
Name: Section:

Final exam
MATH 217, Fall 2013

Instructions
• The exam is 120 minutes long.

• No calculators or references, including notes, are allowed.

• You must complete the entire exam by yourself. Do not cheat!

• Please write in pencil or in blue or black ink.

• You must give full justification for your answers unless otherwise
instructed.

• Erase or clearly cross out discarded work; otherwise, it will be
considered while grading.

• You may use the backs of pages for additional space or scratch
work. Please note where the solution is continued.

• Advice: Read everything before doing anything!

Question Points Score

1 12

2 18

3 9

4 7

5 11

6 10

7 11

8 12

Total: 90
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1. Give the correct definition of each of the following:
(a) (2 points) The orthogonal complement of a subspace W ⊂ Rn.

Solution: The set of all ~v ∈ Rn such that for all ~w ∈ W we have ~v · ~w = 0.

(b) (2 points) An orthogonal matrix.

Solution: A square matrix whose columns form an orthonormal set.

(c) (2 points) A linear map T : V → W of vector spaces being an isomorphism.

Solution: A function f that is one-to-one and onto.

(d) (2 points) The null space of an m× n matrix A.

Solution: The set of all ~x ∈ Rn such that A~x = ~0.

(e) (2 points) A linearly independent subset {~v1, . . . , ~vn} of a vector space V (no credit
will be given for just “not linearly dependent”).

Solution: A set of vectors {~v1, ~v2, . . . } such that the only scalars a1, a2, . . . for
which

a1~v1 + a2~v2 + · · · = ~0

are a1 = a2 = · · · = 0.

(f) (2 points) An inner product on a real vector space V .

Solution: A function 〈, 〉 : V × V → R that is

Linear: 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉 and 〈rv, w〉 = r〈v, w〉 for all vectors
v1, v2, v, w ∈ V and r ∈ R;

Symmetric: 〈v, w〉 = 〈w, v〉 for all vectors v, w ∈ V .

Positive-definite: 〈v, v〉 ≥ 0 for all vectors v ∈ V , and if 〈v, v〉 = 0 then
v = 0.
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2. Mark each statement true or false. If it is true, justify it; if it is false, disprove it or give
a counterexample.
(a) (3 points) Suppose that A and B are row-equivalent square matrices. Then they

have the same eigenvalues.

Solution: False. For example, the 1× 1 matrices (1) and (2) are row-equivalent
but have eigenvalues 1 and 2, respectively.

(b) (3 points) There are no unit vectors ~u,~v ∈ Rn such that ~u · ~v = 2.

Solution: True; this violates the Cauchy–Schwarz inequality:

2 = ~u · ~v 6≤ ‖~u‖‖~v‖ = 1 · 1 = 1.

(c) (3 points) If A is an n× n matrix with fewer than n distinct eigenvalues, then A is
not diagonalizable.

Solution: False; for example, the identity matrix In has only the eigenvalue 1
but is diagonal.

(d) (3 points) If A is a diagonalizable n × n matrix, then every vector in Rn is an
eigenvector of A.

Solution: False; the matrix A =
(

1 0
0 2

)
is diagonal but (1, 1) is not an eigenvector

since A(1, 1) = (1, 2).

(e) (3 points) The vectors ~v =
(

3
1 + i

)
and ~w =

(
6− 3i
3 + i

)
in C2 are linearly dependent.

Solution: True; we have ~w = (2− i)~v.

(f) (3 points) A linear transformation is one-to-one if and only if it is onto.

Solution: False; only for square matrices, otherwise
(
1 1

)
is a counterexample

(onto but not one-to-one).
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3. Let A =
(

2 1 1
6 3 3

)
~b =

(
2
3

)
.

(a) (3 points) Find the set of solutions to A~x = ~b.

Solution: We row-reduce the augmented matrix:(
2 1 1 2
6 3 3 3

)
row reduce−−−−−−→

(
1 1

2
1
2 0

0 0 0 1

)
.

The equation is inconsistent, so the solution set is empty.

(b) (2 points) Find the set of solutions to A~x = ~0.

Solution: Having already found the echelon form of the coefficient matrix, we
get its kernel

span


1/2
−1
0

 ,
1/2

0
−1


 .

(c) (4 points) Find the set of least-squares solutions to A~x = ~b.

Solution: We need to compute:

ATA =

40 20 20
20 10 10
20 10 10

 AT~b =

22
11
11

 .
Then we may solve the (consistent) system ATAx̂ = AT~b, whose reduced aug-
mented matrix is40 20 20 22

20 10 10 11
20 10 10 11

 row reduce−−−−−−→

1 1
2

1
2

11
20

0 0 0 0
0 0 0 0

 .
The set of all least-squares solutions is therefore

11/20
0
0

+ s

1/2
−1
0

+ t

1/2
0
−1


∣∣∣∣∣∣∣ s, t ∈ R

 .
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4. Let A =
(
−1 2
−16 7

)
.

(a) (3 points) Find the eigenvalues of A.

Solution: We have trA = 6 and detA = 25, so the characteristic polynomial is

pA(λ) = λ2 − 6λ+ 25,

whose roots (by the quadratic formula) are 3± 4i.

(b) (4 points) There is some positive real number c such that cA is similar to a rotation
matrix through some angle θ. Find c and cos θ.

Solution: c−1 is the length of (either) eigenvalue, namely 5, and cos θ is the
cosine of the angle of (either) eigenvalue, namely 3/5.
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5. Let A be the matrix below:

A =


1 0 1 2
0 1 0 1
0 2 1 3
1 0 1 2


(a) (3 points) Find a basis for Row(A).

Solution: For ease of notation, we use the fact that Row(A)T = Col(AT ).
Performing row-reduction on

AT =


1 0 0 1
0 1 2 0
1 0 1 1
2 1 3 2


we find that its first three columns span its column space, so the desired basis is

B =




1
0
1
2


T

,


0
1
0
1


T

,


0
2
1
3


T
 .

(b) (6 points) Find an orthogonal basis for Row(A).

Solution: We need to apply the Gram–Schmidt process to B = {~v1, ~v2, ~v3},
computed above, obtaining an orthogonal basis O = {~u1, ~u2, ~u3}. We begin by
setting ~u1 = ~v1, and finding

~u2 = ~v2 −
~v2 · ~u1

~u1 · ~u1
~u1 =


0
1
0
1


T

− 2
6


1
0
1
2


T

=


−1/3

1
−1/3

1/3


T

→


1
−3

1
−1


T

.

The last orthogonal vector is

~u3 = ~v3−
~v3 · ~u1

~u1 · ~u1
~u1−

~v3 · ~u2

~u2 · ~u2
~u2 =


0
2
1
3


T

−7
6


1
0
1
2


T

−−8
12


1
−3

1
−1


T

=


−1/2

0
1/2

0


T

→


1
0
−1

0


T

.

(c) (2 points) Use your results to find an orthogonal basis for Nul(A)⊥.
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Solution: Since Nul(A)⊥ = Col(AT ) = Row(A)T , the basis computed previ-
ously works (without transposing).
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6. Let V be the vector space of all 2× 2 matrices. Define, for every A,B ∈ V :

〈A,B〉 = tr(ATB), where tr
(
a b
c d

)
= a+ d.

It is a fact that (V, 〈, 〉) is an inner product space (which you need not prove). Let A be
any 2× 2 matrix:

A =
(
a b
c d

)
(a) (3 points) Compute ‖A‖2 = 〈A,A〉.

Solution: We have

ATA =
(
a c
b d

)(
a b
c d

)
=
(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)

whose trace is a2 + b2 + c2 + d2.

(b) (4 points) Let W ⊂ V be the subspace spanned by the single matrix S =
(

0 1
−1 0

)
.

Find the orthogonal projection Â of A onto W .

Solution: First, we have ‖S‖2 = 02 + 12 + (−1)2 + 02 = 2. Second, we have

〈A, S〉 = tr
[(
a c
b d

)(
0 1
−1 0

)]
= tr

(
−c a
−d b

)
= b− c.

Then the projection formula is

Â = projW (A) = 〈A, S〉
〈S, S〉

S = b− c
2

(
0 1
−1 0

)
.

(c) (3 points) Write Â and A− Â as linear combinations of A and AT and show that
W⊥ is equal to the set Sym of symmetric matrices (those A with A = AT ).

Solution: We have Â = (A− AT )/2 and, thus A− Â = (A+ AT )/2. We have
Â = 0 if and only if b = c, which is equivalent to A = AT .
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7. Let

A =

5 0 0
4 5 −4
4 0 1

 .
(a) (3 points) Find the eigenvalues of A.

Solution: Expanding down the 2nd column, get the char. polynomial in the
form

p(λ) = (5− λ)(λ2 − 6λ+ 5).

Obviously λ1 = 5 (and hopefully they will see that ê2 is an associated eigenvector).
The roots of the quadratic factor are 5 and 1. So 5 has algebraic multiplicity
two.

(b) (8 points) If possible, diagonalize A: find an invertible matrix R and a diagonal
matrix D such that A = RDR−1, or prove that this is not possible.

Solution: For λ = 5: Must find a basis of the null space of0 0 0
4 0 −4
4 0 −4

 row reduce−−−−−−→

1 0 −1
0 0 0
0 0 0


This leads to the eigenvectors 1

0
1

 and

0
1
0


The geometric multiplicity is two, so already we can say diagonalization is
possible.
For λ = 1: Must find a basis of the null space of4 0 0

4 4 −4
4 0 0

 row reduce−−−−−−→

1 1 −1
0 1 −1
0 0 0


This leads to the eigenvector 0

1
1


So, if

R =

0 0 1
1 1 0
1 0 1

 and D =

1 0 0
0 5 0
0 0 5


then

A = RDR−1,

by “general theory".
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8. (12 points) Let ~v1, . . . , ~vn ∈ Rn be a set of n vectors. Prove that if the ~vi are linearly
independent in Rn, then the matrices Ai = ~vi~v

T
i are linearly independent in the space of

n× n matrices. (Hint: a matrix B is zero if and only if for every vector ~x ∈ Rn, we have
B~x = ~0.)

Solution: Suppose the ~vi are linearly independent, and consider a linear relation
n∑

i=1
aiAi = 0.

Both sides are n× n matrices, so we may multiply by any vector ~x ∈ Rn, giving
n∑

i=1
aiAi~x =

n∑
i=1

ai(~vT
i ~x)~vi = ~0.

By hypothesis, then, all coefficients ai~v
T
i ~x = 0. Write this as

ai(~vi · ~x) = 0.

Taking ~x = ~vi, we find that ai‖~vi‖2 = 0, and since ~vi 6= ~0, we get ai = 0, so the
relation is trivial; thus the Ai are linearly independent.
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