γ)],

Z inh
n−1,n =

2n−1

c f0(γ) lim
λ1→∞

e−(n−1)λ1Z inh
n =

(−1)n(n−1)/2 n
j=2

�
eλ jϕ(λ j)n�n−1

j=0 j!


2≤ j<k≤n sinh(λ j − λk)

× det

*........
,

1 (−2) (−2)2 . . . (−2)n−1

φ(λ2) φ′(λ2) φ′′(λ2) . . . φ(n−1)(λ2)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+////////
-

. (B24)

We now consider the limit of e−(n−1)λ2Z inh
n−1,n as λ2 → ∞. To that end, we keep in (B19) terms

with r = 0 and r = 1:

φ(k)(λ2) = 4 sinh(2γ) (−2)ke−2λ2 + f1(γ)(−4)ke−4λ2

+ O(e−6λ2). (B25)

Substituting this into the second row of the determinant in (B24) and taking a linear combination
with the first row, we obtain that

lim
λ2→∞

e−(n−1)λ2Z inh
n−1,n = lim

λ2→∞

(−1)n(n−1)/24 sinh(2γ) f1(γ)e−(n+3)λ2 n
j=2

�
eλ jϕ(λ j)n�n−1

j=0 j!


2≤ j<k≤n sinh(λ j − λk)

× det

*.........
,

1 (−2) (−2)2 . . . (−2)n−1

1 (−4) (−4)2 . . . (−4)n−1

φ(λ3) φ′(λ3) φ′′(λ3) . . . φ(n−1)(λ3)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+/////////
-

. (B26)

Now,

lim
λ2→∞

e−(n+3)λ2 �eλ2ϕ(λ2)n�n
k=3 sinh(λ2 − λk) = lim

λ2→∞

e−(n+2)λ2
(
e2λ2

4

)n
n

k=3
eλ2−λk

2

=
1

2n+2

n
k=3

eλk, (B27)

hence

lim
λ2→∞

e−(n−1)λ2Z inh
n−1,n =

(−1)n(n−1)/2 sinh(2γ) f1(γ)n
j=3

�
e2λ jϕ(λ j)n�

2n
n−1

j=0 j!


3≤ j<k≤n sinh(λ j − λk)

× det

*.........
,

1 (−2) (−2)2 . . . (−2)n−1

1 (−4) (−4)2 . . . (−4)n−1

φ(λ3) φ′(λ3) φ′′(λ3) . . . φ(n−1)(λ3)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+/////////
-

. (B28)

Thus,

Z inh
n−2,n =

2n−1

c f1(γ) lim
λ2→∞

e−(n−1)λ1Z inh
n−1,n =

(−1)n(n−1)/2 n
j=3

�
e2λ jϕ(λ j)n�

2
n−1

j=0 j!


3≤ j<k≤n sinh(λ j − λk)

× det

*.........
,

1 (−2) (−2)2 . . . (−2)n−1

1 (−4) (−4)2 . . . (−4)n−1

φ(λ3) φ′(λ3) φ′′(λ3) . . . φ(n−1)(λ3)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+/////////
-

. (B29)
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Continuing in this manner m times, we arrive at the formula

Z inh
n−m,n =

(−1)n(n−1)/2 n
j=m+1

�
emλ jϕ(λ j)n�

21+2+· · ·+(m−1)n−1
j=0 j!


m+1≤ j<k≤n sinh(λ j − λk)

× det

*.............
,

1 (−2) (−2)2 . . . (−2)n−1

...
...

...
. . .

...

1 (−2m) (−2m)2 . . . (−2m)n−1

φ(λm+1) φ′(λm+1) φ′′(λm+1) . . . φ(n−1)(λm+1)
...

...
...

. . .
...

φ(λn) φ′(λn) φ′′(λn) . . . φ(n−1)(λn)

+/////////////
-

, (B30)

which proves Proposition B.2. �
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