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Six-vertex model with partial domain wall boundary
conditions: Ferroelectric phase
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We obtain an asymptotic formula for the partition function of the six-vertex model with
partial domain wall boundary conditions in the ferroelectric phase region. The proof
is based on a formula for the partition function involving the determinant of a matrix
of mixed Vandermonde/Hankel type. This determinant can be expressed in terms of
a system of discrete orthogonal polynomials, which can then be evaluated asymp-
totically by comparison with the Meixner polynomials. © 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4908227]

. INTRODUCTION

We consider the six-vertex model on a rectangular lattice of size (n — m) X n for any positive
integer n and any integer m with 0 < m < n. The states of the model are realized by placing arrows
on edges of the lattice obeying the ice rule, meaning that at each vertex there are exactly two arrows
pointing in and two arrows pointing out. There are six possible configurations of arrows at each
vertex, and we label the six vertex types as shown in Fig. 1. The partial domain wall boundary
conditions (pDWBC) are defined in the following way. On the left and right boundaries all arrows
point out of the lattice, and on the bottom boundary all arrows point in. The top boundary is free,
and the ice-rule implies that there are exactly m arrows pointing out on this boundary, and the
remaining (n — m) arrows point in. In Fig. 2 below, an example of the arrow configuration with the
partial domain wall boundary conditions is shown on the 3 x 5 lattice.

For each of the six vertex types, we assign a weight w;, i = 1,...,6, and define the weight of an
arrow configuration as the product of the weights of the vertices in the configuration. That is, for a
configuration o~ of arrows, its weight w (o) is defined to be

6
w@) = [] wiwer =] [0, (1)
J=1

X€Vn-m,n

where V,,_,,, , is the set of vertices in the lattice, f(x; o) is the type of vertex at the vertex x € V,,_,,.»
in the configuration o, and N;(0) is the number of vertices of type i in the configuration o-. The
Gibbs measure on states is then defined as

w(o)

- > Zn—m,n = n—m,n(wh wp, W3, W4, Ws, w6) = Z UJ(O'), (2)
Zn—m,n

[on

u(o) =

where Z,,_,, , is the partition function, and the sum is over all configurations obeying the pPDWBC.
When m = 0, the pPDWBC reduces to the domain wall boundary conditions on the n X n lat-
tice,! and the asymptotic expansion of the partition function Z, , as n — oo has been studied in
detail in a series of papers by the first author of the current paper and various coauthors. For a
complete description, see the monograph” of the current authors. The main purpose of the current
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)] ) 3)

“ &) (6)

FIG. 1. The six types of vertices allowed under the ice-rule.
work is to obtain an asymptotic expansion for the pPDWBC partition function as well. Let us also
note that the pPDWBC partition function has recently appeared in the literature as an expression for

certain quantities related to the XXX spin chain, and related models in mathematical physics, see
Refs. 3 and 4 and references therein.

A. Conservation laws and reduction of parameters

A priori the six-vertex model has six parameters: the weights wy,...,ws. By observing some
quantities which are conserved in each state, we can reduce the number of parameters to three.
Namely, we have the following proposition.

Proposition 1.1. In the six-vertex model on the (n — m) X n lattice, the following equations hold
for every state o satisfying pDWBC:

Ni() + No(0) + N3(07) + Na(07) + Ns(07) + Ne(0) = n(n —m),
Ns(0) = Ne(o) = n —m, (©)
Ni(0) = No(0) + No(o) = N3(0) = m(n — m).

The first equation in (3) is trivial and simply counts the total number of vertices. The second
equation follows from the fact that in each row there is one more type-5 vertex than type-6 vertex,

FIG. 2. An example of the arrow configuration with the partial domain wall boundary conditions on the 3 x5 lattice.
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which is a direct consequence of the domain wall boundary condition in each row. We prove the

third equation in Appendix A in the end of the paper.

Remark: In the case m = 0, the third equation of (3) can be split into the two equations
Ni(o) = No(0) = Ny(o0) — N53(o) = 0, giving four conserved quantities. In this case, the general

six-vertex model can be reduced to two parameters, see Refs. 2 and 5.

Let us now discuss how to use Proposition 1.1 to reduce the number of parameters. Let us write

w; =ae”® wy=ae®, wy=be P, wi=beP, ws=ce?, ws=ce’,
where
Wy W4
a=+ww, e"=.—, b=+wuws = [—,
wy w3
6
C = \JWs5We, e‘f = —
Ws
Then
Ny Ny N3 Nj Ns N, _ _ _
w! 1w2 2w2 3w4 4w5 Sw6 6 — gN1+N2pN3+Ny N5+ N ,@(No=N+B(Ng=N3)+&(N6=Ns)
Let
a+pf a-pf
a=n+6, pf=n-0; n= > 0 = 5
Then

N1+N2bN3+N4CN5+N6

Ny N3 Ng Ns N
2345w66=a

Ny
wl U)2 w3 U)4 LU5

¢ @1(N2=N1+Ny=N3)+6(Ny=N1=Ng+N3)+&(N6—Ns)

Using the second and third equations of (3), we obtain that

Ni. Ny N3 Ny N5 N — — — —m)— _
| lw2 Zw3 311)4 4w5 Sw6 6 _ N'+N2bN3+N4CN5+N68U(N2 N1+N4—N3)-0m(n-m)-&(n—m)

w a

— (ae—n)N](aen)Nz(be—n)N3(ber])N4CN5CNﬁe—(~1m(n—m)—g-’(n—m).

From (5), (7),

1/4 1/2
0 W1W4 —& ws
e’ = , ec=[—] .,
worws3 We
Ny Nr N3 N4y N5 Ng -m\N N -\ 17\Ny4 N5 N
w wy wy w, fwg Cwe © = (ae”) M (ae) (be )3 (be'l) e

1
y wwy m(n-m)/4 ws (n-m)/2
w3 We '

This implies the relation between partition functions,

wlw4)m(n—m)/4( ws )(n—m)/2

hence

w3 We

Zy—m,n(W1, W2, W3, W4, W3, We) = (
X Zn-mn(ae " ae" ,be™ be", c,c),
and between Gibbs measures,
w(o; wy, wy, w3, we, ws, we) = w(o; ae™,ae’,be™,be’,c,c).

Furthermore, using the first equation of (3), we have

ae™ ael be™ be'
b b b b
c c c

= 7, = nn—-m
Zn—m,n(ae n’ae ]7be n’ben’c7c) =cC ( )Zn—m,n( ’ )

1 ae be ™ bel
_ _ ae ae e e
u(o;ae™, ae'l, be ”,be”,c,6)=/l(cr; R e ,1),

“4)

®)

(6)

(M

®)

€))

(10)

Y

12)

13)

(14)
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and so the model reduces to the three parameters, <, % ,and 7.

B. The main result: Asymptotics of the partition function

Fix two real parameters ¢ and v, with 0 < |y| < ¢, and introduce the parameterization of a, b, ¢
as

a =sinh(t —y), b=sinh(t +vy), c¢ =sinh2|y]|). (15)
Set
a. =ea, b, =e*b. (16)
In the current work, we consider the partition function
Zn-mn(a-,as,b_,by,c,c) = Zy_m n(ae™,ae’,be™,be’,c,c), 17

depending on the two parameters, ¢ and 7. It is a specialization of the three parameter family,
Zn-mn(ae ™, ae',be™ be", c,c)in (12) to the case when g = .
Notice that 0 < y < t corresponds to the regime

b_b, > a_a, + 3 s (18)
andy < 0 < |y| < t, corresponds to the regime
a-a, > b_b, +c*. (19)

These two regimes are natural extensions of the two components of the ferroelectric regime consid-
ered in Ref. 5. Without loss of generality, we will consider only the component (18) corresponding
to0 <y <t.

Remark: According to the conservation laws (3),

Zn-mn(a_,as,b_,by,c,c) = e?™mz, . (a,a,e”?b,e?b,c,c)

-2y 2y

e b e’b ¢ c

—_ —m(n—m nn—-m

=e ( )ya( )Zn—m,n ls]s s s T T |
a a a a

(20)

where the weights in the latter equation match the weights which appear in Ref. 4 after a simple
change of variables.

Our main results concern the asymptotic behavior of the partition function Z,_,, , as n — co.

Theorem 1.2. Fix two parameterst,y with0 < t <y, and let
Zn—m,n = n—m,n(a—’a+ab—3b+ac,c)’ (21)

where a.,b., and c are as in (15), (16). Fix any € > 0. Then there is a constant k > 0 such that as
n— oo,

Zp-m.n = [sinh(z + y)] ) gmn=my e_("_’”)(’_”[l +0(e™ ™)), (22)

uniformly with respect to m in the interval
ne <m<n. 23)
Remark. Observe that there is no constant factor in (22), i.e., the constant factor is 1. In addi-
tion, the error term is exponentially small. This should be compared with the paper Ref. 5 (see also

Ref. 2), where a similar result was obtained for m = 0.
The case of m < ne, including when m remains bounded, is covered by the following theorem.

Theorem 1.3. Fix the parameters of the six-vertex model as in Theorem 1.2. For any & > (),
there is a constant ny > 0 such that for any n > npand any 0 < m < n,

Zn-m.n = C(m)[sinh(t + y)]"r=memn=my g=n=mt=(] 4 g, (24)
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where
C(m) =1= e—4y(m+1)’ (25)
and

(Eaml < p"e ™ p=e <L, (26)

The proofs of Theorems 1.2 and 1.3 are based on a determinantal formula for Z,,_,, ,, and esti-
mates for corresponding orthogonal polynomials. In fact, Theorem 1.2 follows from Theorem 1.3,
but the proof of Theorem 1.3 is more involved, and to facilitate the reading we will first prove
Theorem 1.2.

It is interesting to notice that the limiting free energy per site F depends on the aspect ratio

r= ";’" of the rectangular lattice of size (n — m) X n. Namely, from (24),

1
F = lim ———InZ,_,., = In[sinh(t + y)] + (1 - r)y. 27

n,m—oo; n;m —r (n - m)n

Indeed, F is determined entirely by the weight of the ground state configuration. Before proceeding
with the proof of Theorems 1.2 and 1.3, let us briefly discuss the ground state.

C. Ground state configuration

The ground state configuration is the one with the largest weight. For the weights described in
Theorem 1.2, the weight of a configuration o is

w(o) = (a_)Nl(tT)(a+)Nz(O’)(b_)N3((T)(b+)N4((T)(C)N5(O')+N6(0')

2
= o YIN1(0)=Na(0)) , =y (N3(0)=Ny(0)) , N1(0)+No(07) |, N3(07)+Ng(0) . N5(0)+Ng(0r) (28)
Using the conservation laws (3), we can write (28) as
w(o) = e~ mn=m)y ,2y(Ny(0)=N3(0)) [ N1(0)+No(07) , N3(0)+ Ny(07) . N5(o)+Ne(or) (29)

Since b > a + ¢, we see that the ground state configuration is the one which maximizes both
N4+ N; and Ny — Ns. This is achieved by placing type-5 vertices along the up-left diagonal starting
from the bottom-right corner. Above this diagonal, all arrows point down or right, and so all vertices
are of type 3. Below and to the left of this diagonal, all arrows point up or left, and so all vertices are
of type 4. See Fig. 3 for the ground state configuration on the 4 X 7 lattice. The diagonal of type-5
vertices is circled.

FIG. 3. The ground state configuration on the 4 X7 lattice. On the circled diagonal all vertices are of type 5. To the right of
this diagonal all vertices are of type 3, and to the left of it all vertices are of type 4.
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The weight of the ground state configuration o#° is
w(O_gS) — (b+)(n—m)(n +m—1 )/2(b_)(n—m)(n—m—1)/2Cn—m

m(n—m)yb(n—m)(n—l)cn—m

=¢ (30)
_ prlnm) m(n—m)y(f)"_m.
¢ b
Comparing (22) and (24) with (30) we find that as m,n — oo,
Zn—m,n 627 _ €—2t n-m
w(o_gs) = ((327 _ e_z,y) (1 + é:nm)’ (31)

where &,,, is estimated in Theorem 1.3. A comparison of (22) or (24) with (30) shows that the
limiting free energy per site F defined in (27) comes entirely from the ground state configuration.
This was known for m = 0, see Ref. 5.

D. Outline of the rest of the paper

The rest of the paper is organized as follows. In Sec. II, we state the determinantal formula for
the partition function Z,_,, ,, and use it to write a formula for Z,_,, , in terms of certain orthogonal
polynomials on the positive integer lattice. In Sec. III, we recall the Meixner polynomials, and in
Sec. IV, we introduce the Interpolation Problem (IP) in order to compare our orthogonal polyno-
mials with the Meixner ones. In Secs. V and VI, we prove Theorem 1.2 by a careful comparison of
the normalizing constants for our orthogonal polynomials with those of the Meixner polynomials.
In Sec. VII, the analogous analysis is carried out for the proof of Theorem 1.3, and in Secs. VIII
and IX, the proof of Theorem 1.3 is completed by finding an explicit formula for the constant term
C(m) using the Toda equation. Finally, Sec. X gives a short discussion of the phase transition in the
underlying orthogonal polynomials.

Il. AN ORTHOGONAL POLYNOMIAL FORMULA FOR Z,_;,n

Introduce the notations
@(t) := sinh(¢ — y) sinh(t + y) = ab,
sinh(2y) _c (32)
sinh(f — y)sinh(t +y)  ab’
The starting point for our analysis is the following determinantal formula for the partition function.

¢@t) - =

Proposition 2.1. For the six-vertex model on the (n — m) X n lattice with pDWBC and weights
as described in (15) and (16), the partition function Z,_,, , is given by the following formula:

_ (_1)m(m+1)/2—nm¢(t)n(n—m)em(n—m)t

Zn—m,n - 2m(m71)/2 I_I;l;(’)nilj' H;‘;Olj' Tn—m,ns (33)
where
1 (-2) (-2)* Y ) Lo
1 (-2m) (-2m)> ... (=2m)"!
Tuomn = det| @) (1) ") ... ") (34)
¢'(t) ¢"(t) () B ()
¢(n—m—1)(t) ¢(n—m)(t) ¢(n—m+l)(t) L ¢(2n—m—2)(t)
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is a determinant of mixed Vandermonde/Hankel type.

This proposition follows from the Izergin—Korepin formula for the partition function of the
inhomogeneous six-vertex model with domain wall boundary conditions on the square lattice.®” A
similar formula for the inhomogeneous six-vertex model was derived in Ref. 4. For completeness,
we present a proof in Appendix B. When m = 0, it simplifies to the usual formula for the partition
function of the six-vertex model with domain wall boundary conditions:

[()]™

= n,n» n,n — det ¢j+k_2(t) " (35)
e o T =)

n,n jk=1"

Remark: The proof of Proposition 2.1 relies on the particular parametrization (15) and (16)
of the weights. For the general class of weights (12), there does not seem to be any determi-
nantal formula for the partition function unless n = y. See the remark following the proof of
Lemma B.1

It is straightforward that for 0 < y < ¢, the function ¢(¢) can be represented as the discrete
Laplace transform

6(1) =2 u(x),  u(x)=2e sinh(2yx) = ¢ 2 - 2N (36)
x=1
Indeed,
0 ) =2(t—y) =2(t+y)
_ “2t-y)x _ ,~2r+)x) = ¢ __¢
223“”‘222@ ¢ )‘2[1_¢ww> 1 — 2+
x=1 x=1
| 2etmoem] | sinh@y) (37)
[1 - e 20| [1 = e20+)]  sinh(t — y) sinh(z + y) '
From (36),

010 =2 ) (-2 u(x), (38)
x=1

and by multi-linearity of the determinant, we obtain from (34) that

1 (-2) . (-2)"!
! (-4 - (—4)""!
N 1 (—2m) . (=2m)y"*™!
Th-m,n = anm Z det X
X1see Xn—m=1 1 _le e (—2)(1)"7
—2x, (-2x% ... (=2x))"
(2% ) ™™ (2™ (<2x )2

X H u(x;)
j=1
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1 1 . 1
12 . 2!
~ o ~ > 1 m ... m"!
—on m(_z)(n m—1)(n m)/2(_2)n(n 1)/2 Z det
I x X!
XlseesXn—m=1
1 x xg_l
I Xu_m Xt
n-m
xx9x) -zt I_l u(x;)
j=1
— _ — —1
— (_l)m(m+l)/2 nmzn(n m)+m(m—1)/2 An(y) x{ M()Cj), (39)
J
X1yeesXpn—m=1 j=1

where A, (¥) = [Ti<j<k<n(yx — y;) is the n-dimensional Vandermonde determinant, and y = (y1, y2,
.., Yn) is an n-dimensional vector whose first m components are the first m natural numbers, and
whose remaining n — m components are the summation variables x;:

yj:j’ j:1,2,...,m,
(40)

Ymej = Xj, j=12,...,n—m.

Define the vector A := (1,2,3,...,m), and introduce the function
gm() =] = h). (41)
k=1

Observe that the Vandermonde determinant A,,(y) can be factored as

An(¥) = A mX)AWA) [ | gmlx)). (42)

j=1
where A,_,, and A,, are the (n — m)- and m-dimensional Vandermonde determinants, respectively,
and X = (x1,...,X,_;). We thus can write (39) as

Toemn = (_1)m(m+1)/2—nm2n(n—m)+m(m—1)/2Am(A)Un_m - (43)
where
Unomn = 0 Aew® [ [ ] gmlxpulx) | (44)
XlseeonXn-m=1 j=1
A standard symmetrization argument then gives
1 00 2 n-m
Un—m,n = m}q ;7 =lAn,m(x) (El[ gm(xj)u(xj)) . (45)
Since the function g,,(x) vanishes for x = 1,2,...,m, this sum is in fact
] (o] 5 n-m
Un—mn = m Z A 9] (l_[ gm(xj)u(xj)) . (46)
X1yee0s Xp—m=m+1 j=1

It is convenient to shift x;’s by m + 1, giving

1 ) n-m
Un-m,n = m . Z An_m(X)Z H w(Xj) 5 (47)

seesXn-m=0
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where
w(x)=gmx+m+ Du(x+m+1)

m
— [e—Z(t—y)(x+m+l) _ e—2(t+y)(x+m+l)] n(x +m+1-k).
k=1

The last product can be rearranged as follows:

m
w(x) — [e—Z(I—y)(x+m+l) _ e—2(t+y)(x+m+l)] l—l(x + k)
k=1

(48)

(49)

Notice that we assume that# > y > 0, hence w(x) > 0 for x > 0. Therefore, we can introduce monic

polynomials orthogonal with respect to the weight w(x):

D piOpw(x) = I,
x=0

where hy = hi(m) > 0 are normalizing constants. We then have

n-m—1

Un-m,n = l_[ hk-
k=0

Observe that

m—1
Ay =[] w-p=T]]i
Jj=0

I<j<k<m

hence by (43),

m—1
Tyomn = (_l)m(m+1)/2nm2n(nm)+m(m1)/2(1_[ j!)un—m,n-
j=0

Thus, from (33) and (51) we obtain the following formula for the partition function:

1

n - n—-m-—
Zn-mn = (2ab)”<"m>e’"("m>’< - - h;,
I—I 1 ' n]_ 1 l:[

where
a = sinh(t —y), b = sinh(t + y).

Equivalently, it can be written as follows:

Proposition 2.2.

n-m-1
h:
Zn—mn = (Qab n(n-m) m(n-m)t J )
= (2ab)™ e [ TG +m)!

lll. APPROXIMATION BY THE MEIXNER POLYNOMIALS

Let us rewrite formula (49) as

[l

U)()C) — [6—2(1—7)(x+m+1) _ e—2(t+y)(x+m+1)] (X + m)'
x!
or

[}

U)(X) — [8—2(1—7)(x+m+1) _ e—2(t+y)(x+m+l)] m'(m + 1)X
x!

(50)

(S

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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where

Bx=BB+1)...(B+x-1), (59)
is the Pochhammer symbol. As an approximation to w(x), let us consider the weight

wM(x) = "2V xrmeD) m!(m + 1)y = C, e 27 (m+ 1)« ,

x! x! (60)

Cm — m!e_Z(t_y)(mH),

so that
w(x) = wM(x) [l - e_47(x+m+l)] . 61)

The orthogonal polynomials with respect to the weight w™(x) are the Meixner polynomials.
The Meixner polynomials M;(z; 8,q) with parameters 8 > 0 and 0 < ¢ < 1 are defined as

—k,— )] — 1Y
Mk(Z;/J”CI)=2F1( ﬁz;l—ql)zz( )j(=2);(1 —¢7)

4T B!
L =gy ﬂ(k —i) ﬂ(z ~ i)
i=0
(62)
Z (B)J!
They satisfy the orthogonality condition,
(ﬁ)xq k6
M;(x; B, q)Mi(x; B,q) , (63)
Z " (Brg (1 - qF
see, e.g., Ref. 8. By (62), the leading coefficient in the Meixner polynomial My(z; B8, q) is
(=g 4
Mz B.q) = ————2 +---. (64)
(B
For the corresponding monic polynomials,
Ao = Bz b (65)
(I-gH*
Min pkM stands for Meixner), the orthogonality condition reads
M, \ M (ﬁ)xq (ﬂ)quk! Ok
p; (X)p;(x) . (66)
XZO l T (g
To relate it to the weight wM(x) in (60), we set
B=m+1, ¢q=e2, (67)
Then (60), (66) imply that
Dy
LUM(X) =Cnq” _(m +' ) 5 Cm = m!qm+1,
x!
o0 m 68)
kY (k + m)! gl+m+! (
DM P ) wMx) = WS, kY = (=g

As an approximation to the partition function Z,_,, , in (54), we introduce the Meixner partition
function,

n— 1

m—
2= Qabytrmee [T (69)
j=0
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Remark: The factor H" m-l hM appearing in the Meixner partition function is identical to the
normalizing constant in a partlcular expression for the last passage time in the point-to-point last
passage percolation model on a rectangular lattice with geometric weights, see Proposition 1.3 of
Ref. 9.

From (68), we obtain that

n-m-1 n—m-1 ]+m+1 (n+m+1)(n-m)/2
1—[ l—[ 2j+m+1 = g ’ (70)
i '(J +m)‘ (1—g)2+m (1= gyntn=m
hence
M ( ) ( ) q(n+m+l)(n—m)/2
nn—m m(n-m)t
Zy-m.n = (2ab) A= gy (71)
By (55),
1=
2a=eY—e Y = ] 1. (72)
q'?
Substituting this into (71) and simplifying, we obtain that
ZM _ bn(n m) m(n—-m)t q(m+1)(n m)/2 _ bn(n m) m(n-m)t —(m+1)(n m)(t—y)
n—-m,n ~ ~ ~ ~ ~ (73)
= pln=m) gm(n=-myy ~(n-m)(t=y)
Now we would like to estimate the ratio,
-m-1
Zn -m,n " hk
— = —. (74)
2 Q m

This will be done in Secs. V and VII, by showing that A/ hkM is exponentially close to 1 as
k — oco. As a means to compare the two systems of orthogonal polynomials, let us first introduce the
Interpolation Problem for each system.

IV. RIEMANN HILBERT APPROACH: INTERPOLATION PROBLEM

The Riemann-Hilbert approach to discrete orthogonal polynomials is based on the following
IP, which was introduced in the paper (Ref. 10) of Borodin and Boyarchenko under the name of
the discrete Riemann-Hilbert problem. See also the monograph (Ref. 11) of Baik, Kriecherbauer,
McLaughlin, and Miller, in which it is called the interpolation problem. Let w(l) > 0 be a weight
functionon Z, = {{ = 0,1,2,...} (it can be a more general discrete set, as discussed in Refs. 10 and
11, but we will need Z, in our problem).

Interpolation problem. For a given £ = 0,1,. . ., find a 2 X 2 matrix-valued function P(z; k) =
(P;;(z; k))1<i, j <> with the following properties:

1. Analyticity: P(z; k) is an analytic function of z for z € C \ Z,.

2. Residues at poles: At each node [ € Z,, the elements P;(z; k) and P;(z; k) of the matrix
P(z; k) are analytic functions of z, and the elements P15(z; k) and P,5(z; k) have a simple pole
with the residues,

Res Pp(z:k) = w(Pu(l: k). j = 1.2. (75)
2=
Equivalently, the latter relation can be written in the matrix form as
0 w(l)
Res P(z; k) =P(l; k) . (76)
z=1 0 0

3. Asymptotics at infinity: As 7 — oo, P(z; k) admits the asymptotic expansion,

k
P P Z 0
P(z;k)~(I+—l+—§+-~~) < zeC\
z 0z 0 =z~ 20

g D(l,r,)] , (77)
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where D(z,r) is a disk of radius » > 0 centered at z € C and
[lim rp=0. (78)

It is not difficult to see (see Refs. 10 and 11) that under some mild conditions on w(/), the IP has
a unique solution, which is

Pi(2) C(wpr)(z)
P(z; k) = » . , (79)
(hi-1)" " pr-1(z)  (hie1)™ C(wpi-1)(z)
where the discrete Cauchy transformation C is defined by the formula,
> f(l
cho=y 10, (80)
=0 °~
and py(z) = z¥ + - - - are monic polynomials orthogonal with the weight w(/), so that
D piDpeDw(l) = hydji. (81)
1=0
It follows from (79) that
hic = [P1]a1, (82)

where [P1]y; is the (21)-element of the matrix Py on the right in (77). In what follows we will
consider the solution P(z; k) for the weight w, introduced in (58).

In principle, we could apply the nonlinear steepest descent method of Deift and Zhou to this
interpolation problem to obtain asymptotic expressions for the normalizing constants & as k — oo.
This analysis is very similar to the steepest descent analysis for the Meixner polynomials which
was carried out by Wang and Wong,'? although they considered the parameter 3 in (66) to be fixed,
while we allow it to grow with k. In this paper, we take a different approach and compare the
normalizing constants /; with the Meixner normalizing constants 4, for which we have the exact
formulae (68). In order to compare them, it is convenient to also introduce the Riemann-Hilbert
problem for the Meixner polynomials.

Let PM be a solution to the IP with the weight w™,

P(2) Cw"p(2)

PM(z;k) = :
SET WL @ )T CwMM (@)

(83)

Consider the quotient matrix,
X(z:k) = Pz )[PY(z: k)] " (84)

Observe that det PM(z; k) has no poles and it approaches 1 as z — oo outside of the disks D(/,r;),
[ =1,2,..., hence

detPM(z;k) =1, (85)
and
PY(z: )] = ()" CwMp N)(z)  —CwMpi(z) . 86)
—(h )Pt (2) p(2)

The matrix-valued function X(z; k) solves the following IP:
Interpolation problem for X(z; k).

1. Analyticity: X(z; k) is an analytic function of z for z € C \ Z,.
2. Residues at poles: Ateachnode ! € Z,,

Res X(z:k) = X(1: )Ix(l: k), (87)
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where
0 w(l) — w™)
0

Ix(l; k) = PM(1; k)(
88
W) (M) )P ) (88)

ywmml

[(h 1) Pi— 1(1)]2 (h 1) Pk 1(l)l7 )

3. Asymptotics at infinity: As 7 — oo, X(z; k) admits the asymptotic expansion,

= [w(l) - wM(l)](

X, X ®
X(z; k)~(I+—+—2+ ) zeC\ UD(l,rl) . (89)
z 72 pard
From (84), we obtain that in (89)
-1
X, X P, P pM o pY
I+_]+_2+...:(I+_]+_2+...) I+_1+_2+... s (90)
z z? z  z? z 72

where on the right hand side we use a formal multiplication and inversion of power series in 1/z. In
particular,

X; =P, - P}, o1
hence by (82),
[Xi]i2 = hy — B 92)
It is easy to check that the matrix
X(z;k) = I+ C[(w™ - w)R](z; k), 93)
where
Rz K = ()" ()Pt (2) -pr(2)p}(2) o1

(heil" )7 preci@ppt (7). =(hem) ™ prci(2)p(2)

solves the IP for X(z; k). The uniqueness of the solution of the IP implies that X(z; k) is given by
formula (93).
From (93) and (94) we obtain that

b=t =" PO [w(d) = wMD)], (95)
=0

We will use this identity to estimate |/ — hkMI.
We would like to remark that identity (95) can be also derived as follows. Observe that since pi
and pkM are monic polynomials, the difference, py — pkM, is a polynomial of degree less than k, hence

00

D pe®Ipet) = B OIw(D) = 0. (96)

1=0
By adding this to Eq. (81) with j = k, we obtain that

he = > peDpY(Dw(D). ©7)
=0
Similarly, we obtain that
=" peOpOw™). (98)
=0

By subtracting the last two equations, we obtain identity (95).
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V. EVALUATION OF THE RATIO hk/h,"(’| FORne<m«<n

In this section, we prove the following result:

Proposition 5.1. Fix any € > 0. Then there is a constant k > 0 such that
hi = hY'e'™, (99)
where
re =0(e™), k=0,1,2,..., (100)

uniformly with respect to m in the interval ne < m < nand k € Z,.

Proof. Applying the Cauchy-Schwarz inequality to identity (95), we obtain that

) 1/2
i = Y| < Z[pka)ﬁw(l)—wM(ln} [Z[p O |w(1) - Ma)q ., aon
=0

" 1/2 hkM 1/2
hi" hy

which implies that

1/2
[Pk (D] [w(l) - M(l)l]

1
h

L 1

1 12 (102)
XN [P D |w(l) - wM(l)I] ,
k 1=0
From (61),
My w(l) 3 1
wl) =00 = e < G, 120, Co= e 10
lw(l) = wM(D)| = wM(1) e < ClwM1), 120, €= D]
hence
(o] l [e]
Z[pk(l)]z w(d) = M) < Cor- Z[pk<z>12w(1> = Co,
;’ (104)
5 S ORI - M) < Cioxi Z[p OPwM1) = Cy.
k 1=0 k 1=0
Using this in (102), we obtain that
172 M\ 172 avimal
h hk 172 e~ im+h)
(i) () | =t = =mmens 109
This implies that
hk —4y(m+1)
i1 £ Ge , (106)
hy
where C, > 0. Since m > ne, estimate (100) follows. ]
VI. PROOF OF THEOREM 1.2
By (74) and (99),
n-m—1 h. n-m—1
Z’l—m," = Zrly[—m,n _li/[ = i\t/lm erl rl:/[m,neO(neiKn)’ (107)
j=0 hj =0

hence formula (22) follows from (73) because ne ™" = O(e‘“ ™) for any k’ < .
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Vil. EVALUATION OF THE RATIO hk/hl"(’I FORO<m<n

In this section, we prove the following result:

Proposition 7.1. Fixany 1 > & > 0. Then there is a constant C. > 0 such that
hi = hY'e'™, (108)
where
Iral < Coe ™k, (109)

forall min the interval 0 < m < nand k € Z,.

Proof. From (102)—(104), we obtain that

12 172
AN AN
hkM hy

We will estimate the sum in the right hand side by using an explicit formula for the Meixner
polynomial p;’ M(1). Let us partition the sum as

e—4y(m+1) 172
1- e—4y(m+l)

(110)
1/2
hM Z[pkM(l) M(l) e—4y(l+m+1):| )

k 1=0

L-1

Z[pZ/l(l)]Z wM(l) e—4y([+m+1) — Z[pkM(l)]Z U)M(l) e—4)/(l+m+1)
=0 =0

0 (111)
+ PN OF wM@ e,
I=L
where
L= (k"] (112)
Then
1 © ~ ” ~ "
_MZ[pkM(l) M(l)e 4y (l+m+1) <e 4y(L+m+1) = Z[pkM(l) M(l)
ML e (113)
< 6_47(L+m+1) < e—4)’k1 ‘p—4ym’
hence
4y(m+1) e
(T = e oy i Z P wM(p) e < cemtrk, (114)
It remains to estimate the term
oL = 6_47(”“'1) i Z[pgl(l) M(l) 6—47(l+m+1) (115)

k 1=0

We may assume that k > 1 because 6, = 0 for k£ = 0 (the sum contains no terms for k = 0).
Let us express ¢y in terms of the Meixner polynomial My (l;m + 1,gq), recalling the notation
q = 727 defined in (67). By (68),

(m+1)4 _ (m+1)4 _ g (1 + m)!

M —
wM() = C = N . (116)
Also, by (65) and (68)
k+m k! (k + m)! gk+rm+1
P = KM s 1), i = K 117

ml(1 - g~

(1 _ q)2k+m+1 ’
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hence
L-1 m
LS M My -ty - (0=
hkM —~ k! (k + m)! gk+m+1
L-1 2
(k +m)!q* g M) e
x Z S plm o+ 1,q)| LT peme (118)
JPAY
[ m!(1-q) I
+m)lgk(1 — gy KA [ +m)lqg!
— ( m) q ( Q) Z[Mk(l,m + 1’q)]2( m) q e—4’y(l+m+l)’
k!'m! o ['m!
hence
5, = e~ ym+l) Z[pkM(l) M(l) e~ Hr+m+l)
M
hk 1=0 ot (119)
k +m)! 1—q)e ™ I+
_ ( Mgk E{(‘ '61) | Z[Mk(l ma )]2( m) q' o (emel)
n. =0
To estimate &+ T ,) , we use the inequality
kpym
b™(k + m)!
“k(,—|m) <(a+b*™  ab>0. (120)
Im!
Applying this inequality to (120) with
a=gq, b=(1-qe™, (121)
we obtain that
k+m 2, (L+m)g! —dy(l+m+1)
< P Y Ml + 1) e : (122)
where
p=qg+(1-ge ™ <1. (123)
Using (121) with k = [, a = ¢* — 1, and b = 1, we obtain that
(I +m)! eHHm)
Nm! = (e -1)° (124)
hence
L-1 q o2t
k+m ,—2ym . 2 1 — —
5L < pfte Z;[Mk(l,er Lo a = e - a1 (125)
Let us write My(I; m + 1, q) starting from the lowest order term:
L—g Ykl (1—g "Yk(k-1I(1I-1
M+ 1.g) =1+ L O g THEE DS D
m (m m (126)

(1 =g Yk(k - 1)(k =2)I(1 - 1)(I - 2)
3l m+ D)(m + 2)(m + 3)

The latter sum consists of at most (I + 1) nonzero terms and for / < L — 1 each term is estimated by
(|1 = g7 "|kL)*, hence

Mi(L;m + 1,q) < L(|1 — g '|kL)E. (127)
Using this estimate in (125), we obtain that

6 < pkme™m (|1 — g7k L)E . (128)
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Thus,

o1 < p"e @™ expkInp+ O(k'*Ink)| < Coe 2™+, (129)
for some C, > 0. From (110), (114), and (129) we obtain that

I 1/2_ hg[ 1/2
hkM hy

for some C, > 0. This implies (108) and (109). ]

< Coe2ymk'™* (130)

Substituting (108), (109) into (74), we obtain that for any fixed 1 > & > 0 there is C, > 0 such
that

_ - _rl-e
Zn-m.m = C(m) Z};/I,m’mef"’”, |Epml| < Coe™™ exp( Z ek ) ,
m

k=n—

© (131)
k
C(m) = ]—[ e
k=0 "k
This implies that for any fixed 1 > & > 0 there is C; > 0 such that
enm| < Coe™?™me™' (132)

Our next goal will be to calculate the constant factor C(m). From estimate (109), we have that as
m — oo,

Cim)=1+0(p™), p=e? <I. (133)

VIIl. EVALUATION OF THE CONSTANT FACTOR C(m)

The evaluation of the constant factor C(m) in formula (131) will be done in two steps: first, with
the help of the Toda equation, we will find the form of the dependence of C(m) on ¢; and second,
we will find the large ¢ asymptotics of C(m). By combining these two steps, we will obtain the exact
value of C(m). In this section we carry out the first step of our program, and in section IX we carry
out the second step.

The weight w(x) in (57) can be written as

(x +m)!
x!

w(x) = e 2y (x) u(x) = 2sinh[2y(x + m + 1)] (134)

Since the dependence of w(x) on ¢ is a linear exponent, we have the Toda equation (see e.g., Ref. 2):

n-m-—1 "
Ah, r 0
(m ]_[ hk) = ()= . (135)
k=0
From (108), (109), and (68) we obtain that
Rym M (n—m)ng -2
— __n-m_ ernfm_rnfmfl =7 ~ 4 O ( me_n ) A 136
Bt Ly =g "7\ (130
We have that
4q 4e2r-2 B (-2) ’ 3 221
(1—qP ~ (1=~ [1 e B G (137)
hence

7

n-m-—1
(m [ hk> = (n — mn[~1n(1 - 22| + O (pme*"“g) . (138)
k=0
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Integrating twice, we obtain that for 7 in any bounded interval [#,7,] on the line,

n-m-—1

k=0 (139)
=Cy+Cit—(n—mnln(1 —q)+ O (pme_"lis) .
On the other hand, from (56), (69), and (131) we obtain that
n-m—1 n-m—1
ln( ]_[ hk) = ln( ]_[ h,ﬁ”) +1n C(m) + Enm, (140)
k=0 k=0
hence
n-m—1 e
InC(m) = Cy + Cit = (n — m)nIn(1 = g) — ln< [ hkM) +0 (pme-" ) . (141)
k=0
By (70,
n-m—1
ln( ]_[ hkM) =G+ Gyt — (n— m)nin(1 - q), (142)
k=0
where C,, C; are independent of 7, hence
InC(m) = Cy+ Cst + O (pme_"l_g), (143)

where Cy4,Cs are independent of ¢ (but they may depend on m,n). However, In C(m) does not depend
on n and according to the latter equation, as n — co it is a limit of linear functions of the argument ¢.
This implies that In C(im) is a linear function of ¢ as well, so that

In C(m) = do(m) + di(m)t . (144)

In Sec. IX, we will calculate do(m) and d;(m).

IX. EXPLICIT FORMULA FOR C(m)

In this section, we find the exact value of C(m), and by doing this we will finish the proof of
Theorem 1.3. Consider the following regime:

vy isfixed, m isfixed, ¢ — oo, (145)

and let us evaluate the asymptotics of C(m) in this regime. Applying the formula,

¢ “xl " m!
e l+k)y= ——-—i, (146)
; E (1 _ e—x)erl
to (49) and (50), we obtain that
ho = w(l) — [(ez(ty)(l+m+l) _ e—2(t+y)(l+m+1)) (l + k)
;‘ ; D (147)
e—2(z—y)(m+l) e—2(t+y)(m+l)
= | —
m: |:(1 _ e—Z(t—y))m+l (1 _ e—2(t+y))m+1:|

Similarly,

=2(t—y)(m+1)

M_oo M _m —2([—)(lm1)m _ mle
ho_lz(;w (l)—lz(;[e YA ﬂ(l+k)]—w, (148)
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hence as t — oo,

i 1 — p2t+2y\ ]
h_]g[ -1- e—4y(m+l)(ﬁ) =1- e—4y(m+1) + 0(6‘_2[). (149)
—e

Let us evaluate the quotlent L for k > 1. We prove the following result:
k

Proposition 9.1. Suppose that y and m are fixed. Then there are ¢ > 0 and ty > 0 such that

—er—k172
=% Il et (150)

forallt > toand k > 1.
Proof. The proof will be based on estimate (110). We take
L=t+k*3. (151)
Then
_ m 1
hM Z[pgl(l) M(l)e 4y(I+m+1) <e 4y(L+m+1) Z[PkM(l) M(l)

k I=L k I=L (152)
e—4y(t+k2/3)

IA

It remains to estimate the term

L-1
1
6L *47(1111»1) hM [pkM(l)]2 wM(l) 6747(l+m+1). (153)
k 1=0
By (119),
k +m)lg[(1 = g)e= " i 1+
L= ( = EC('mV ? ] Z[Mk(l m+ 1, )]2( m) q o~ dym+l) (154)
e 1=0
To estimate (']‘:;",) L we use inequality (121) with
1—e
a=—5—. b=(-ge™. (155)
This gives
k+m . 2 (L+ m)!ql —4y(l+m+1)
o < (l—e ) ZMk(l,m+1,q)] TP : (156)
where
1+e¥
o= 2e <1. (157)

The key point here that we still have the factor g* in (156) on the right, where ¢ = e 2'*? is
exponentially small as t — co. Similar to (130), we obtain that

12 12
hi / ! !
M he

for some C > 0. Together with (152) this proves (150). O

2q g m 2/3
SC(]—e—“V) o™ exp (—k°7) (158)

Using formulae (74), (149), and (150), we can calculate C(m). Namely, from these formulae,
we obtain that
-1

n-m-1 n—
h 172
n mn 15[ — e—4y(m+1)+0(e—2l):| | | €rk, |”k| < e*thk , (159)
k k=1

=

n m,n k=0
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hence by (131), ast — oo,

Zn—m n — =
C(m) = lim =20 = | — =00+ 4 0721, (160)
n—oo ZVI:/l—m n
so that
InC(m) =1In [1— D] + O(e7™). (161)

Comparing this with (144), we conclude that do(m) = In[1 — e=#+1] and d;(m) = 0, hence

C(m) =1 m+h, (162)

X. ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS: A PHASE TRANSITION

The interpolation problem discussed in Sec. IV can be used to obtain an asymptotic formula
for the orthogonal polynomials py(z) with respect to the weight w(x) = w(x; m) defined in (57). We
consider here a scaling regime, when m,k — oo in such a way that m = k¢ where 0 < & < A for
some A > 0. To describe the corresponding equilibrium measure, introduce the potential function

Vix)=2(t—y)x+xInx —xIn(x + &) - En(x + &) + &, (163)
and the energy functional
Iy(v) = —// log |x — y|dv(x)dv(y) + / V(x)dv(x). (164)
X#Y

The equilibrium measure v.q minimizes /y(v) over the space of probability measures v on the line
with the constraint

vE < mE, (165)

for any measurable set E, where mE is the Lebesgue measure. The equilibrium measure is an
essential part of the steepest descent analysis of the interpolation problem, and in particular gives
the limiting density of zeroes of the polynomials py after a rescaling as k — oo.

An analysis of the minimization problem (see Sec. 6 of Ref. 9) reveals a phase transition at
& = &, where

=M 1. (166)

Namely, for 0 < & < & there are numbers 0 < a < b such that the equilibrium measure veq is
saturated on the interval [0, a] so that

d
Dl o v <a (167)
dx

and veq has a band on the interval (a, b), so that

- dVeq(x) -
dx
Finally, the interval [0, c0) is a void one, so that

0 I, a<x<b. (168)

dveq(x) _o
dx 7
For & > £, there is no saturated interval, and the equilibrium measure is supported by a band (a, b),
where 0 < a < b.
It is interesting to notice that the phase transition in the equilibrium problem has no effect on
the asymptotic behavior of the partition function Z,,_,, ,,, in Theorems 1.2 and 1.3.

x>b. (169)
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APPENDIX A: PROOF OF PROPOSITION A.1

To prove the last equation in (3), fix a configuration o~ and consider the corresponding height
function A(v) defined on the faces of the lattice (or on the vertices of the dual lattice V') by the
condition that for any two neighboring faces v, w,

h(w) - h(v) = (-1)°, (A

where s = 0 if the arrow o, on the edge e € E, crossing the segment [v,w], is oriented in such a
way that it points from left to right with respect to the vector viv , and s = 1 if o, is oriented from
right to left with respect to vi. The ice-rule ensures that the height function i = A, exists for any
configuration . An example of a configuration and its corresponding height function is given in
Figure 4. The height function is defined up to an additive constant, and we fixed it by assigning O to
the face in the right lower corner. Observe that due to the partial domain wall boundary conditions,
on the boundary the height function is linear on the left and right sides, and on the lower boundary.
Introduce the coordinates on the dual lattice such that the origin is at the right lower corner, and
the x-axis going left and the y-axis going up. Then on the left and right sides, and on the lower
boundary,

h0,k)=k, 0<k<n-m,
h(j,0)=j, 0<j<n, (A2)
h(n,k)=n—-k, 0<k<n-m.

The height function can be used to calculate the differences Nx(0) — Ni(o) and Ny(o) — N3(o).
Consider any line L on the dual lattice parallel to the diagonal y = x. Then along this line the height
function jumps by 2 on any vertex configuration of type 1 and by (—2) on any vertex configuration
of type 2. The height function does not change on any vertex configuration of types 3, 4, 5, 6 (See
Figure 5).

Letvy,. .. ,vx be the vertices of the dual lattice V' along the line L. Then

h(vr) — h(v1) = 2N(o, L) — 2Ny(0o, L), (A3)

where N;(o; L) is the number of vertex states of type i in ¢ on the line L. By summing up over all
possible lines L, we obtain that

H-S= ZNI(O') - 2N2(0’), (A4)
where H is the sum of the heights 4(v) along the top row,
H=nrl,n-m)+hQn-m)+---+hin-1,n—m). (AS)

FIG. 4. The height function.
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4 &) (6)

FIG. 5. The height function on vertex arrow configurations.

and
S=[1+-+m-m-D]+[1+:--+(m—-1)]
_(n—m—l)(n—m)+(m—l)m (A6)
B 2 2
Similarly, summing up along the lines parallel to the diagonal y = —x, we obtain that
H —T =2N3(0) — 2N4(0), (A7)
where
T=[m+1)+--+n]+[n=-1D+ ---+(n-—m+1)]
_(=—m+m+1)  (m—1)2n—m) (A8)
- 2 2 ‘
Since
T -S=2m(n—-m), (A9)
we obtain from (A4) and (A7) that
T-S
[Ni(0) = No(o)] = [N3(0) = Na(0)] = —— = m(n —m). (A10)

This proves the last equation in (3).

APPENDIX B: PROOF OF PROPOSITION B.1

We begin with a partially inhomogeneous six-vertex model with DWBC. That is, consider the
n X n square lattice with parameters (Ay,. . . ,A,) assigned to horizontal lines from top to bottom, see
Fig. 6. We label the six vertex types as in Fig. 1, and use different weights in each row:

a-(\j) = e7a(\)) if vertex in row j is of type 1
a.(\j) = €e’a(h;)) if vertex in row j is of type 2
w; = 1b_(\j) = e7Vb())) if vertex in row j is of type 3 , (B1)
bi(hj) = e"b();) if vertex in row j is of type 4
c(;) = sinh(2y) if vertex in row j is of type 5 or 6
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FIG. 6. The nxn square lattice with spectral parameters (Aj, ..., A;).

where
a(\) = sinh(A —y), b(\) = sinh(A + ), ¢(\) = ¢ = sinh(2y). (B2)
Introduce the notations
©(\) : = a(M)b(\) = sinh(A — y) sinh(A + ),
sinh(2y) (B3)
o) : = = &
sinh(A — ) sinh(A + 7y)
The Izergin-Korepin formula for the partially inhomogeneous partition function is
(=1 =D T2 ()"
H;l;()l ]' Hl§j<k <n Sinh()\j - }\k)

where ¢ is the kth derivative of ¢. Observe that the factor (—1)""*~1/2 comes from our ordering of
sinh(A; — Ax) in the denominator.

Now introduce the following notations. Let Z,ilnf‘m,n be the partition function for the six-vertex
model on the (n — m) X n lattice with the parameters (A;;+1,. . .,A,), With arrows pointing out on
the left and right boundaries, in on the bottom boundary, and the top boundary free. On the top
boundary, there are exactly m arrows pointing up, and n — m arrows pointing down. For an m-tuple
of integers 1 < k; < kp < -+ < k;, < n, consider the partially inhomogeneous six-vertex model on
the (n — m) X n lattice with the following fixed boundary conditions: arrows on left and right bound-
aries point out, arrows on bottom boundary point in, and the up-pointing arrows on the top boundary
are placed kith, kth, ..., and k,,th location from the right. We denote the partition function of this

6,7

inh _
n =

det (¢*~D (0 D). (B4)

model with parameters (M;11,. . . ,An) by Zi,“f,(qf,‘,’,kz """ km)_Clearly, then we have
i inh(ky,kp, .. Kim
e D D A (BS)

1<kj<ky<---<km<n
For what follows, we set ZI" = Zzinh,
Introduce the notation

eZ’y(r-H) _ e—27(r+ 1)

frly) =¥ + YT L Y e = (B6)
e — e
The formula for Z,il“l’m,n follows from the following inductive lemma.
Lemma B.1. The partition function Z;“_hm_l’n is obtained from Zil“fm’n via the limit,
inh = lim e ("~ Dhmsizinh (B7)

n-m—-ln = Cfm(y) My |00 ,n:
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Proof. For a configuration on the (n — m) X n lattice, let us consider the weight of the first row
when there is exactly one c-type vertex in that row. This can happen when there is an up-pointing
arrow in the second row of arrows directly below each up-pointing arrow in the first row. The
remaining up-pointing arrow in the second row of arrows may be placed anywhere else and gives
the c-type vertex in the first row of vertices. Counting the weight of the first row of vertices, we find

Zinh(khkz,---,km) _

n-m,n -

| D b)) ()" Zy )

n-m-1,n

1<l<ky

£ ) P Cns)as () T b ()" )

n-m—1,n
ki<l<kyp
£ b)) (b ) Z 2 o)
k2<l<k3 (BS)
D bl O )" A ) by ) 2 )
kp—1<l<km
+ D b Oun) " O )" 22 D
km<l<n
+weights of configurations with more than one c—type vertex in first row .
Now consider the limit as A,,,,; — +o0. In this limit, we have
em+l B ekm+le_27 B
a(hmar) = —— (1+0@Pm) . a () = T (1+0(@m).,
(B9)
Mm+1p2Y
etmtie -
bulhps) = ——— (1+0 (e7m1)) . b (hnar) = (1 +0 (7))

and configurations with more than one c-type vertex in the first row are O(e""?*m+1). We therefore

find
A
inh(k{, ko, ... ki) el Dhmai ¢ o2 inh(1,k{,k, . k)
Z, 2 = Y 7 ko -
n-m,n - 2n n-m-1,n
1<l<kl
+ e2(m—2)’y Z th(kl Lky,....km) +
n-m—-1,n
ki<l<ky (BlO)
—2(m—2)’y iﬂh(kl,kz,...,km_l,l,km)
te Zn—m—l,n
kpp—1<l<km
_ h(k |,k m—1-km,l —
+en2my Zimr koD (1 4 O(g7hme))
n-m— 1n
km<l<n
i um ovi m-tu <k 2 < e m < n, W
Taking the sum over all ordered m-tuples 1 < k; < k; < < kmu < e find
-1\
Zi“h(kl,kz,---,km) _ e Dhmi ¢
n—-m,n - 2n—1
1<kj<ky<---<km<n
% eZmy Zinh(l,kl,kz,_._,km)
n-m-1,n
1<kj<ko<---<km<n 1<I<ky
2m-2)y inh(ky, 1, ko, .. k)
te Zpm-1.n + (B11)

1<ki<kp<---<km<n kj<l<kj

+ ¢~ 2m=2)y Zinh(kpkz,.--,km_l,l,km)
n-m-1,n
1<ki<kp<---<km<n kp_1<l<km
_ inh(k,kp,....kpi—1,km,1 -
+e7my > Zym ekmerkm D (14 O (e hmey)

1<ki<ky<---<km<n km<l<n
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By (B5), the left-hand side of the latter equation is equal to Z"™ = Also, by (B5),

n-m,n*

inh(l,k1,ko, ....km)
2 2 Zatt

1<ki<kpy<---<km<n 1<I<k

_ inh(ky,L,kp, .. okm) _ |
- Z Z Zn—m—l,n -

1<ki<ko<---<km<n ki<l<kp

_ Zinh(kl,kz ----- kin—1.Lkm) (B12)
- n-m-1,n
1<kj<ko<--<km<n ky,_1<l<km
_ k1K, o1 kmsl) _ inh )
n-m-1,n n-m—1,n>
I1<ki<kp<:<km<n km<Il<n
hence from (B11) we obtain that
oD .
Zn—m,n - 2n—1 Zn—m—l,nf’"(’)/)(l + 0(8 )) . (B13)
Taking the limit as A,,1; — oo, we obtain (B7), and Lemma B.1 is proved. O

Remark: Notice that the coefficient of each of the fixed-boundary partition functions on the
right-hand side of (B10) does not depend on [, even though the analogous coefficients in (BS8)
(before taking A,,,+; — o0) do depend on /. This is a consequence of the particular asymptotics (B9),
which in turn follow from the particular choice of weights (B1). If we let a.(k;) = a(hj)e* and
b.();) = b(h;)e*" for n # 7y (see (12)), then the /-dependence of these coefficients persists in (B10).
In this case, the multi-sums on the right-hand side of (B11) do not yield the pPDWBC partition
function.

We can apply this lemma inductively, starting from
(=1 DRI o)
H;:(} JHT <j<k<n sinh(A; — M)

Namely, we have the following proposition:

Z0 = 2" = det (¢ 07, - (B14)

Proposition B.2. The partition function Z™ is given by

- _ (_l)n(n—l)/Z H;'l:m-H [emkj‘p(}\j)n]
T gmm=D/2 H}Z& I Tm+1<j<k<n sinh(h; — k)
1 (-2) (-2 ... (2!
: : : : (B15)
X det 1 (=2m) (=2m)* ... (=2m)""!
e .
Gme1) & o) ¢ Cmsr) - 8" D Or1)
$n)  @0n)  ¢"0) .. $"TV0)
Proof. From (B14),
_1\n(n-1)/2 ,—(n-1)r n \n
lim e_(n—l)Mzinh = lim ( 1) ¢ IHj=1 90()\‘])
Moo B e TT020 ! T <<k <n SINDQL = )
d(1) ¢’ (M) " (M) ... 6" D(h)
(B16)

X det

() ¢'(h) ¢" (M) ... ¢ V()

$0n) &' () 6" () .. ¢ V()
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Notice that as A; — oo,

82)\_,'
(1) = sinh(k; — y) sinh(h; + y) = — (1 + O(e™))
sinh(h; = ) = — (1+0(e)).
Consider now
600 = sinh(2y) _ 4 sinh(2y)
777 sinh(k; — y) sinh(A; +y) (€877 — ehi*Y)(eh Y — e7hi7Y)
_ 4 sinh(2y)
- gzxj(g*ZV - 6_2)\-7)(627 - 6_2)‘./')
_ 4 sinh(2y) 1 B 1
ei(e —e ) e —e i o — e

4sinh(2y) & e
= —(ezsym_ (6_72’7)) Z (€27 — ¢7247) 2% = 4sinh(2y) Z £(y)e 2y, (B18)
q=1 r=0

where f,(y) is defined in (B6) (we set ¢ = r + 1 in the last line). Differentiating k times, we obtain
that

9M(hj) = 4sinh(2y) »° fr(n)[-20r + D]Fe 2, (B19)
r=0

Keeping the term r = 0 only and taking j = 1, we have that
¢ (k) = 4sinh(2y) fo(y)(=2) e + O(e™). (B20)
Substituting the latter formula into (B16), we obtain that

(=1)""=D"24 sinh(2y) fo(y) e "M TG @(hy)"

lim e~~Dhizinh — Jim

e e [1720 j! TT1<j<k <n Sinh(h; = 24)
1 (-2) (=27 ... (=2)!
p02) ¢’ ¢"0) ... ¢" (k)
X det - . (B21)
¢h) ¢'On) ¢"0h) .. "0
Now, from (B17) we find that
~(n+D) [ €M
e g ) ¢ ( ) L
lim - = lim ——— = k. B22
Ao szz sinh(hj — Ag)  hyooo " exlz-xk on+l k[!e ( )
hence
—1)n(n-1)/2 ; n A \n
lim ¢z (=1) sinh(2y) fo(y) [T}, [¢Y9(0;)"]
ke 2n-1 ﬂ;-:(; J'2<j<k<nsinh(h; — hy)
1 (<2) (=22 ... (=2)!
o) ¢’ () ¢"0) ... ¢ V()
x det . (B23)

o) ¢ ) @70 ... $"TI(0h)
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Thus, by (B7) [remind that ¢ = sinh(2y)],

gih = 2 et ginh _ (=)D TG, [ehig(hy)"]
n-1,n Cfo('y) h—o0 n H;:(}J‘ HZSj<kSn Sinh(kj ~ )\k)
N O N C) LR )
o) () ¢ ... ¢ V()

x det . (B24)

o) ¢’ ) ¢"0) .. ¢TI0

We now consider the limit of e‘("‘l))‘zzil“f’lyn as Ay — oo. To that end, we keep in (B19) terms
withr =0andr = 1:
¢*)(2) = 4sinh(2y) [(-2)F e P2+ fi(y) (=4 e™2] + O(e™). (B25)

Substituting this into the second row of the determinant in (B24) and taking a linear combination
with the first row, we obtain that

(~1)"=D"24 sinh(2y) fi(y)e” "2 17, [ o(h;)"]

o —(=Dhyinh g
lim e Z,2 = lim

gm0 hg—eo H;tl J! H23j<ksn Sinh()‘j = M)
1 (-2)  (=2? ... (=2
1 (-4) (=472 ... (4!

xdet| #(h3) ¢’ (3) ¢"(3) ... " V(h) | (B26)

o) o) @) oo dTV0)

Now,
—(neo [ 22 \"
ef(n+3)7»2 [6)”2(,0()\2)"] e (T) 1 n
lim ——— = lim —— % = e, (B27)
to—eo [Tp_zsinh(ly —he)  homeo Iy, 6122-7% 2n+2 B
hence
_1\n(n=1)/2 ; n 2\ ; \n
lim ¢~ Via i :( 1) sinh(2y) fi(y) T1)-3 [¢7¢(0;)"]
hp—oo e 27 11729 ! T13<j<k <n SIND(Qhj = Ai)
1 (-2) (=22 ... (2!
1 (-4)  (-4)? ... (4!
xdet| 9(ha)  ¢'(a) ") ... ") | (B28)
o) M) ") oo V(M)
Thus,
inh :_zn—l lim e~ (=Dhiginh  _ (_])n(n_l)/zn;’lﬁ[eZAjSD(kj)n]
PR fi(y) hameo " 210 ! T )<k <n Sinh(L = Ag)
1 (-2) (2% ... (=2)"!
1 (-4)  (=4? ... (-4!
w det| ) ¢'(h3) ¢7(3) ... 6"V | (B29)

o) ¢'0) ¢ . 6TV0)
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Continuing in this manner m times, we arrive at the formula

(_l)n(n—l)/z n [emkj‘p()\j)n]

inh — j=m+1
T et =D T U g <<k < SRR — M)
1 (-2) -2 ... (2!
1 (-2m)  (-2m)* ... (=2m)*!
X det , ., e , (B30)
¢(7\m+1) ¢ O\m+1) ¢ O‘-m+1) s ¢( ])O"m+1)
¢0n) PO ) o ¢7N0)
which proves Proposition B.2. O

V. E. Korepin, “Calculation of norms of Bethe wave functions,” Commun. Math. Phys. 86, 391-418 (1982).

2 P. Bleher and K. Liechty, Random Matrices and the Six-vertex Model, CRM Monograph Series Vol. 32 (American Mathe-
matical Society, Providence, RI, 2014), p. x+224.

3 1. Kostov and Y. Matsuo, “Inner products of Bethe states as partial domain wall partition functions,” J. High Energy Phys.
2012, 168.

4 0. Foda and M. Wheeler, “Partial domain wall partition functions,” J. High Energy Phys. 2012, 186.

5 P. Bleher and K. Liechty, “Exact solution of the six-vertex model with domain wall boundary conditions. Ferroelectric
phase,” Commun. Math. Phys. 286, 777-801 (2009).

°A.G. Izergin, “Partition function of a six-vertex model in a finite volume,” Dokl. Akad. Nauk SSSR 297, 331-333 (1987).

7A.G. Izergin, D. A. Coker, and V. E. Korepin, “Determinant formula for the six-vertex model,” J. Phys. A: Math. Gen. 25,
43154334 (1992).

8 R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer
Monographs in Mathematics (Springer-Verlag, Berlin, 2010), p. xx+578

9 K. Johansson, “Shape fluctuations and random matrices,” Commun. Math. Phys. 209, 437-476 (2000).

10 A. Borodin and D. Boyarchenko, “Distribution of the first particle in discrete orthogonal polynomial ensembles,” Commun.
Math. Phys. 234, 287-338 (2003).

11y, Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete Orthogonal Polynomials, Annals of Mathematics
Studies Vol. 164 (Princeton University Press, Princeton, NJ, 2007), p. viii+170.

12 X -S. Wang and R. Wong, “Global asymptotics of the Meixner polynomials,” Asymptot. Anal. 75, 211-231 (2011).


http://dx.doi.org/10.1007/BF01212176
http://dx.doi.org/10.1007/JHEP10(2012)168
http://dx.doi.org/10.1007/JHEP07(2012)186
http://dx.doi.org/10.1007/s00220-008-0709-9
http://dx.doi.org/10.1088/0305-4470/25/16/010
http://dx.doi.org/10.1007/s002200050027
http://dx.doi.org/10.1007/s00220-002-0767-3
http://dx.doi.org/10.1007/s00220-002-0767-3
http://dx.doi.org/10.3233/ASY-2011-1060

